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Abstract
In this study, the Laguerre wavelet-oriented numerical scheme for nonlinear first and second-order delay differential equa-
tions (DDEs) is offered. The proposed technique is dependent on the truncated series of the Laguerre wavelets approx-
imation of an unknown function. Here, we transform the different ordered DDEs into a system of non-linear algebraic
equations with the help of limit points of a sequence of collocation points. Four nonlinear illustrations are involved to
prove the efficiency of the planned technique. The obtained results are equated with the current results, indicating the
proposed technique’s accuracy and efficiency.
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1 Introduction

The differential equation (DE) is a mathematical model of numerous physical wonders. Applications of such
equations can be perceived in many different areas such as biological, chemical, electronic, and transportation
structures. The DEs with time delays are requested in the modeling of real-life problems. DEs with variable
delay have plentiful applications in modeling [1], for instance, control systems on the human body, physiolog-
ical and kinetics, electrical circuits, kinetics, ships and aircraft control systems, and transferrable diseases. In
DDEs, it is known that the occurrence of the delay term generates difficulties in the analysis of DEs. Moreover,
some research works about diffusion systems with delay term through finite-difference [2], parabolic type prob-
lems for delay partial DEs [3], Chebyshev function method [4], method of Bellman’s [5], Runge-Kutta (R-K)
method [6], Spline polynomial methods [7, 8], ADM [9], Radau method [10], Multiquadric approximation of
Multiquadric outline [11], VIM [12], and HPM [13] have been introduced by many scientists.

The Wavelet theory is a recently emerging concept in the field of mathematics. Due to its numerous ap-
plications, many researchers are getting attention more and more interested in wavelets. Simply, wavelets are
defined in a small domain instead of being defined in a large domain. That is a localized function. Wavelets
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are used in many fields of science such as engineering, signal analysis for waveform illustration and segmen-
tation, time-frequency investigation, harmonic scrutiny, etc. Wavelets are seen as the precise representation of
an assortment of operators and functions. Wavelets ψi, j(x) form a basis function, that is, any continuous func-
tion can be expressed as a linear combination of basis elements. Mathematically, we represent any arbitrary
function f (x) in wavelet space as f (x) = Σi, jai, jψi, j(x). This wavelet basis originated from a single function
called the mother wavelet ψ(x), which is a small beat. In literature, wavelet methods such as the Euler wavelet
scheme for volterra delay integral DEs [14], Hermite wavelet scheme for nonlinear singular initial value prob-
lems (IVPs) [15], Legendre wavelet method for nonlinear DDEs [16], continuous wavelet series method for
Lane-Emden equations [17], B-spline method for Burgers-Huxley equation [18], Haar wavelet method for the
Chen-Lee-Liu equation [19], DDEs based on Euler wavelets [20], R-K method for the DDEs [21] and A novel
approach for Pantograph equations [22], and so on [23, 24] have been presented.

The rest of this article is organized as follows. Section 2 and 3 reflect the preliminaries of the Laguerre wavelets
and the method of solution of DDEs respectively. Four illustrations were demonstrated to show the efficiency
and accuracy of the current approach in section 4. In section 5 discussion and conclusion are introduced.

2 Laguerre wavelets

Let (a,b) ⊂ R be an interval and y(x) : (a,b) → R be continuous real-valued functions. In this study, we
employed the following DDE having the form:

dny(x)
dxn = f (yn−1(x), · · · ,y′(x),y(x),x,y(g(x))),a < x < b. (1)

Subject to the physical conditions:
yi(0) = αi, i = 0,1,2, · · · ,N −1,

where αi, i = 0,1,2, · · · are known real constants, and g(x) is the variable delay term. As far as our paper is
concerned, no literatureis available on the above problem by the Laguerre wavelets series method which impels
us to consider this problem according to the projected technique. Details of preliminaries of the wavelets can be
seen in [17]. Definition of the Laguerre wavelets is defined as:

ψn,m(u) =

{
2

k
2

m! Lm(2ku−2n+1), n−1
2k−1 ≤ u < n

2k−1

0, otherwise
(2)

where m = 0,1,2, · · · ,M−1 and n = 0,1,2, · · · ,2k−1 where k ∈ N. Here Lm(u) are Laguerre polynomials of de-
gree m concerning weight function W (u) = 1 on the interval [0,∞) and satisfy the following recurrence formula

L0(u) = 1,L1(u) = 1−u,

Lm+2(u) =
(2m+3−u)Lm+1(u)− (m+1)Lm(u)

m+2
,

where m = 0,1,2, · · · . Some theorems on convergence analysis are discussed in [17].

3 Laguerre wavelets method

In this section of the paper, we introduce the general properties of Laguerre wavelets method (LWM). We
want to convey a solution y(x) of DDEs under Laguerre wavelet space by resembling the y(x) by Laguerre
wavelet basis as
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y(x) =
∞

∑
n=1

∞

∑
m=0

Gn,mψn,m(x), (3)

where ψn,m(x) is given in (2). Approximate y(x) by shortening the series in the equation (3) as

y(x)≈
2k−1

∑
n=1

M−1

∑
m=0

Gn,mψn,m(x) = GT
ψ(x), (4)

where G and ψ(x) are 2k−1M×1 matrix defined as,

GT = [G1,0, · · · ,G1,M−1,G2,0, · · · ,G2,M−1,G2k−1,0, · · · ,G2k−1,M−1], (5)

ψ(x) = [ψ1,0, · · · ,ψ1,M−1,ψ2,0, · · · ,ψ2,M−1,ψ2k−1,0, · · · ,ψ2k−1,M−1]. (6)

Then 2k−1M number of conditions required to determine 2k−1M number of coefficients such as

G1,0, · · · ,G1,M−1,G2,0, · · · ,G2,M−1,G2k−1,0, · · · ,G2k−1,M−1.

Case 1. Suppose DDE is of order one, then there is an initial constraint, namely

y(0) = α1.

Then there should be 2k−1M −1 extra constraints required to recuperate the unknown coefficients Gn,m. These
conditions can be obtained by substituting (4) in (1) we get,

d(∑2k−1

n=1 ∑
M−1
m=0 Gn,mψn,m(x))

dx
= f

(
x,

2k−1

∑
n=1

M−1

∑
m=0

Gn,mψn,m(x),
2k−1

∑
n=1

M−1

∑
m=0

Gn,mψn,m(g(x))
)
. (7)

Assume (7) is precise at 2k−1M−1 limit points of the following form

xi =
1
2
(
1+ cos(

(i−1)π
2k−1M

)
)
, i = 2,3, · · · . (8)

Then (7) will become

d(∑2k−1

n=1 ∑
M−1
m=0 Gn,mψn,m(xi))

dx
= f

(
xi,

2k−1

∑
n=1

M−1

∑
m=0

Gn,mψn,m(xi),
2k−1

∑
n=1

M−1

∑
m=0

Gn,mψn,m(g(xi))
)
. (9)

The above equation contributes 2k−1M−1 algebraic equations and one more constraint will appear from the ini-
tial condition. Therefore, we obtain a system containing 2k−1M number of linear/nonlinear algebraic equations
with 2k−1M unknown. By solving this system using the Newtons Raphson method, we get 2k−1M unknown
coefficient values and substitute these coefficients in (4) which yields the solution of (1).

Case 2. Suppose DDE is second order, then there will be two constraints,

y(0) = α1,y′(0) = α2.

Then, there must be 2k−1M − 2 constraints required to recuperate the unknown coefficients Gn,m. These con-
straints are obtained by replacing equation (4) in (1), we get

d2(∑2k−1

n=1 ∑
M−1
m=0 Gn,mψn,m(x))

dx2 = f
(
x,

2k−1

∑
n=1

M−1

∑
m=0

Gn,mψn,m(x),
2k−1

∑
n=1

M−1

∑
m=0

Gn,mψn,m(g(x))
)
. (10)
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Assume (10) is precise at 2k−1M−2 limit points of the following sequence

xi =
1
2
(
1+ cos(

(i−1)π
2k−1M−1

)
)
, i = 2,3, · · · . (11)

Then (10) may be transformed as

d2(∑2k−1

n=1 ∑
M−1
m=0 Gn,mψn,m(xi))

dx2 = f
(
xi,

2k−1

∑
n=1

M−1

∑
m=0

Gn,mψn,m(x),
2k−1

∑
n=1

M−1

∑
m=0

Gn,mψn,m(g(xi))
)
. (12)

Since two equations are provided by the given constraints and the remaining system of equations is obtained by
(12). So, we get a system with 2k−1M algebraic equations with 2k−1M unknown. By solving this system, we get
2k−1M coefficient values. Replacing these coefficient values in (4), we get the solution of (1). The same practice
is repeated for higher-order DDEs also.

4 Numerical illustrations

In this section of the current work, we present some applications of the handled scheme .

Application 1 Consider the following multi Pantograph equation [16],

y′(x)+ xy(x− x2)+ xy2(x) = x2 +1,0 ≤ x ≤ 1, (13)

given initial condition
y(0) = 0. (14)

The precise solution of (13) is read as y(x) = x. By applying LWM with k = 1 and M = 2, we solve (13). Let’s
assume the solution y(x) as

y(x)≈
2k−1

∑
n=1

M−1

∑
m=0

Gn,mψn,m(x) = GT
ψ(x), (15)

substitute (15) in (13) and discrete it using limit points of sequence discussed in section 3. Then we obtain the
following equation

d
(

∑
1
m=0 G1,mψ1,m(xi)

)
dx

+ x
( 1

∑
m=0

G1,mψ1,m(x− x2)
)
+ x

( 1

∑
m=0

G1,mψ1,m(x)
)
= x2 +1. (16)

From (16) and (14), we obtain a system with two nonlinear equations given as
√

2C1,0 +2
√

2C1,1 = 0
C1,0√

2
− 5

√
2C1,1
4 +C2

1,1 +
1
2
(√

2C1,0 +2
√

2C1,1
)2 −

√
2C1,1

(√
2C1,0 +2

√
2C1,1

)
− 5

4 = 0.

In solving this system, we get the vector G as,

GT =
[ 1√

2
,

1
2
√

2

]
.

Then the approximate solution is y(x) = x, which is the same as the precise solution. The proposed technique
yields the exact solution for the differential equations having the finite degree of the polynomial as a solution.
Application 2 Consider the DDE with several delay terms such as x2 and x

2 [16].
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y′′(x)+ y′(x− x2)− x2y(x+
x
2
)+(y′)2(x)− y′(x)y(x) = ex + ex−x2 − x2e

3x
2 ,0 < x < 1. (17)

Subject to the initial conditions are
y(0) = y′(0) = 1.

The exact solution of (17) is y(x) = ex. We consider the above model by using LWM at k = 1 and M = 10. Table
1 compares the absolute error (AE) of the approximate solution with the exact solution produced by the scheme
given in [16]. Graphical representation of the exact and approximation solution have been simulated by Figures
1 and 2.

Table 1 Comparison of AE for (17) by LWM and technique in [16].

x Exact Sol. AE by the method in [16] AE by LWM

0.1 1.10517091807 3.75E-08 1.40E-10
0.2 1.22140275816 1.25E-07 1.10E-10
0.3 1.34985880757 8.14E-08 2.85E-10
0.4 1.49182469764 3.44E-07 4.64E-10
0.5 1.64872127070 4.76E-07 3.28E-10
0.6 1.82211880039 4.77E-07 2.28E-10
0.7 2.01375270747 1.10E-06 6.24E-10
0.8 2.22554092849 5.62E-06 2.00E-09
0.9 2.45960311115 3.90E-05 1.23E-08

Fig. 1 Graphical interpretation of Exact solution with an approximate solution at k = 1 and M = 10 for (17).
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Fig. 2 Graphical interpretation of Exact solution with an approximate solution at k = 1 and M = 10 for (17) in the surface.

Application 3 Let’s choose the second-order DDE with variable delay term as x3

8 [16]

y′′(x)+2y(x)− y2(x)+ y
(x3

8
)
= sin(x)− sin2(x)+ sin(

x3

8
),0 < x < 1. (18)

In equation (18), initial conditions are given as

y(0) = y′(0) = 1.

The exact solution of (18) is y(x) = sin(x). Then, the proposed technique is applied to the problem at k = 1 and
M = 9. Obtained outcomes are compared with other results in literature which can be seen in Table 2. Graphical
comparisons of the solutions are shown in Figures 3 and 4.

Table 2 Comparison of AE for (18) by LWM and method in [16].

x Exact Sol. AE by the method in [16] AE by LWM

0.1 0.09983341664 3.38E-10 1.57E-10
0.2 0.19866933079 3.61E-09 2.10E-10
0.3 0.29552020666 3.06E-09 2.00E-10
0.4 0.38941834230 7.99E-09 5.69E-10
0.5 0.47942553860 7.46E-09 3.67E-10
0.6 0.56464247339 1.88E-08 1.07E-10
0.7 0.64421768723 2.56E-08 1.20E-10
0.8 0.71735609089 3.42E-08 2.11E-09
0.9 0.78332690962 6.39E-08 1.29E-09
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Fig. 3 Graphical interpretation of Exact solution with an approximate solution at k = 1 and M = 9 for (18).

Fig. 4 Graphical interpretation of Exact solution with an approximate solution at k = 1 and M = 9 for (18) in the surface.

Application 4 Consider the Pantograph equation [24]

y′(x) =
1
2

y
( x

2
)
− y(x)+

1
2

e
−x
2 ,0 < x < 1, (19)

which is the subject to the initial condition

y(0) = 1.

The exact solution of (19) is read as y(x) = ex. Let’s consider the above model by using LWM, Table 3 shows
the existing method yields an improved solution than further approaches in literature. Figure 5 is the graphical
simulation of the solutions. Also, Table 3 introduces that M is directly proportional to accuracy in the solution.
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Table 3 Comparison of AE for (19) by LWM and other methods [16].

x Exact Sol. AE by LWM at M=10 AE by LWM at M=8 AE by the method [25] at M=8

0.0 1.0000000000 0 0 0
0.1 0.9048374180 8.1435E-10 8.6000E-08 2.9610E-06
0.2 0.8187307530 6.5498E-10 1.7200E-08 5.9220E-06
0.3 0.7408182206 5.1857E-10 2.5800E-08 8.8830E-06
0.4 0.6703200460 4.0219E-10 3.4400E-08 1.1844E-05
0.5 0.6065306597 3.0327E-10 4.3000E-08 1.4805E-05
0.6 0.5488116360 2.1952E-10 5.1600E-08 1.7766E-05
0.7 0.4965853037 1.4898E-10 6.0200E-08 2.0727E-05
0.8 0.4493289641 8.9866E-09 6.8800E-08 2.3688E-04
0.9 0.4065696597 4.0657E-09 7.7400E-07 2.6649E-04
1.0 0.3678794411 5.7683E-09 8.6000E-07 2.9610E-04

Fig. 5 Graphical interpretation of Exact solution with an approximate solution at k = 1 and M = 9 for (19).

5 Conclusion

We established the Laguerre wavelet-based mathematical method for DDEs and applied it to linear and
nonlinear DDEs. The obtained results show that LWM effectively solves the variable DDEs with different initial
constraints. A similar technique can be prolonged for higher-order also with slight modification in the planned
method. The proposed technique is better than the method in [16, 25] as can be seen in the tables.
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