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Abstract

The generalized fractional calculus operators introduced by Saigo and Maeda in 1996 will be examined and further explored
in this paper. By combining an incomplete X-function with a broad category of polynomials, we create generalized
fractional calculus formulations. The findings are presented in a concise manner that are helpful in creating certain lists
of fractional calculus operators. The derived outcomes of a generic nature may yield results in the form of various special
functions and in the form of different polynomials as special instances of the primary findings.
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1 Introduction

Fractional calculus (FC) refers to the study of differential and integral operators of either real or complex
order. Due to a variety of applications across several scientific disciplines and technology, FC has grown in
significance as well as usage over the past four decades. Fractional operators were conceived and mathematically
formalized only in recent years. The numerous properties of fractional operators have generated a great deal of
interest in fractional calculus in recent years, as well as a wide range of applications, with a focus on the
simulation of physical issues. Areas that have seen the largest number of applications include the formulation
of constitutive equations for viscoelastic materials [1], transport processes in complex media [2], mechanics

[3], non-local elasticity, plasticity [4], model-order reduction of lumped parameter systems and biomedical
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engineering [5, 6].

Numerous subfields of computational mathematics have found major significance in the fractional integral
operator (FIO) [7], which involves a variety of special functions. Over the last five decades, several scientists like
Saxena and Srivastava [8], Bhatta and Debnath [9], Saigo [10], Marichev and Kilbas [11], Ross and Miller [12],
Purohit and Jangid [13], Love [14] and Ram and Kumar [15] have thoroughly investigated the characteristics,
uses, and numerous extensions of several hypergeometric operators of fractional integration. Engineers, physi-
cists, biologists and financial analysts are only some of the communities that may find several points of interest
and material for further considerations in this work.

A significant number of new and recognised outcomes including Saigo FC operators and many special
functions, particularly the incomplete H-function and incomplete /-function, follow as special instances of the
primary discoveries. This is due to the broad scope of the Merichev-Saigo-Maeda (MSM) operators, incomplete

X -function, and a broad category of polynomials.

The rest of this paper is organized as follows. In section 2, the preliminaries are presented. In section 3,
incomplete ¥-functions and the Srivastava polynomial are combined, and MSM fractional order integrals of
the left- and right-hand types are created. In section 4, incomplete X-functions and the Srivastava polynomial
are combined, and MSM fractional order derivative of the left- and right-hand types are created. In section 35,
we develop the particular instances for the incomplete X-functions. In section 6, the paper is completed by

presenting the main contribution of the paper.

2 Preliminaries

The well-known lower and upper gamma functions of incomplete type [16] ¥(v,2)) and I'(v,2)) respectively,

are presented as:
2
Y(0,9) :/ Wle N d, (R(0)>0:9) 2 0), 0
0

and

oo

I'(0,2) :/y u et du, (920; R(v) >0 when 2 =0). (2)

The following connection (sometimes referred to as the decomposition formula) is satisfied by these incomplete

gamma functions.

Y(0,9)+0(0,9) =T(v),  (R(v)>0). 3)
The Srivastava investigated a broad category of polynomials [17], which is described as follows (see [18]
also):
Q%] (—9)
O
Shli] = DZO 79!‘18 Agot?, 4)

where 3 € Z and Aq ¢ are real or complex numbers arbitrary constants.

The notations [k] indicates the floor function and (), denote the Pochhammer symbol described by:

C(c+a)

(=1 and (0=, (nec),
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in the form of the Gamma function. Numerous FC results relating to the incomplete X-functions are presented
in this paper. For ¢, ¢/, 5, 5/, @ € C and x > 0 with R(@) > 0, the MSM FIO [19] with the left-and right-hand

sides are explained as:

(557 0r) ) = s /x(x—y)“’“y‘g'X% 6 ¢l i @=2 1= ) fydy, (5
0+ F(w) 0 ) ) 7ty ’ ’ X, y 3
and
6. ¢ @ _xig * Y / A
(75570 = s [[o-0m i xm (e @S- Y o ©
respectively.

According to a description, the left-and right-hand handed MSM fractional differential operators are (see
[20]):

(265770 f) (@) = (j) (e Ay ™
and
(2505 = () (e,

where, o0 = [R(®@)] + | and [R(@)] represent the integer component in R(@). For max {|x|, |y|} < 1, the third
Appell function F3 has the following definition:

Fi(c, ¢\ @xy) = i (6)i(¢")j()i(5); x'y! o)

i,j=0 (w)i"r]' l'J' ’
here, (g), is the Pochhammer symbol. Current articles [21, 22] include a comprehensive demonstration as-
sociated with the MSM operators along with the uses and characteristics. Saigo [10] instigate the fractional
operators related with the Gauss hypergeometric function »F} (). The left-and right-handed Saigo FIO are given
the following descriptions for g, ¢, @ € C, x > 0 and R(g) > 0.

—G—x X
(45771 W ="Fg /O (=) oF (6450 —@ 6 1= 2) F)dy. (10)
and
R Y YL AN @1
(757 0= | 0=y e am (s —mii1-2) s a
respectively.

The following definitions are given for the left-and right-sided Saigo differential operators:

5 PG L erm e
(26701 (0 = <dx> (o O PG L0 ROI1) ( (12)
and
B 4\ B+t a L B
(‘@E» Jiff) (X) _ (_dx> (ﬂ_ sHR()]+1, [R(5)] 1-,€+wf> (x) (13)
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For s = —¢ and s = 0 in (10)-(13), the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional oper-

ators are attained respectively (for further explanation see [23]). o F] is associated with F3 as

F5(6, 7=, Y= Y x5y) = 2F1(G, 56 ¥ x +y —xy).

The MSM fractional operators (5)-(8) are associated to Saigo operators (10)-(13) by

(L0 0F) ) = (2577 ) @ (14)
(7207 r) ) = (#7577 ) (), (s)
and
(26577 7F) () = (262577 F) (), (16)
(22570 p) (x) = (22727701 ) () (17)
Lemma 1. Let g, ¢, 5, 5/, @, A € C and R(@) > 0.
(a) If R(A) > max {0, R(¢' —5), R(g+¢'+»— @)}, then
6.2 A1)y _ —ccrmiia1 LA(=¢'+5/+ A (—g—¢ — >+ @D +A)
(FES ) 0 = T+ AT (g — ¢+ B+ A (—g — st @A) O
(b) If R(A) > max {R(5), R(—¢g—¢'+ @), R(—¢c— »' + @)}, then
¢\ ¢ o, B ) _octoa L2+ AT(e+¢ -0+ A (6 + —B+A) |
(‘]— ! )(") * TAT(c— 4 ATetc ++—a+a)
Lemma 2. Let ¢, ¢, », /', @, A € C.
(a) If R(A) > max {0, R(—¢+ ), R(—¢ —¢' —»/ + @)}, then
6.6\l B A1 ocic—aiai TAT(c—»+A)I(g+¢' +# —@+A)
e IORE: Mt Mlete-a I Metw—arr) 2V
(b) If R(A) > max {R(—5), R(¢'+ 5 — @), R(g+¢' — 0) + [R(®@)] + 1}, then
R P a2 LG+ A0(—¢—¢'+ @+ A)(—¢' —»x+@+A)
G, 6,1, —) _ St —-m-A ) 21
(9— ! )(x) * T (—¢ + 5 + AT (—¢c—¢' —x+ @+ A) @

2.1 Incomplete X-function

In this paper, we introduced the incomplete X- function N4 (Z) and YNZZZJ.VPJ;M(@%” ) [24,25] as

risjpyim
follows:
ROV (@) =TRYY (ALD1 D), (Ans D)2 vy [Pn(Anjs Dnj)lv1.r;
pen S <8n7€n)],U7 [pn(gnjaenj)]U—l-l,s,-
1
—— | ®(q. %) ¥y, 2
2m/$ (¢,%) q (22)
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where
U 1%
,}/(1 —A —@lq;@/) Ulr(gnJrenQ) Uzr(l *An*QnQ)
¢V = a ) (23)
Y o[ 1 T(1—&y—Cug) T T(Ay+D,)]
j=1 n=U+1 n=V+1
and
r U.7V. 3 (fép) _r Uﬁv‘ } o (A],@] :@)7(An7©n)27V7 [pn(Anjvgnj)]V-‘rl,rj
sy s (enaén)l,Uy {pn(enjaqznj)]UJrl,s/-
1
=— | ¥ —4 24
21 Js (¢.%) 2 dq, (24)
where
U 1%
F(l A _qu;g/) I1 F(8n+€nQ) I1 F(l _An_gnQ)
YY) = — i : (25)
Y o[ T T(1-&y—Cug) T T(Ay+D,)]
j=1 n=U+1 n=V+1

for & #0, % = 0, the incomplete X-functions VN%thj;m(ﬁ‘”) and T N%iﬁ/j’pﬁm(o@?) in (22) and (24) exist in the
circumstances listed as follows:

The complex- plane contour $ extended from y — ieo to Y+ ico, ¥ € R, and the poles of the gamma functions
I'(l—A,—9,q) forn=1,2,---,V are not perfectly matched with the gamma function poles I'(¢g, + &,q) for
n=1,2,..,U. The parameters r; and s; € Z" satisfying 0 <V < r;,0 <U <s; for 1 < j < m. The parameters
Dy, €, €,;,9,; are positive numbers, and A, &,, A,j, &; are complex. The void product is considered to
represent unity and all of the poles ®(¢q, % ) and ¥ (g, % ) should be simple.

A number of unique remarks are made about incomplete X-functions and are as follows:

Remark 1. When % = 0, Equation (24) changes to the suggested X-function of Sudland [26,27]:

WUV
NmSij;m

Z

(A1,91:0), (A, D)2y, [pn(Anjygnj)]V-&-l,rj]

(£n7 en)l,U, [pn(gnjy QEnj)]U+l7sJ~
(Anacon)l,\h [pn(Anjaan)]VJrl,rj
(8,1, en)l,U; [pn(snja QSnj)]UJrl,sj

/A%
- rj,Sj,Pj;m

z (26)

Remark 2. Again, when p; = 1 in (22) and (24), then it changes to the incomplete /-function of Bansal and
Kumar [28]:

YUV
rj,sj,pj;m

z

(Alagl : g/)a(Anagn)z,V7 [1(Anj,®nj)]v+1,rj
(gnagn)l,Ua [l(snjaenj)]UJrl,sj

(Ah@l : @)a (A}’h@n)z,V7 (Anj7©11j)V+1,rj
(8na€n)l,U7 (8nj7€nj)U+l,Sj ,

—_nuyv
- Irj,s]-;m

z 27
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and

UV
Rrj'-,S/wP/';m

z

(Ah@l : g)a (Anagn)Z,V) [1(Anj7®nj)]v+l,rj
(8,” Qn)l,Uy [1(8nj7 QSnj)]UJrl,sj

_ v | g AP ) (A D)o, (Anj, Dnjlvi, | (28)
rj;Sjim (Snaen)l,U’ (8ﬂj’€nj)U+17sJ-
Remark 3. Next, taking % = 0 and p; = 1 in (24), then it turns into the Saxena /-function [29]:
J
PUV | g (AD110), (A D)oy, [1(Any D)l 1,

rjssj, lim (gm an)l,w [1(&1]‘, QEnj)]U—s—l,sj
_ Uy (A, D)1y, (Anj, Dnj)vetr, 09)

ri,si,m .

" (gn,en)l,[]’ (Snj’ QE”[)U+17SJ

Remark 4. Further taking p; = 1 and m = 1 in (22) and (24), then it turns into the incomplete H-function(see
[30,31] also) of Srivastava [32]:

YUV P (ALDL D), (A, D)2 [1(Anjs D) V41,
rj;sj 11 (&, €0) 1,05 [1(£nja€nj>]U+1,sj
_ v [o]Rc o, o
" (gna en)l,s ’
and
LUV P (ALD D), (A D)2y s [1(Anjs D) v+,
rjdj»l,l (8n,€n>l7U, [1(Snj7€n])]U+l,S]
= FUrV 24 (A1’©1 : @)’ (Am@n)z,r a1
. (gna 6rz)l,s )

Remark 5. Next, we take % = 0, p; = 1, and m = 1 in (24), then it turns into the H-function of Srivastava [33]:

AR P (A1L,D1:0), (An, D)2y [1(Anj, Dnj)lvsi,
il (Sna QEn)l,Ua [1(Snjacznj)]U+l,sj
_ o | | AP (32)
" (8,,, 6n)l,s

We developed the FC findings linked to the incomplete X-functions, which were influenced by the work of

Srivastava et al. [34].

3 Fractional integral formulas

In this part, we create two formulas for fractional integrals that multiply incomplete X-functions and the

generic class of polynomials specified in equation (24) and (4), respectively.
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Theorem 3. Let G, ¢, s, », @,z,00 € C and R(®) >0, u > 0,4 >0 (k=1,2,3,---s),

8' ! ! !
R(ax in R{ <L) > 0,R —m),R(¢c — .
(@41 min, % (52 ) > maxl0. (s + - @), K¢ )
Further the parameters rj, s;,B € 7t satisfying 0 <V < ri,0<U<sj for j=1,2,---m, ©,,¢,,&,;,D,; €
RT, An &0, M, € €C(j=1,2,---,rjsn=1,2,--- sj), Agkmk are real or complex numbers arbitrary constant

fork=1,2--- sand p; >0 fori=1,2,--- ,m, then the outcome shown below is accurate:
N
6. ¢ e, [ a1 Bir . A
I (r HSQj[c]t i
j=1

(A] 791 . @)7 (Am@n)Z,Vv [pn(Anjwf-Dnj)]V—&-l,rj ()C)
(8,1, QSn)l,Ua [pn(gnja an)}UJrl,sj

CywUV
TjsSj;Pjsn

X *

) QR B g (—9)
_ o—¢—¢ +m—1 )P ¢ 5 )Psts 4 (1) () € £ S At
= x%6¢ EIZ:O Ego EII;-nES! AQI,‘Bl”'AQs:‘Bs Cll"'cs (x) j=17%i %
(1—a— Y5 Aty ), (1= 0+ G+6 43— @ — Y5 Ak, 1),
(Sn,én)]./u, (1 - a+g+§ _w_z,j':] A‘]Ejv.u’%
(I—o+¢ =3 — Y5 A8, 1), (ALD1: ), (Aws D)2, [Pn(Anj, D) v+,
(I—o =3 =5 A1), (146 +e—@ —a— Y5 Ak, 1), [Pu(€nj Enj)lu+1s;

Proof. The LHS of equation (33) is:
! / o] S &B 2’
IR TR - j j
Ty = 95" ! I IISDj [c;jt™]
l:

(Ah@l : @)7 (AI’H@}’!)27V7 [pn(Anjvgnj)]V-i-l,rj
(Sn, QEn)l,U7 [pn(enp@nj)]UJrl,sj

X

IywU\V+3 u
rj+3,5;+3,pj;m z

(33)

CWwUV
KTRUY et (34)

Replace the incomplete X-function and Srivastava polynomial by equation (24) and (4) respectively and by

reversing the summation order, we discover the subsequent form:

Q1/P] /B (—9)) o (—9)
_ Bt )P s (1) (s) (s LN
e EZO ezo él;-.-ég! XAg g A, O G
1= s = -

/ T(CL@) Z*q (joig’.,%,}/,wta—s—f,}:l ljfj—,ug—l) (.x)dq, (35)
$

1
X [
21
where ¥(g, %) is defined in equation (25).

Using equation (18) of Lemma 1, we discover the subsequent form:

QP [Qs/PBs] (—9Q)) e (—9)
_ P Pl () &) &
= ezo ezo El1;...{%s! X Ag a,Agp, O G
1= =

1 a—g—¢ +@HYES_ A1 - F(OH—):‘;:] Ajtj — 1q)
- —1 At g HY—q
“om )" j (42 (=) G4+ at Ty Aty — Ha)
D(—¢ 45 + o+ X5 At —ug) T(—¢— ¢ — s+ B+ a+Yi, At — uq)
M(—¢—¢+@+a+Yj 1 Ajtj—ug) I(—¢ —x+@+a+Y5 At — ug)

dq. (36)

Finally, after some adjustment of terms , we obtain RHS of equation (33).
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Theorem 4. Let G, ¢, s, », @,z,00 € C and R(®) >0, u > 0,4 >0 (k=1,2,3,---s),

m(yutmnm(%>>mmmm@+g+% o), R(c — ).

1<;<U

Further the parametersrj, s;,'B € Z" satisfying 0 <V <r;,0<U <s,for j=1,2,---m, ©,,¢&,,&,;,D,; € RT,
An €0, Anj € €C(j=1,2,--- rjsn=1,2,---5j), Agkmk are real or complex numbers arbitrary constant for

k=1,2,--- s and p; >0 fori=1,2,--- ,m, then the outcome shown below is accurate:

N
¢, ¢\, @ | ,o—1 Bir . A
AN (t HlSDj[cjtf
=

u (AI,QI : @)a (A,,,Dn)zy, [Pn(Anﬁ@nj)]VJrlvrj] ) (x)
(8nu QEn)l,U7 [pn(gnj7 anj)]U+l7sJ'
S S

YUV
Tj>8j>Pjsm

:xa*§*§,+w*1 ) ( Q )%&A() . A(s) £ .CEJ (x) ;:la’jéj

e 0 £ty SHEUREE I
Vo UV43 f| (U= =E5 At ), (1= G+ 6 + 5 — B — L5 At 1)
x Nr +3,5;+3,pjsm X ! s
! ! a (smen)l,U> (1_a+g+g _(D-_ijl AjEjnu)a

(I—o+¢ =3 Y5 A5, 1), (ALD1: ), (Aws D)2 [Pn(Anjs D) v 1., ] 37

(1 —0— %, _Z}v':l z’jejhu% (1 +g, +x—-0— a_Zj':l A’jEjau% [pn(enﬁ@nj)]U-i-sz

Proof. Theorem 4 is proved in the same manner as Theorem 3 with the same conditions.

The following corollary is obtained regarding the Saigo FIO [10] in light of the equation (14).

Corollary 5. Let g, 2, ®,z,00 € Cand R(g) >0,u > 0,4 >0(k=1,2,---,5),

9«)+ummm<%>>mmmmw @)].

1<j<U

Further the parametersrj, s;,°B € 7" satisfying 0 <V < rj,0<U<sjforj=1,2,---m9,,¢&,¢&,;,D,; € RT,
An, €0, M, €, €C(j=1,2,,-- ,rjin=1,2,--- ), A];Jk-‘ﬁk are real or complex numbers arbitrary constant for

k=1,2,3,--- . sand p; > 0fori=1,2,--- ,m, then the outcome shown below is accurate:

g%CU(OC 1HSm/C]

rwUyv . u (Ab@l : g)a (Am@n)LVa [pn(Anj7©nj)]V+l,rj (X)
D (&, €n) 1,05 [Pn(€nj> €nj)lu+1.s;
B BT () s ey
:xOlf}t*l Z Z (‘Bé 19 ’ Bs SA}(JI)"BI A}Sz’mr C?l _._CES. (X)ijl/ljej
£ =0 £,=0 1 s
CwUV+2 u ( —0— Z A'Eja )7( 0“"%_&7_2;‘:1%@'7#)7

T am | ZX
ri+2,s;43,p5:m (&€ )iu,(l—t—¢—@ —Zj':l Ajtj 1),

(Ah@l : g/)a (Anagn)LV» [pn(Anjygnj)]VJrl,rj ]

| (38)
(I—a+se=Y5 At 1), [Pu(€njs €nj)lu+1s,
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The same result can be obtained concerning Saigo FIO for the lower incomplete K- function.

Remark 6. By substituting »r = —¢ and » = 0 in Corollary 5, respectively, we can also get findings for the

fractional derivative operators of R-L and E-K.

Theorem 6. Let G, ¢, », ', @,z,00 € Cand R(®@) >0, u > 0,4 >0 (k=1,2,3,---5),

8‘ ! !

R(a) —u min R <J> < 14+min[R(—»),R(c+¢ —@),R(g+» —O)].
15U\ %

Further the parameters rj, s;,*B € Z" satisfying 0 <V <r;,0<U <s,for j=1,2,---m, ,,&,,&,;,D,; € RT,

An €, Anj € €C(j=1,2,-- rjsn=1,2,---,5;), Agk,%k are real or complex numbers arbitrary constant for

k=1,2,--- sand p; >0 fori=1,2,--- ,m, then the outcome shown below is accurate:

/ / S .
alhi <t°‘—1 [1s8leie™]
j=1

UV
rj,Sj,Pjm

i

(A17®1 : @))(AH)QIZ)Z,Va [pn(Anjygnj)]\H»l?rj (X)
(Snaen)l,Uv [pn(gnjaqznj)]U—I—l,sj

Q QS s
:xa—g—g/+w—1[ fﬁl]m[ /Bs] (—Q1)gp, ¢, -'-(_Qs)%ESA(l) AW h b (x)E-1 4%

Ql»%l ' Ds»%x 1 ’

...
€=0 £,=0 SRR

« FNU+3,V qu (1 - a_2§:l A’jéjul‘,’% (1 - O‘+§+€, —|—%' @ _Z;:l llkjuu)a
V./+37Sj+37pj;m (Sn) QEn)LUv (l —o+ g + g/ -0 _Zj':l 2’/Ej’l’l“)v
(1 —o+G— %_Z}v‘:l ;Ljejau)’ (A1’©1 : @)7 (Am@n)Z,V, [Pn(Anj’gﬂj)}VHJj (39)
(1 —a— %_Zj‘:l QL]‘E]‘,,LL), (1 +6+x —O—-o _Zj‘:l Ajéjnu')v [pn(enjaenj)]UJrl,sj
Proof. The LHS of equation (39) is:
T2 — jf’€/7%7;4’,w (tocl Hsgj/ [Cjtl]]
=1
Fxl].,\/» oy u (Alagl : g)a (Anugn)Z,V) [pn(Anjvgnj)]VJrl,rj ) (40)
p (grh@n)l,U7 [pn(enjycznj)]UJrl,sj

Replace the incomplete X-function and Srivastava polynomial by equation (24) and (4) respectively and by

reversing the summation order, we discover the subsequent form:

[Qi/%]  [Q/B] (—Q1) (=)
_ Pt 5 )Py b (1) () # £
L= 3} - ) RN X Aq o, Ag g, GG
#=0 £=0 N
> 1/ W(q, &)z 1 <j_g.,g’.,%,}/,wt—(—a—):§:]/l,-é,-+uq+1)> (x)dq, 41)
2m Jg

where ¥(g, %) is defined in equation (25).
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Using equation (19) of Lemma 1, we discover the subsequent form:

/P /B (—9) o (—9y)
_ P t s )PBs b (1) (s) d e
e EZ() EZO 311;..-&! XAg g A, € G
1= =

% R xafgfg'+w+2j'-:17tjfrl\p(q’@) (qu)—qr(l_a_%_szjzllfeﬂr“@
27 Jg F(l—a—ijllej—i—uq)
F(1+g+g'—W—a—zj.zlljkj+uq)l"(1—a+g+%’—w—zj:1/ljéj+uq) ’
Fl—o+g—s— i A+ ug)T(1—a+g+¢ +5 —@— Y5 A+ uq)

(42)

Finally, after some adjustment of terms, we obtain RHS of equation (39).

Theorem 7. Let G, ¢, 5, 5, @,z,a € C and R(@) >0, > 0,4 >0 (k=1,2,3,--- ),

R(a) —pt min R <£J) < 14 min[R(—2),R(c+¢ —0),R(c+» —@)).

1SjSU T\ %

Further the parameters rj, s;,*B € Z" satisfying 0 <V <r;,0<U <s,for j=1,2,---m, ©,,&,,&,;,D,; € RT,
An €0, Anj € €C(j=1,2,-- rjsn=1,2,---,5;), Agkmk are real or complex numbers arbitrary constant for

k=1,2,--- ., sand p; > 0 fori=1,2,--- ,m, then the outcome shown below is accurate:

N
j_g’g/’;{, ;4/76)' (t(ll Hsgj [CJ tlj]
=1

(A1LD1: Y ), (Ans D)2y s [Pn(Anjy Dnj) v, (x)
(Snaen)l,Uv [pn(snj,enj)]U+175j

YUV
rj,s]',pj;m

[

Q QS s
:x(xfgfg,ﬂi)—l[ fﬁl]m[ z/‘:m (_Ql)%el ...(—Qs)mjexA(l) .'A(s) € ---cff (x)zj.zlzl,e,

QL% A9, 61
= 0 £ty 1P 5B
L TRUY " (I—o=Y5_ Aty ), (1—a+G+¢ +3 —@— Y5 Ajtj, 1),
ri+3,s;+3,pj:m (8117€n>1,U7 (1 - (X+g+ g/ - w_Zj':] )Ljéjv.u)a

(l_a—i_g_%_Zj:l A‘jéjuu’% (Alagl :@)7<An7©n)2,V= [pn(Anﬁ:Dnj)}V-‘rl,rj ] (43)

(I—a—s=Y5 At 1), (14 G+ —@— o — X5 A8, 1), [Pun(€njs Enj)lusts,

Proof. Theorem 7 is proved in the same way as Theorem 6 with the same conditions. The following corollary is

obtained regarding the Saigo FIO [10] in light of the equation (15).

Corollary 8. Let G, 2, ®,z,06 € Cand R(g) >0,u > 0,4 >0(k=1,2,---,5),

R(a) — 1 min EK(gj

1<j<U

> < 1+ min[R(x),R()].

%j

Further the parametersrj, s;,'B € 7 satisfying 0 <V < rj,0<U<s forj=1,2,---m, ©,,&,,&,;,Dy; € RT,

Ay €0y Anjy €0 €EC(j=1,2,, rsn=1,2,---s;), A’ékmk are real or complex numbers arbitrary constant
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fork=1,2--- sand p; >0 fori=1,2,--- ,m, then the outcome shown below is accurate:
N ‘,B
Taash Fan § Dy [c;1%]
=1
FW UV t“ (A1L,D1: ), (An, D)2y [On(Anjs Dnj)lv 1.,
rjsSjsPjsm (x)

(ena QSn)l,Ua [pn(enj7 e11]')]U+l,sj

a—s—1 [Qﬁlﬁ] . [prr} (—Q1>‘131E1 o (_Q‘s‘)‘ﬁx&A(l)

AW b (x) 1A

=X .. R
= =0 Bl k! 21, Q0 Ps Tl s
o TU+2V H (I—a—=Yj At p),(1—a+g+x+@—Y5 Ajt;, 1),
rj+2,Sj+2.,Pj;m < (8},”@’1)]7(]’ (1+%_a_2;:1 A,]E‘I"Lt)j

(A1L,D1: ), (Ans D)2 v, [Pn(Anjs Dnj)lv+1, 44)
(1 —a+0— Zi’:] )’jéjnu)v [pn(enja QSnj)]UJrl,sj
The same result can be obtained concerning Saigo FIO for the lower incomplete - function.
Remark 7. By substituting > = —¢ and s = 0 in Corollary 8, respectively, we can also get findings for the

fractional derivative operators of R-L and E-K.

4 Fractional derivative formulas

In this part, we create two formulas for fractional derivative that multiply incomplete X-functions and the

generic class of polynomials specified in (24) and (4), respectively.
Theorem 9. Let G, ¢, s, », @,z,00 € C and R(®) >0, u > 0,4 >0 (k=1,2,3,---s),
{—9{(8;)

max
1<j<U

| <S80+ minf0.9(s ), B 4+ ¢ - ).

J

Further the parametersrj, s;,°B € 77" satisfying 0 <V < rj,0<U<s forj=1,2,---m, ©,,&,,€,;,D,; € RT,
An €0, Anj € €C(j=1,2,-- rjsn=1,2,---,5;), Agk.‘ﬁk are real or complex numbers arbitrary constant for

k=1,2,--- ,sand p; >0 fori=1,2,--- ,m, then the outcome shown below is accurate:

/ l .
j=1

(Al7®1 : @)7 (Anygn)Z,V7 [pn(Anjvgﬂj)]Vle,rj (X)
(8,“ QEn)],Uv [pn(gnja 6nj)]U—i—Ls,-
[anl] [Qsz/‘:ﬂs] (—9)

T ywUV
Tj>SjsPjsm

H

:xa+g+g’7t571 Bt "‘(—Qs)‘nxém(l) LAY b "CE’ (x)):;:lz,-e,-

E]‘Es' Qlaml ' Qs:‘ps 1 '

6=0 £,=0
(I—a—Y Aty u),(1—a—g—¢ —s +@— Y At;,p),
(&, €n)1u, (1—6—¢ +@—a—Yj At 1),
(I—o—g+x=Y5 | Ajt;, 1), (AL, D11 D), (An,Dn)av, [Pn(Anjs Dnj)lvii,
(I—otse =Y Ak 1), (1—¢g—s +@—a— Y At ), [Pu(€njs €nj)lus1s,

'wU\V+3 u
rj+375j+3,pj;m z

(45)
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Proof. The LHS of equation (45) is:

N
_ 56w @ [ a1 Bir. A
=95 <t ]UI Sa, [c;jt™

u (AlaQI . g/)a(Anagﬂ)z,Vv [pn(AnJ"@”j)]VJrlvrj ()C)
(Em en)l,Ua [pn(snja QSnj)]UJrl,sj

Uy
N”/ Sj,Pjsm

(46)

Replace the incomplete X- function and Srivastava polynomial by equation (24) and (4) respectively and by

reversing the summation order, we discover the subsequent form:

(Q1/%1] [9Q,/%s] (_Ql)‘nlél (_Q )mver

o S s bs (1) (Y) {5 LN

e EZO ezo B!ty XAg g Ag g €1 G
1= s
2m/‘l’q7@)z 1( 25,5 O i) (v)dg, (47)
where W(q, %) is defined in equation (25).
Using equation (20) of Lemma 2, we discover the subsequent form:

[Q1/%1] (9, /PBs] (_Ql) (_Q )

— Bt s )Py b 1) (s) {4 s
e EZO ezo Ell;...fs! XA, Aguyp, €1
1= s

L xa—g—g,+w+2§~:mfz’—1 W(q, 7)) ()4 Do+ Y51 A8 — 1g) %
o ’ N(a—s+ Y5 Ak — ug)
(g—%+a+2‘ it — ) T(a+g+¢ +x -0+, At —uq) . 48)
C(o4-g+ — w+2 —ug)T(a+g+¢ —d+X5 At — uq)

Finally, after some adjustment of terms, we obtain RHS of equation (45).
Theorem 10. Let G, ¢, s, »/, @,z,00 € C and R(®) >0, u > 0,4 >0 (k=1,2,3,---s),
RALGT))

J

max [ ] < R(et) +min[0, R(¢ — ), R(¢ + ¢ +¢— o))

1<j<U

Further the parameters rj, s;,*B € Z" satisfying 0 <V <r;,0<U <s,for j=1,2,---m, ©,,¢&,,&,;,D,; € RT,
An €, Anj € €C(j=1,2,-- rjsn=1,2,---,5;), Agkmk are real or complex numbers arbitrary constant for

k=1,2,3,--- ,sand p; > 0fori=1,2,--- ,m, then the outcome shown below is accurate:

! J S .
.@()gf , 7,2 ,0 (ta—l Hsg]/ [c‘]tl/
j=1

u (A1,©1 : g‘/)v (Anvgn)z,‘/? [pn(Anj,an)]VJrl,rj (X)
(&, €n)10, [Pn(snﬁ@nj)]UHvS./

YUV
rj,Sj,Pjm

9 Q,/Bs
:xa+g+griwil[fnl]”.[f](—Q])&plgl..-(_Qs)‘n.v&A(l) A e () B At

=0 £,—0 1SRRERE N Q1. % 2,9, €1

1= =

TR z u (I— o= Ej Aty ), (1 a—g—gl—%l+05—2§':1ljfj7ﬂ)7
ri+3,5;+3,p;:m (Sn, QSn)l,U, (1 —c— g/ G- —Z;:l )ngj’u)’

(1= @ —g+ae—X5 Aty 1), (AL D1 ), (A D)oy, [On(Anjy D)V s, ] )

(1- 0‘+%—):“}:1 ljéjv.u)v (1-¢— ©+@—a _Zj':] AJ'Ej’l“‘)7 [pn(gnjvenj)]U—H,s_/
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Proof. Theorem 10 is proved in the same way as Theorem 9 with the same conditions.

The following corollary is obtained regarding the Saigo FIO [10] in light of the equation (16).

Corollary 11. Let g, ¢, ®@,z,a0 € Cand R(g) >0,u > 0,4 >0 (k=1,2,3,---,s),

[ max [_9‘(%’)] < R(0t) +min[0, R (¢ — ), R(c — o))

Further the parametersrj, s;,'B € 7" satisfying 0 <V < rj,0<U<s forj=1,2,---m, ©,,&,,€,;,D,; € RT,
An, €0, M, €0 €C(j=1,2,--- ,rjin=1,2,--- 5j), Agkmk are real or complex numbers arbitrary constant for

k=1,2,--- ., sand p; >0 fori=1,2,--- ,m, then the outcome shown below is accurate:

S
6. ® [ a1 Bir. A
D5 (t I ISQ][CJI i
Jj=1

M (Al,@l : @)7 (Am@n)Z,Vu [pn(Anjygnj)]V-‘rl,rj ()C)
(gnaqzn)l,Ua I:pn(gnj’enj)]U“rl,Sj

LUV
TjySjsPjsn

/ QR B g (—9) s s Ak
_ (Ot —o-1 ‘13811;” N Ps SA)(Qf . Al i,% CEI cocl ()B4t
£=0 £=0
o UV+2 p| (M=o =5 Ak 1), (1—a—g—s—@—Yj At 1),
XN 2s42,05m |2
2,542,055 (& En)1u, (1— 00— — Y5 A5k, 1),

(A1LD1 2 ), (An, D)2y, [Pn(Anjs Dnj)lvitr, ] ' (50)

(l-a-o —):j:1 At 1), [Pn(&njs €nj)lusts;

The same result can be obtained concerning Saigo fractional derivative operator for the lower incomplete X-

function.

Remark 8. By substituting »» = —¢ and » = 0 in Corollary 11, respectively, we can also get findings for the

fractional derivative operators of R-L and E-K.

Theorem 12. Let G, ¢, 5, »', @,z,a € C and R(@) >0, > 0,4 >0 (k=1,2,3,--- ),

{4 min {1_2(/‘!)} +1>R(a) —min[0, R(@—¢—¢ —V),R(—¢ —x+®), —R(sc)].

1<j<v j

Further the parametersrj, s;,'B € 7 satisfying 0 <V < rj,0<U<s forj=1,2,---m, ©,,&,,&,;,Dy; € RT,

An, € Anj € €C(j=1,2,--,rjin=1,2,--- 5j), Agmk are real or complex numbers arbitrary constant for
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k=1,2,--- sand p; >0 fori=1,2,--- ,m, then the outcome shown below is accurate:

S
N R 2 — Bir . A
s (ﬂlnsg;[cjw]

J=1

CyUV
rjSjPjim

u (A],@] : @)7(An7®n)2,v, [pn(Anp@nj)]V—&-l,rj] > (X)
(gnyezn)l,Uu [pn(gnjuenj)]UJrl,Sj
[Dfﬁd . “[Dx/%] (—Q1)yp, e, -

(e, ()

U
_ xa+g+g —o—1

A(s) CEI . CEJ (x) :i:1 )’]—E]-

= = £l gy Q1P By

1= s

XFNU+3,V ny ( —— Z 2’ EJ’ ))( —0— g/_’_%l Zj IAEj7ul’L)7
383, pim (SmQE )l U, ( —¢— g +O0—-0— Z} 11’ E]nu)v

(l—a—g—¢ =+ @Y Aitj,1), (A, D1 : ), (A, D)oy, [Pn(/\nj,@nj)]v+1,rj] 51)
(I—oa+se =5 Aty u),(1—¢ —set @ —a— Y A8, 1), [Pu(€njs Enj)lu+1,s,

Proof. The LHS of equation (51) is:
! / S .
Ty =95 7%% (t“l H]ng [e;1%
]:

u (A1,®1 . g]/)a(Anagn)Z,Vv [pn(Anj’gnj)]VJrlvrj ()C)
(8}17 en)l,Uy [pn(gnj7 QSnj)]U—i—l,s_/-

IeUV
rj,Sj,Pjm

(52)

Replace the incomplete X-function and Srivastava polynomial by equation (24) and (4) respectively and by

reversing the summation order, we discover the subsequent form:

[9Q:1/%1] (95 /%8s (_Ql)mlfl ce (_Q );B

s )Pt 1 ¢ 2
B ezo EZO gl gy Y XAgl)ml”'Agzmx ef G
1= s
1 !y s
Sy W(q, %) 71 (@E’g 4% ’“’t*(*“’zf:‘lf*ﬁ“"“)) (x)dq, (53)
where ¥(g, %) is defined in equation (25).
Using equation (21) of Lemma 2, we discover the subsequent form:
QP (/B (—9) (=9
_ Dpe (SR ) (6) bk
T4_ Z Z é ;E' ><14)31 “Bl AQ&‘BSCII'”C‘Y
=0 £,=0 1 s
w1 xafgfg#wij:lljffl (g, ) (qu)—qr(l — 0t — Yo A+ )
2 ’ L(l—o—Y' At +uq)

(1—g—g’+m—a—z§:1/1,ej+uq)r(1—a—g’—%+w—zj.:1/ljéj+uq)
Fl-—o—¢+s -0 - 5 A+ pug)T(1—o—g—¢ —sx+@ - Y5 Ajt; + uq)

dq. (54)

Finally, after some adjustment of terms, we obtain RHS of equation (51).
Theorem 13. Let G, ¢, s, »/, @,z,00 € C and R(®) >0, u > 0,4 >0 (k=1,2,3,---s),
—R(4))

mm (———/—
1<j<V [ of

I

} +1>R(a)—min[0, R(@—¢c—¢ —V),R(—¢ —x+0), —R(>)).
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Further the parameters rj, s;,*B € Z" satisfying 0 <V <r;,0<U <s,for j=1,2,---m, ©,,&,,&,;,D,; € RT,
An €0, Anj € €C(j=1,2,--rjsn=1,2,---,5;), Agk p, are real or complex numbers arbitrary constant for

k=1,2,--- sand p; >0 fori=1,2,--- ,m, then the outcome shown below is accurate:
§5¢ 7A@ | -l SS‘B,' A
19 2 Ly - J . '
> t jl—|1 kY [c;jt™]

YUV
rj,Sj,Pjm

i

(ALD1 Y ), (Ans D)2y s [Pn(Anjs Dnj) v, (x)
(8117 en)LUy [pn(gnj7 anj)]U-‘rl,Sj

Q Q,/Ps
:xwgﬂ,iwil[ fm...[ ﬁn](_Ql)mlkl...(—Qs)‘ﬁ.;ESA(]) CAY L ()T

Q1% A0, €1
= =0 £l gy 1P 5> B
P U3V g (T= o= Y5 At ), (1= o — ¢ +3¢ = X5 Akj, 1),
X Nr-+35‘+3p~'m X /
SR (gnaczn)l,U7 (l_g_g +w_a_2;:1 2’jéjmu)7

(1- a—g—g/ _%‘1'&7_2‘;:1%%7“% (A1L,D: ), (A, D)2y, [Pn(Anb@nj)]VJrl,rj
(1—06+% _Z§:1z'jej7u)7 (l_g —%—I-G)'—(X—Z;:]Ajfj,[i), [pn(gnjvenj)]U—H,s;

Proof. Theorem 13 is proved in the same way as Theorem 12 with the same conditions.

(55)

The following corollary is obtained regarding the Saigo fractional derivative operator [10] in light of the

equation (16).

Corollary 14. Let ¢, ¢, 3¢, ', @,z,a € Cand R(@) > 0, > 0,4 >0 (k=1,2,3,--- ,s),

1_9{ A !’ ! !
{ min {W} +1>R(a) —min[0,R(@—-¢—¢ —V),R(—¢ —»+0), —R(>)].
1<j<vV D,
Further the parameters rj, s;,B € Z7 satisfying 0 <V <r;,0<U <sjfor j=1,2,---m, ©,,&,,&,;,D,; € RT,
An, €, Anj € €C(J=1,2,-- ,rjin=1,2,--- 5j), AI;kaBk are real or complex numbers arbitrary constant for

k=1,2,--- . sand p; >0 fori=1,2,--- ,m, then the following result holds:

N

i (z“l [T eir™]
=1

LUV
Rrj,sppj;m

H
(8n7 QEn)l,Ua [pn(snj, anj)]U+l,sj

Q1 /F1]  [Qs/PBs] (-9 o ,
_ 1 Dt (—Qy)q,t, (1) (s) € e S_LAE
— ot Z Z {;1;---&! AQh‘Bl"'A 5-7‘13.;011"'65‘ (x) &=t 7%

(ALD1: ), (A, D)2y, [p,,<An,-,©nj>Jv+17r,] ) .

€=0 £,=0
(Ab@l : @)7 (1 —0‘_2‘;':1 2’jéjnu“)7
(gnv en)l.,Uv (1 —x—-Q _Zj':l )’jEjMLL)J
(1 —a—%+07—):j~:17tj9j7ﬂ), (Am@n)lyv [pn(A”ﬁ@”j)]V"'lvrj
(I+c+m—a—Y5 At 1), [Pu(&njs €nj)lu+1s;

The same result can be obtained regarding Saigo fractional derivative operator for the lower incomplete X-

% CwU+2V u
r_,-+2,sj~+2,pj;m

(56)

function.

Remark 9. By substituting »» = —¢ and > = 0 in Corollary 14, respectively, we can also get findings for the

fractional derivative operators of R-L and E-K.
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5 Special cases and applications

This section focuses on a few fascinating unique cases of Theorem 3. For other theorems, it is simple for us
to obtain comparable findings.
(i) On setting % = 0, in Theorem 3 and in consideration of equation (26), then incomplete X-function reduce

to the X-function proposed by Sudland [26,27] and we reach the following conclusion:

ztH (Ans D)1y [Pn (Anh(?n;)]VH,rj] ) (x)

! J
758 A @ a1 S‘BJ i
o+ H “ r/ 5/ prm (gnven)l U, [ (8}’1_]7 nj

[Qfm]m[ﬁs/ms (=Qu)3e - (=Q)pe, ()
Bl gl Q1,91

]U-‘rl,Sj

LAY ¢ coch (x)):‘}zl Ajt;

!
_ ,a—¢—¢+m-1
=x 2,98, 1 °

=0 £,=0
(==X Atpn),(1—a+g+¢ +x—m—T5 Atj, 1),

(& )1y, (1—a+6+¢ —@T X5 At 1),
(I1—o+¢ =3 =X A8, 1), (A, D)1y [0n(Anjs Duj)lvr1s, (57)
(1 —O—x _Z;:I QLjEj”ll), (1+g +%—w—a—2§:] Aijj,ﬂ% [pn(gnjvgnj)]U-i-l,s_/

Uv+3 u
x X ri+3,5;+3,pj:m [ZX

(ii) Again, setting p; = 1 in Theorem 3 and in consideration of equation (28), then incomplete X-function re-

duces to the Incomplete /-function suggested by Bansal and Kumar [28] and we reach the following conclusion:

u| (ALD1 2, (An, D)2y, (Anj7©nj)v+1,r_,~] ) )

! J
jOG-,gm.,%,w o— IHS‘Bjct FIUV
i T (Enven)an (gn‘aqzn')UJrls-
) ,] ] "

D DS s
:xa*€*€/+wfl[ fpl]m[ [ (=Q0)p e (=Q)pe AA( )
€=0 =0 il bt e
(I—a—Y5 Aty ), (1 =0+ G+6 43— @ — X5 Ajkj, ),
(Snvén)l,U; (1—a+§+§ _w_Z§:l)LjE]7u)a
(1—o+¢ =3 =Y A8, 1), (AL,D1: ), (A, D)2y, (Anjs Dnj)vr, (58)
(1 —o—x _ijlljéja“% (1+g +%_w_a_2§:l 2‘kamu)a (Snjaqznj)UJrl,Sj

Ag)m Eil, . Es (X)Zﬁzll./?/

rUvV+3 u
X rj+3,5j+3:m [ X

(iii) Next, setting ¢ = 0 and p; = 1 in Theorem 3 and in consideration of equation (29), then incomplete

X -function reduce to the /-function suggested by Saxena [29] and we reach the following conclusion:

ztH

(Am@n)],V? (Anjvgnj)V—l—l,rj] ) (X)

6.6 7@ [ o IH ‘13 uyv
j()—i— S ] ]t Ir ,Sjsm
(Snv eﬂ)l,U’ (8nj’€nj)U+1,sJ-

[Dl/‘nl] [ /Ps] (_Ql)mlgln

:xa*§*§1+(1571 ( Q )&BJEsA( )

Ag)vmv cEl o CEJ (X) :;:1 A’I'Ej

= = £ty Q1P
v || (=@ D A ) (1= 0 g6 e = B = X5 At ),
i3s3 (Snaqzn)l,Uv (1 _a+g+g _0_2;:1 A’]E]nu)v

(1= a+¢ =2 = X5 485 1), (A D)1y (Aujs Daj)vsn, 59
(I—a—s =i Ak u), (1+6 +x—@—0o— Y5 Ak, 1), (&), Enju1s,
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(iv) Further setting p; = 1 and m = 1 in Theorem 3 and in consideration of equation (31), then incomplete

X -function reduce to the incomplete H-function suggested by Srivastava [32] and we reach the following con-

> (%)

| .. Ag)vmy C?l .. .CEJ‘ (x) t;ZIA‘jEj

clusion:
55 (et [T B ey sy [z (AP 2) e Dl
J )
j=1 (enyen)hs

' [9Q1/%1] (9 /%Ps] (_Q ) (_Q)
_ ,a—¢—¢ +o-1 [PRUR s)Bsts 4 (1)
] Z Z {;1;---?5! AQ,

£,=0 £,=0
(1= — Y5 At ), (1= 0+ ¢+ G +3—B— Y5 Ajtj, 1),
(& Cn)1s, (1 —a+G+¢ —@— Y Ak, ),
(I—a+g =5 =5 At 1), (AL,D1: D), (An, D)2 ]
(l—a—s = Y5 At 1), (146 +3—@—o— X5 Ajtj,p) |

ztH

U,V+3 u
X FrJr’Sx7 s+3 [ZX

(60)

(v) Next, setting % =0, p; = 1, and m = 1 in Theorem 3 and in consideration of equation (32), then incomplete

X -function reduce to the H-function suggested by Srivastava [33] and we reach the following conclusion:
S
) /7 ) ,<,a)- —1 ;43 A S (A ’© )17
e <ta [18ales™ 1 PSRl B IC)
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Remark 10. * The known results provided by Saxena and Saigo [35] are simple to be achieved if the generic

class of polynomials SZ‘ b i restricted to unity and the incomplete X-function is reduced to Fox’s H-

function.

 If we set incomplete ¥X-function to X-function, then we may easily achieve the results that Saxena and

Kumar [36] have already provided.

* The known results provided by Saxena and Ram [37] are simple to be achieved if the generic class of

polynomials Sﬁ‘ 7 i restricted to unity and the incomplete X-function is reduced to X- function.

* Theorems 4 and Theorem 5 provided by Bansal et al. [24] are simply obtained if we set the generic class

- hy

of polynomials SZI "™ in Theorem 3 and Theorem 6 to unity.

6 Conclusion

In the current paper, we looked into a variety of incomplete X-function based FC image formulae as well as
the generic class of polynomials connected to the MSM operators. The incomplete X-functions are the general-

ized form of various other special functions. Also, Srivastava polynomial generalize various other polynomials
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like: Hermite polynomial, Jacobi polynomial, Laguerre polynomial, Gegenbauer polynomial, Legendre poly-
nomial, Tchebycheff polynomial, Gould-Hopper Polynomial and several other polynomials. Additionally, the
MSM fractional operators generalize Saigo, R-L and E-K FC operators. One may get a variety of image for-
mulae that include a class of special functions by taking the mentioned fact into consideration [23, 38—40] as

limiting instances of the primary outcomes.
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