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Abstract
This paper focuses on the complex version of the Cahn-Hilliard-Oono equation with Neumann boundary conditions, which
is used to capture long-range nonlocal interactions in the phase separation process. The first part of the paper establishes the
well-posedness of the corresponding stationary problem associated with the equation. Subsequently, a numerical model
is constructed using a finite element discretization in space and a backward Euler scheme in time. We demonstrate the
existence of a unique solution to the stationary problem and obtain error estimates for the numerical solution. This, in
turn, serves as proof of the convergence of the semi-discrete scheme to the continuous problem. Finally, we establish the
convergence of the fully discrete problem to the semi-discrete formulation.
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1 Introduction

In this article, we are interested in the following boundary value problem:

∂ϕ

∂ t
+ ε∆

2
ϕ − 1

ε
∆ f (ϕ)+αϕ = 0, in Ω× [0,T ], (1)

∂ϕ

∂ν
=

∂∆ϕ

∂ν
= 0, on Γ, (2)

ϕ(x,0) = ϕ0(x), in Ω, (3)

in a bounded and regular domain Ω ⊂ Rn, n 6 3, with boundary Γ and T > 0. The initial datum ϕ0(x) =
ϕ0,1(x) + iϕ0,2(x) satisfies the physical constraint |ϕ0| = 1, where the real part ϕ0,1(x) represents the initial
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concentration of the metallic components (the concentration of all phases is between 0 and 1), and the imaginary
part ϕ0,2(x) =

√
1−ϕ2

0,1(x). Furthermore, ϕ = ϕ1 + iϕ2 is the phase variable.
Equation (1) is the generalization of the original Cahn–Hilliard equation, which plays an essential role in material
sciences as it describes the phase separation of binary systems in physics and chemistry. In 1958, Cahn and
Hilliard [1–4] presented the equation (1) in the form of free energy, which later led to the development of the
Cahn–Hilliard equation as a partial differential equation based on thermodynamic principles [5]. When a binary
solution is cooled down sufficiently, the phase separation may occur in two ways: either by nucleation, in which
case nuclei of the second phase appear randomly and grow, or the whole solution appears to nucleate at once, and
then periodic or semi-periodic structures appear in the so-called spinodal decomposition. The pattern formation
resulting from phase separation has been observed in alloys, glasses, and polymer solutions. The Cahn-Hilliard
equation has many applications in material science and biology [6–23].
The function f : C→ C belongs to C 2(C,C) and it satisfies the following standard dissipativity assumption:

liminf
|z|→∞

Re( f ′(z))> 0.

One typical choice for this function is

f (z) = |z|2z− z. (4)

In this article, we prove the existence of a unique weak solution to the steady-state problem associated with
(1)–(2), using the method of fixed-point arguments. Subsequently, we consider a numerical scheme based on
a finite element space discretization in space and Backward Euler discretization in time. After obtaining some
error estimates for the semi-discrete solution, we demonstrate the convergence of the semi-discrete solution to
the continuous one. Finally, we establish the stability of the Backward Euler scheme, which is the key to achieve
the convergence of the fully discrete scheme to the continuous problem.
Our primary objective in this article is to propose a straightforward model for a grayscale multi-component
phase separation that preserves the advantages of the phase separation achieved with the Cahn–Hilliard model.
Specifically, it is computationally efficient and exhibits rapid convergence times. Notably, we can replicate the
results of the two-phase separation by computing only two solutions (the real and imaginary parts of the order
parameter), regardless of the number of phases in the initial multi-component metal.

Notations

Setting

〈φ〉= 1
Vol(Ω)

ˆ
Ω

φ(x)dx,

we introduce the following spaces:

H−1(Ω) = {τ ∈ H−1(Ω),〈τ,1〉H−1,H1 = 0},

L(Ω) = {τ ∈ L2(Ω),〈τ〉= 0},

and

H1(Ω) = {τ ∈ H1(Ω),〈τ〉= 0},

which are the H−1, L2 and H1 spaces with zero spatial average, respectively.
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2 Well-posedness of the steady state problem

In this section, we prove the existence of a weak solution for the stationary problem associated with (1)–(2):

ε∆
2
ϕ − 1

ε
∆ f (ϕ)+αϕ = 0 in Ω, (5)

∂ϕ

∂ν
=

∂∆ϕ

∂ν
= 0 on Γ. (6)

We begin by integrating equation (5) across the domain Ω. Then, taking into account the boundary conditions,
we find

〈αϕ〉= 0. (7)

We now prove the existence of a solution to the variational problem of (5)-(6) as follows.
We consider the fixed point operator

T : L2(Ω)→ L2(Ω), τ → T (τ) = ϕ,

where τ is chosen from L2(Ω), and we consider the following equations:

1
r
(ϕ − τ)+ ε∆

2
ϕ − 1

ε
f (ϕ)+αϕ = 0 in Ω, (8)

∂ϕ

∂ν
=

∂∆ϕ

∂ν
= 0 on Γ, (9)

where α is a positive constant. Integrating (8) over Ω, we find (7). Therefore, (8) can be rewritten as

(
1
r
+α)〈ϕ〉= 1

r
〈τ〉. (10)

The variational formulation of (10) reads as follows:

ε((∇ϕ,∇ρ))+
1
ε
(( f (ϕ),ρ))+α(((−∆)−

1
2 (ϕ−< ϕ >),(−∆)−

1
2 ρ)) = 0,

for ρ ∈ H1(Ω). In addition, the functional of the variational formulation is given by

F (ϕ,τ) = J (ϕ)+
1
2r

||ϕ − τ − (〈ϕ〉−〈τ〉>)||2−1 +
α

2
||ϕ −〈ϕ〉||2−1, (11)

where J (ϕ) =
ε

2

ˆ
Ω

|∇ϕ|2dx+
1
ε

ˆ
Ω

F(ϕ)dx and ||.||−1 is the norm defined in H−1.

Lemma 1. Setting F(z) = 1
4 |z|

4 − 1
2 |z|

2, we have

F(z)+F(q)−2F(
z+q

2
)>−1

4
|z−q|2,

for all z ∈ C∗ and z is non null.

Proof. Noting that

F(z)+F(q)−2F(
z+q

2
) =

1
4
|z|4 − 1

2
|z|2 + 1

4
|q|4 − 1

2
|q|2 − 1

32
|z+q|4 + 1

4
|z+q|2.

Furthermore, |z+q|4 ≤ 4(|z|2 + |q|2)2 and |z+q|2 = |z|2 + |q|2 +2Re(z̄q),
which yields

F(z)+F(q)−2F(
z+q

2
) ≥ 1

8
|z|4 + 1

8
|q|4 − 1

4
|z|2|q|2 − 1

4
(|z|2 + |q|2 −2Re(z̄q))

≥ 1
8
(|z|2 −|q|2)2 − 1

4
|z−q|2 >−1

4
|z−q|2.
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Proposition 2. The equation (8) has a solution in H1(Ω). Furthermore, if r ≤ ε3 (∗), then this solution is unique.

Proof. We show that there exists a unique minimizer (say ϕ∗) of F provided that (*) holds. First of all, notice
that there are two positive constants c1 and c2, such that

F(ϕ) =
1
4
|ϕ|4 − 1

2
|ϕ|2 ≥ c1|ϕ|2 − c2.

Secondly,

F (ϕ,τ)≥ ε

2
||∇ϕ||2 + c1

ε
||ϕ||2 − c2

ε

+
1
2r

[
1
2
||ϕ −〈ϕ〉||2−1 −||τ −〈τ〉||2−1]+

α

2
||ϕ −〈ϕ〉||2−1

≥ ε

2
||∇ϕ||2 + c1

ε
||ϕ||2 +(

1
4r

+
α

2
)||ϕ −〈ϕ〉||2−1 + c,

(12)

where c is a constant that depends on Ω, ε and c2. Consequently, we deduce from (12) that the functional
F (ϕ,τ) is coercive, and hence F has a minimizing sequence ϕn ∈ H1(Ω). The sequence ϕn is now bounded
in H1(Ω). Therefore, there exists a subsequence of ϕn that we shall not rename, such that ϕn converges weakly
to ϕ∗ ∈ H1(Ω). Additionally, ϕn converges strongly to ϕ∗ in L2(Ω), due to the fact that H1(Ω) is compactly
embedded in L2(Ω). We now recall that

F (ϕn,τ) = J (ϕn)+
1
2r

||ϕn − τ −〈ϕn − τ〉||2−1 +
α

2
||ϕn −〈ϕn〉||2−1, (13)

which implies that

||ϕn − τ −〈ϕn − τ〉||2−1 −||ϕ∗− τ −〈ϕ∗− τ〉||2−1

= (((−∆
−1)(ϕn − τ −〈ϕn − τ〉),ϕn − τ −〈ϕn − τ〉))

−(((−∆
−1)(ϕ∗− τ −〈ϕ∗− τ〉),ϕ∗− τ −〈ϕ∗− τ〉))

= (((−∆
−1)(ϕn −ϕ

∗−〈ϕn −ϕ
∗〉),ϕn − τ −〈ϕn − τ〉))

+(((−∆
−1)(ϕ∗− τ −〈ϕ∗− τ〉,ϕn − τ −〈ϕn − τ〉)

6 ||ϕn −ϕ
∗−〈ϕn −ϕ

∗〉||.||ϕn − τ −〈ϕn − τ〉||

+||ϕn −ϕ
∗−〈ϕn −ϕ

∗〉||.||ϕn − τ −〈ϕn − τ〉||,

and

||ϕn −〈ϕn〉||2−1 −||ϕ∗−〈ϕ∗〉||2−1

= (((−∆
−1)(ϕn −ϕ

∗−〈ϕn −ϕ
∗〉,ϕn −〈ϕn〉))

+(((−∆
−1)(ϕ∗−〈ϕ∗〉),ϕn −ϕ

∗−〈ϕn −ϕ
∗〉))

https://www.sciendo.com


On the complex version of the Cahn–Hilliard–Oono type equation 237

≤ ||ϕn −ϕ
∗−〈ϕn −ϕ

∗〉||.||ϕn −〈ϕn〉||+ ||ϕn −ϕ
∗−〈ϕn −ϕ

∗〉||.||ϕ∗−〈ϕ∗〉||,

and since ϕn → ϕ∗ ∈ L2(Ω) strongly, then

||ϕn − τ −〈ϕn − τ〉||2−1 → ||ϕ∗− τ −〈ϕ∗− τ〉||2−1 (14)

strongly, and

||ϕn −〈ϕn〉|| → ||ϕ∗−〈ϕ∗〉||2−1 (15)

strongly. Furthermore, as F is continuous, we observe that F(ϕn) converges to F(ϕ∗). By applying Fatou’s
Lemma, we can deduce that

F (ϕ∗,τ)≤ liminfF (ϕn,τ). (16)

Therefore, F has a minimizer in H1(Ω), i.e., ∃ ϕ∗ ∈ H1(Ω) such that ϕ∗ = argmin F (ϕ,τ). Furthermore, with
the assistance of the trace function and Neumann boundary conditions, we can easily prove that ϕ∗ satisfies the
Neumann boundary condition ∂ϕ∗

∂ν
= 0, and ϕ∗ serves as a weak solution for the variational problem. Next, we

demonstrate the uniqueness of ϕ∗; for this purpose, we prove that the functional F is strictly convex. Let v and
w belong to H1(Ω) such that ϕ = v−w. (Note: 〈ϕ〉 = 〈v〉− 〈w〉 = 0). Now, by employing interpolation and
Young’s inequalities, we obtain

F (v,τ)+F (w,τ)−2F (
v+w

2
,τ)

≥ ε

4
||∇ϕ||2 +(

α

2
+

1
4r

)||ϕ||2−1 −
1

4ε
||ϕ||−1.||∇ϕ||

≥ ε

4
||∇ϕ||2 +(

α

2
+

1
4r

)||ϕ||2−1 −
1

4ε
(

1
2ε2 ||ϕ||

2
−1 +

ε2

2
||∇ϕ||2)

≥ (
α

2
+

1
4r

)||ϕ||2−1 −
1

4ε3 ||ϕ||
2
−1

> 0,

(17)

under the assumption (*). As a result, F is strictly convex, and the weak solution is unique.

Proposition 3. The operator T has a unique fixed point under the two specified conditions: (*) stated above
and (**) defined below,

1
2α − 1

ε2

≤ r ≤ 1

α − 1
ε2 − a2ε

2

.

Proof. We show that with the help of the two specified conditions, we can restrict the operator T to a com-
pact convex set. By applying Schauder’s fixed-point theorem, we can establish the existence of at least one
fixed point, denoted as ϕ∗. Furthermore, we can conclude the uniqueness of ϕ∗ based on the property that the
functional F is strictly convex. To simplify matters, we denote ϕ = ϕ∗. Now, let’s reframe the problem as
follows:

1
r
((ϕ − τ,ϕ))+ ε||∆ϕ||2 + 1

ε
((∇ f (ϕ),∇ϕ))+((αϕ,ϕ)) = 0. (18)

Take into account (4), we find

1
r
((ϕ − τ,ϕ))+ ε||∆ϕ||2 ≤ 1

ε
||∇ϕ||2 −α||ϕ||2. (19)
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Therefore,

(
1
r
+α)||ϕ||2 + ε||∆ϕ||2 ≤ 1

ε
||∇ϕ||2 + 1

2r

ˆ
Ω

|ϕ|2dx+
1
2r

ˆ
Ω

|τ|2dx (20)

≤ 1
ε
||∇ϕ||2 + 1

2r
||ϕ||2 + k,

where k is a constant depending on τ , r, and Ω. It then follows that

(α +
1
2r

)||ϕ||2 + ε||∆ϕ||2 ≤ 1
ε
||∇ϕ||2 + k.

Furthermore, through the utilization of the interpolation inequality followed by Young’s inequality, we obtain

||∇ϕ||2 ≤ ||ϕ||.||ϕ||H2(Ω) ≤
1

2ε2 ||ϕ||
2 +

ε2

2
||∆ϕ||2 + ε2

2
〈ϕ〉2

≤ 1
2ε2 ||ϕ||

2 +
ε2

2
||∆ϕ||2 + a2ε2

2
〈τ〉2.

Consequently,

(α +
1
2r

)||ϕ||2 + ε||∆ϕ||2 ≤ 1
2ε3 ||ϕ||

2 +
ε

2
||∆ϕ||2 + εa2

2
〈τ〉2 + k. (21)

Thus,

(α +
1
2r

− 1
2ε3 )||ϕ||

2 +
ε

2
||∆ϕ||2 ≤ E ||τ||2 + k, (22)

such that E = εa2

2 with a =
1
r

1
r +α

. Under the assumptions (*) and (**), we find

||ϕ||2 = ||T (τ)||2 ≤ E ′||τ||2 +K ′, (23)

where E ′ and K ′ < 1. Therefore, ϕ remains bounded in L2(Ω), and T now represents a mapping from the
closed ball

K = B[0,M] = ϕ,∈,L2(Ω);‖ϕ‖L2(Ω) ≤ M

to itself, with an appropriate constant M > 0.
Furthermore, due to the stationary problem, we obtain the following inequality:

||∆ϕ||2L2(Ω) ≤ c||τ||2L2(Ω)+ c′. (24)

Since 〈ϕ〉 is null, we conclude that ϕ is uniformly bounded in H2(Ω), and it follows that B[0,M] is compact and
convex in L2(Ω). It is also clear that T is continuous, which leaves us to show that T is compact. Consider the
sequence

τ
n → τ ∈ L2(Ω),T (τn) = ϕ

n;

ϕn is bounded in H1(Ω) for all n. Then, by taking a subsequence (which we do not rename), we have: ϕn weakly
converges to ϕ ∈ H1(Ω), and ϕn strongly converges to ϕ in L2(Ω) using the Rellich-Kondrachov compactness
theorem. In addition, since f is continuous, f (ϕn) converges to f (ϕ) almost everywhere, and f (ϕn) is bounded
in L2(Ω); then, f (ϕn) weakly converges to f (ϕ) in L2(Ω) due to the weak dominated convergence theorem.
Thus, ϕ = T (τ) is a weak unique solution for (8), thanks to the previous proposition, and T is a continuous
operator. Finally, by applying Schauder’s Theorem, the operator T has a fixed point in L2(Ω), which is the
unique solution of the stationary problem.
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3 Numerical analysis of the evolution problem

The given problem can be reformulated as follows:

ϕt =
∂ϕ

∂ t
= ∆w−αϕ in Ω, (25)

w =
1
ε

f (ϕ)− ε∆ϕ in Ω, (26)

∂ϕ

∂ν
=

∂∆ϕ

∂ν
on Γ. (27)

The variational formulation of (25)-(27) is as follows:

((ϕt ,φ)) =−((∇w,∇φ))−α((ϕ,φ)), (28)

((w,ψ)) =
1
ε
(( f (ϕ),ψ))+ ε((∇ϕ,∇ψ)), (29)

for all φ , ψ ∈ H1(Ω). In our approach, we employ a quasi-uniform family of decompositions denoted as Ωh to
effectively partition the domain Ω into k-simplices. Within this discretized framework, given a specific trian-
gulation Ωh =

⋃
T h∈Ωh

T , we establish the conventional P1 conforming finite element space, denoted as V h. This

space, characterized by functions mh belonging to C0(Ω) with the property that mh|T is affine for all T ∈ Ωh,
plays a critical role in our numerical analysis. Notably, we observe that V h is a subset of the more general
function space H1(Ω). To facilitate our computations, we introduce the function Ih

ϕ , which represents a unique
element within V h and precisely replicates the values of the function ϕ at the nodes of the triangulation. It is im-
portant to note that our methodology aligns with the following well-established standard approximation result,
affirming the reliability of our numerical approach

‖ϕ − Ih
ϕ‖L2(Ω)+h‖ϕ − Ih

ϕ‖H1(Ω) ≤Ch2‖ϕ‖H2(Ω) for all ϕ ∈ H2(Ω). (30)

Here, C > 0 is a constant that solely depends on Ωh. Additionally, the inverse estimate below still remains valid
(refer to [24]).

||mh||C0(Ω̄) ≤Ch
−n
2 ||mh||L2(Ω) for all mh ∈V h. (31)

Setting

V h =V h ∩L(Ω).

The discrete version of (28)-(29) can be written as follows: Find (ϕh,wh) : [0,T ] −→ V h ×V h such that they
satisfy the following conditions:

((ϕh
t ,φ)) =−((∇wh,∇φ))−α((ϕh,φ), (32)

((wh,ψ)) =
1
ε
(( f (ϕh),ψ))− ε((∇ϕ

h,∇ψ)), (33)

for all φ ,ψ ∈V h.
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3.1 Error estimates

Setting
ϕ

h(t)−ϕ(t) = θ
ϕ +β

ϕ , with θ
ϕ = ϕ

h −ϕe
h and β

ϕ = ϕe
h −ϕ, (34)

wh(t)−w(t) = θ
w +β

w, with θ
w = wh −we

h and β
w = we

h −w, (35)

for all t ∈ [0,T ], where we
h = we

h(t) represents the elliptic projection of w = w(t), and ϕe
h = ϕe

h(t) is the
elliptic projection of ϕ = ϕ(t). These projections satisfy the following conditions:

((∇we
h,∇ψ)) = ((∇w,∇ψ)) for all ψ ∈ H1(Ω), (36)

((we
h,1)) = ((w,1)), (37)

((∇ϕe
h,∇ψ)) = ((∇ϕ,∇ψ)) for all ψ ∈ H1(Ω), (38)

((ϕh
e ,1)) = ((ϕ,1)). (39)

Using the Lax-Milgram theorem and following the Poincaré inequality, it is evident that, for all w ∈ H1(Ω),
equations (36)-(37) establish a unique solution we

h ∈V h(Ω).
Likewise, for the function ϕ ∈ H1(Ω), equations (38)-(39) yield a unique solution ϕe

h ∈V h(Ω).
Now, we proceed to define the bilinear form

s(φ ,ψ) = ((∇φ ,∇ψ)), (40)

which is coercive on H1(Ω), i.e., there exists c0 > 0, such that

s(φ ,φ)≥ c0‖φ‖2
H1 , for all φ ∈ H1(Ω). (41)

We start by estimating β ϕ and β w.

Lemma 4. For all ϕ ∈ H2(Ω), the function ϕe
h ∈V h defined by (38) satisfies

‖ϕe
h −ϕ‖L2(Ω)+h‖ϕe

h −ϕ‖H1(Ω) ≤Ch2‖ϕ‖H2(Ω). (42)

Proof. We first have the following equation:

s(ϕh
e ,ψ

h) = s(ϕ,ψ), for all ψ ∈ V h. (43)

Then, since ϕh
e − Ih

ϕ ∈V h, we obtain

s(ϕh
e −ϕ,ϕh

e −ϕ) = s(ϕh
e −ϕ,ϕh

e − Ih
ϕ)+ s(ϕh

e −ϕ, Ih
ϕ −ϕ)

and
s(ϕe

h −ϕ,ϕe
h −ϕ)≥ c0‖ϕe

h −ϕ‖2
H1 ,

which yields
c0||ϕh

e −ϕ||2
H1 ≤ s(ϕh

e −ϕ,ϕh
e −ϕ)≤ ||ϕh

e −ϕ||H1 ||Ih
ϕ −ϕ||H1 .

Therefore,
||ϕh

e −ϕ||H1 ≤ c−1
0 ||Ih

ϕ −ϕ||H1 .
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As a direct result of (30), we deduce that

||ϕh
e −ϕ||H1 ≤Ch||ϕ||H2(Ω). (44)

Furthermore, for z ∈ L2(Ω), let φ represent the unique solution of

s(φ ,ψ) = ((z,ψ)), for all ψ ∈ H1. (45)

Thus, we obtain that
‖φ‖H2(Ω) ≤C‖z‖L2(Ω), (46)

where the constant C does not depend on z.

Taking now ψ = ϕe
h −ϕ in (45), we infer that

((z,ϕh
e −ϕ)) = s(φ ,ϕh

e −ϕ) = s(φ − Ih
φ ,ϕ

h
e −ϕ)≤ ||φ − Ih

φ ||H1 ||ϕh
e −ϕ||H1 .

Moreover, by selecting z = ϕe
h −ϕ and considering (30) and (44), we obtain

‖ϕe
h −ϕ‖2

L2(Ω) ≤Ch‖φ‖H2(Ω)Ch‖ϕ‖H2(Ω)

≤Ch2‖ϕe
h −ϕ‖L2(Ω)‖ϕ‖H2(Ω).

Thus,
‖ϕe

h −ϕ‖L2(Ω) ≤Ch2‖ϕ‖H2(Ω).

This inequality, along with inequality (44), yield the result.
In a similar manner, we can establish the existence of a constant c that is solely dependent on Ωh. For all
w ∈ H2(Ω), the function we

h ∈V h, as defined in (36)-(37), complies with the following:

‖we
h −w‖L2(Ω)+h‖we

h −w‖H1(Ω) ≤Ch2‖w‖H2(Ω). (47)

Next, we define the discrete inverse Laplacian
D−1,h

L : L −→V h by D−1,h
L f = mh, where f ∈ L(Ω) and mh ∈V h solves

((∇mh,∇ψ
h)) = (( f ,ψh)), for all ψ

h ∈ V h. (48)

Note that D−1,h
L is self-adjoint and positive semi-definite on H1, since

((g,D−1,h
L f )) = ((∇D−1,h

L g,∇D−1,h
L f )) = (( f ,D−1,h

L g)), for all f ,g ∈ L(Ω),

(( f ,D−1,h
L f )) = ‖∇D−1,h

L f‖2
L2(Ω), for all f ∈ L(Ω).

By expressing the discrete negative semi-norm in the following manner:

‖m‖−1,h = ((D−1,h
L m,m))

1
2 = ‖∇D−1,h

L m‖L2(Ω), for all m ∈ L(Ω),

and using an orthonormal basis of V h for the L2(Ω)-scalar product, it becomes evident that the subsequent
interpolation inequality is satisfied

‖mh‖2
L2(Ω) ≤ ‖mh‖−1,h‖mh‖H1(Ω), for all mh ∈ V h. (49)

It is also observed that
‖ f‖−1,h ≤ cp‖ f‖L2(Ω), for all f ∈ L(Ω), (50)
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where cp is the Poincaré constant. Moreover, we define

δ (t) =
1

Vol(Ω)
((θ ϕ(t),1)), for all t ≥ 0, (51)

so that ((θ ϕ −δ ,1)) = 0.

In the remaining part of this section, the final time T ∈ (0,∞) is defined, and we express

Z (t) = ‖θ
ϕ‖2

H1(Ω)+‖θ
ϕ

t −δt‖2
−1,h.

We now prove the following lemma.

Lemma 5. Let (ϕ,w) be a solution of (28)-(29) with sufficient regularity, and let (ϕh,wh) be a solution of
(32)-(33). If R < ∞,

sup
t∈ [0,T ]

‖ϕ(t)‖C0(Ω) < R,

sup
t∈ [0,T ]

‖ϕt(t)‖C0(Ω) ≤ R,

sup
t∈ [0,T ]

‖ϕ
h(0)‖C0(Ω) < R,

and
‖ϕ

h(t)‖L∞(Ω) ≤ R, for every t ∈ [0,T h],

where T h ∈ (0,T ] is the maximal time, then

Z (t)+
ˆ t

0
[||θ w||2H1 +(

1
2
−α

2)||θ ϕ

t ||2H1 ]ds

≤CZ (0)+C′
ˆ t

0
[||β ϕ ||2L2 + ||β ϕ

tt ||2L2 ]ds

+C′
ˆ t

0
[||β w||2L2 + ||β w

t ||2L2 ]ds for all t ∈ [0,T h].

(52)

Moreover,
||((θ ϕ ,1))|| ≤C[Z

1
2 (t)+ ||θ ϕ ||L2 ], for all t ∈ [0,T ]. (53)

Proof.
It follows from (28) and (32) that

((ϕh
t ,φ))− ((ϕt ,φ)) =−((∇wh,∇φ))+((∇w,∇φ))+α((ϕh −ϕ,φ)).

Therefore,
((θ

ϕ

t ,φ))+((∇θ
w,∇φ)) =−((β

ϕ

t ,φ))+α((ϕh −ϕ,φ)). (54)

In particular, if φ ≡ 1, we obtain

δt(t) =
1

Vol(Ω)
((θ

ϕ

t ,1)) =− 1
Vol(Ω)

[((β
ϕ

t ,1))+α((θ ϕ +β
ϕ ,1))]. (55)

Due to equation (39), we can derive the following:

((β
ϕ

t ,1)) = 0.
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Differentiating (55) with respect to time, we get

((θ
ϕ

tt ,1)) =
1

Vol(Ω)
δtt(t) =− 1

Vol(Ω)
[((β

ϕ

tt ,1))+α((θ
ϕ

t ,1))+((β
ϕ

t ,1))], (56)

which yields,
δtt(t) =

α

Vol(Ω)
((θ

ϕ

t ,1)). (57)

Similarly, by subtracting (29) from (33) now, we get:

((wh,ψ))− ((w,ψ)) =
1
ε
(( f (ϕh),ψ))− 1

ε
(( f (ϕ),ψ))− ε((∇ϕ

h,ψ))+ ε((∇ϕ,∇ψ)).

Hence,

−((θ w,ψ))+ ε((∇θ
ϕ ,∇ψ)) = ((β w,ψ))− 1

ε
(( f (ϕh)− f (ϕ),ψ)), (58)

on [0,T ], for allψ ∈ Mh.

Furthermore, using φ = θ w in (54) and ψ = θ
ϕ

t in (58), and then summing the results, we obtain

||∇θ
w||2L2(Ω)+

1
2

d
dt
||∇θ

ϕ ||2L2(Ω) =−2((θ ϕ

t ,θ w))− ((β
ϕ

t ,θ w))+α((θ ϕ ,θ w))+α((β ϕ ,θ w))

+((β w,θ
ϕ

t ))− (( f (ϕh)− f (ϕ),θ ϕ

t )).

In addition, the function f is Lipschitz with constant L f , therefore

‖ f (ϕh)− f (ϕ)‖L2(Ω) ≤ L f ‖ϕ
h −ϕ‖L2(Ω). (59)

Hence,

||θ w||2H1(Ω)+
1
2

d
dt
||θ ϕ ||2H1(Ω) ≤ 2||θ ϕ

t ||L2(Ω)[Vol
−1
2 (Ω)|((θ w,1))|+ cp||θ w||H1(Ω)]

+ ||β ϕ

t ||L2 ||θ w||L2(Ω)+α||θ ϕ ||L2(Ω)||θ w||L2(Ω)

+α||β ϕ ||L2(Ω)||θ w||L2(Ω)+ ||β w||L2(Ω)||θ
ϕ

t ||L2(Ω)

+
1
ε
||θ ϕ

t ||L2(Ω).L f [||θ ϕ ||L2(Ω)+ ||β ϕ ||L2(Ω)].

We now estimate ((θ w,1)). We choose ψ ≡ 1 in (58) and use ((β w,1)) = 0, so the estimate (59) yields

|((θ w,1))| ≤ L f [||θ ϕ ||L2(Ω)+ ||β ϕ ||L2(Ω)]Vol
−1
2 (Ω) on [0,T h]. (60)

Thanks to inequalities (60) and (58), the triangle inequality, and the generalized Poincaré inequality, we find

‖v‖2
L2(Ω) ≤ c′p‖v‖2

H1(Ω), for all v ∈ H1(Ω), (61)

and we deduce (53).
Besides, we have that

ab ≤ εa2 +(4ε)−1b2, for all a,b ≥ 0, ∀ ε > 0. (62)

It then follows from (60)-(62) that

||θ w||H1(Ω)+
d
dt
||θ ϕ ||H1(Ω) ≤C1(||β ϕ ||2L2(Ω)+ ||β w||2L2(Ω)+ ||β ϕ

t ||2L2(Ω))

≤C2(||θ ϕ ||2L2(Ω)+ ||θ ϕ

t ||2L2(Ω)),
(63)
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where the constants C1 and C2 depend on Vol(Ω),cp,L f , and α .
We now must calculate the value of θ

ϕ

t , so if we differentiate equation (59) with respect to time, we get

((θ
ϕ

tt ,φ))+((∇θ
w
t ,∇φ)) =−((β

ϕ

tt ,φ))+α((θ
ϕ

t +β
ϕ

t ,φ)). (64)

In addition, if we differentiate (58) with respect to time, we get

−((θ w
t ,ψ))+ ε((∇θ

ϕ

t ,∇ψ)) = ((β
ϕ

t ,ψ))− 1
ε
(([ f (ϕh)− f (ϕ)]t ,ψ)). (65)

Next, we select φ = D−1,h
L (θ

ϕ

t −δt) in equation (64) and ψ = θ
ϕ

t −δt in equation (65). When we combine these
equations, we obtain

((θ
ϕ

tt ,D
−1,h
L (θ

ϕ

t −δ t))+ ε||θ ϕ

t ||2H1(Ω) =−(((β
ϕ

tt ,D
−1,h
L (θ

ϕ

t −δt)))+((β w
t ,θ

ϕ

t −δt)) (66)

+α((θ
ϕ

t +β
ϕ

t ,D−1,h
L (θ

ϕ

t −δt)))− (([ f (ϕh)− f (ϕ)]t ,θ
ϕ

t −δt)).

In the first term on the left-hand side, we can express

θ
ϕ

tt = (θ
ϕ

tt −δtt)+δtt .

We should note that ((δtt +β
ϕ

tt ,1)) = α((θ
ϕ

t ,1)) according to (57). As for the nonlinear terms, we have

[ f (ϕh)− f (ϕ)]t = f ′(ϕh)[ϕh
t −ϕt ]+ϕt [ f ′(ϕh)− f ′(ϕ)]

and

α[ϕh −ϕ]t = α(θ
ϕ

t +β
ϕ

t ). (67)

Thus, equation (66) implies

1
2

d
dt
||θ ϕ

t −δt ||2−1,h + ε||θ ϕ

t ||2H1(Ω) ≤ ||δtt +β
ϕ

tt ||−1,h||θ ϕ

t −δt ||−1,h + ||β w
t ||L2(Ω)||θ

ϕ

t −δt ||L2(Ω)

+ sup| f ′|(||θ ϕ

t −δt ||L2(Ω)+ ||β ϕ

t ||L2(Ω)+ |δt |)||θ ϕ

t −δt ||L2(Ω)

+L′
f (||θ ϕ ||L2(Ω)+ ||β ϕ ||L2(Ω))||θ

ϕ

t −δt ||L2(Ω)

+α(||θ ϕ

t ||L2(Ω)+ ||β ϕ

t ||L2(Ω))||θ
ϕ

t −δt ||−1,h,

where L′
f is the Lipschitz constant of f ′ on [−F,F ].

With the help of the interpolation inequality (49) applied to vh = θ
ϕ

t −δt i.e.

‖θ
ϕ

t −δt‖L2(Ω) ≤ ‖θ
ϕ

t −δt‖−1,h‖θ
ϕ

t ‖H1(Ω), (68)

and the inequalities (50) and (63), along with the Poincaré Inequality, we obtain

d
dt
||θ ϕ

t −δt ||2−1,h + ||θ ϕ

t ||H1(Ω)

≤C3[||δtt +β
ϕtt||2L2(Ω)+ ||β w

t ||2L2(Ω)+ ||β ϕ

t ||2L2(Ω)+2||β ϕ ||+2||δt ||2L2(Ω)]

+ C4(||θ ϕ

t −δt ||2−1,h + ||θ ϕ ||2L2(Ω)), on [0,T h], (69)

for some constants C3 and C4 which depend on R ,cp, L f ′ , sup |L′|
[−R,R]

and sup | f ′|
[−R,R]

.
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Finally, we add (63) and (69), using the modified Poincaré inequality (61) and the triangular inequality, we get

‖θ
ϕ

t ‖L2(Ω)2 ≤ ‖θ
ϕ

t −δt‖2
L2(Ω)+ |δt |2,

the interpolation inequality (68), and inequality (62), we obtain that

1
2
||θ ϕ

t ||2H1(Ω)+ ||θ w||H1(Ω)+
d
dt

Z (t)≤C5(||β w||2L2(Ω)+ ||β ϕ ||2L2(Ω)+ |δt |2 + ||β w
t ||2L2(Ω)+ ||β ϕ

t ||2L2(Ω)

+||β ϕ

tt ||2L2(Ω)+ |δtt |2)+C6(||θ ϕ

t −δt ||−1,h + ||θ ϕ ||2L2(Ω)+ ||θ ϕ

t ||2L2(Ω)

≤C5(||β w||2L2(Ω)+ ||β ϕ ||2L2(Ω)+ |δt |2 + ||β w
t ||2L2(Ω)+ ||β ϕ

t ||2L2(Ω)+ ||β ϕ

tt ||2L2(Ω)+ |δtt |2)

+C6(||θ ϕ

t −δt ||2−1,h + ||θ ϕ ||2H1(Ω)).

Moreover, due to equation (33), we have

|δt |2 ≤ α
2||θ ϕ ||2L2(Ω)

and

|δtt |2 ≤ α
2||θ ϕ

t ||2L2(Ω),

which lead to the the following inequality:

(
1
2
−α

2)||θ ϕ

t ||2H1(Ω)+ ||θ w||2H1(Ω)+
d
dt
||Z (t)||

≤C(||β w||2L2(Ω)+ ||β ϕ ||2L2(Ω)+ ||β w
t ||2L2(Ω)+ ||β ϕ

tt ||2L2(Ω))+C′Z (t).

Therefore, we conclude (52) by applying Gronwall’s lemma.

Theorem 6. Let (ϕ,w) represent a solution to (28)-(29) such that ϕ, ϕt , ϕtt , w, wt ∈ L2(0,T,H2(Ω)), and let
(ϕh,wh) denote the solution to (32)-(33).
If

θ
ϕ(0) = 0, θ

w(0) = 0, and β
ϕ(0) = 0, (70)

then
sup
[0,T ]

(‖ϕ
h −ϕ‖L2(Ω)+‖ϕ

h
t −ϕt‖−1,h)≤Ch2,

(ˆ T

0
‖wh −w‖2

L2(Ω)ds
) 1

2 ≤Ch2,

sup
[0,T ]

‖ϕ
h −ϕ‖H1(Ω) ≤Ch,

and (ˆ T

0

(
‖wh −w‖2

H1(Ω)+‖ϕ
h
t −ϕt‖2

H1(Ω)

)
ds
) 1

2

≤Ch.
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Proof.
We start by differentiating equations (36)-(38) with respect to time, we find that the elliptic projections of ϕt and
wt are respectively (ϕe)t and (we)t . The same applies to ϕtt and wtt . Given that ϕ ∈C1([0,T ],H2(Ω)) and due
to the Sobolev continuous injection property, H2(Ω)⊂C0(Ω), we can conclude that

ϕ,ϕt ∈ C0([0,T ],C0(Ω)).

Thus,

sup
t ∈ [0,T ]

||ϕ(t)||C0(Ω) < R,

and

sup
t ∈ [0,T ]

||ϕt(t)||C0(Ω) ≤ R, for some R > 0.

Using the inverse estimate (31), we have

||ϕh(0)−ϕ(0)||C0(Ω) ≤C0h−
n
2 (||ϕh(0)−ϕ(0)||L2(Ω)+ ||ϕ(0)− Ih

ϕ(0)||L2(Ω))

+C′
0hl||ϕ(0)||H2(Ω),

where l is a real number in (0,1) ensuring that H2(Ω) is a subset of C0,l(Ω). Thanks to Lemma 4, as well as
equations (30) and (70), we obtain

||ϕh(0)−ϕ(0)||C0(Ω) < (CC0h2− n
2 +C′

0hl)||ϕ(0)||H2(Ω). (71)

Taking h small enough, we get
||ϕh(0)||C0(Ω) < R.

We now assert that Z (0)≤Ch4, where Z is defined in Lemma 5. Hence

Z (0) = ‖θ
ϕ

t (0)−δt(0)‖2
−1,h.

We follow a similar approach to the proof in Lemma 5. Starting with equation (55) being valid at t = 0, we then
substitute φ = D−1,h

L (θ ϕt(0)−δ t(0)) into (54), yielding

((θ
ϕ

t (0),D−1,h
L (θ

ϕ

t (0)−δt(0))))+((∇θ
w(0),∇D−1,h

L (θ
ϕ

t (0)−δt(0)))) =

−((β
ϕ

t (0),D−1,h
L (θ

ϕ

t (0)−δt(0))))+α((θ ϕ(0)+β
ϕ(0),D−1,h

L (θ
ϕ

t (0)−δt(0)))).

We subsequently use (70) to obtain

((θ
ϕ

t (0),D−1,h
L (θ

ϕ

t (0)−δt(0)))) =−((β
ϕ

t (0),D−1,h
L (θ

ϕ

t (0)−δt(0)))).

Consequently,

||θ ϕ

t (0)−δt(0)||−1,h ≤ ||β ϕ

t (0)+δt(0)||−1,h ≤C||β ϕ

t (0)+δt(0)||L2(Ω) ≤Ch2||ϕt(0)||H2(Ω), (72)

where we used Lemma 4, (50) and (53). Therefore, Z (0)≤Ch4, which validates our assertion.

In addition, Lemmas 4 and 5, combined with the estimation in (47) and the regular assumption regarding ϕ and
w, yield the following inequality:

Z (t)≤Ch4, for all t ∈ [0,T h].

https://www.sciendo.com


On the complex version of the Cahn–Hilliard–Oono type equation 247

This inequality, in particular, implies the subsequent result

‖θ
ϕ(t)‖L2(Ω) ≤Ch2, for all t ∈ [0,T h].

In addition, arguing as in (71), we then deduce that

sup ||ϕh(t)−ϕ(t)||C0(Ω̄) → 0, as h → 0.

Consequently, by choosing a sufficiently small value of h, we have T h = T . Also, Lemma 4, Lemma 5, and (47)
collectively establish the results presented in our theorem.

3.2 Stability of the Backward Euler scheme

In this section, we examine the backward Euler scheme with respect to time. After showing that the func-
tional energy decreases during time discretization, we can conclude that our scheme maintains stability. Our
initial assumption is that the time step ηt > 0 remains constant.
The numerical scheme is as follows:

((
ϕn

h −ϕ
n−1
h

ηt
,φ)) =−((∇v,∇φ))−α((ϕn

h ,φ)), (73)

((vn
h,ψ)) =

1
ε
(( f (ϕn

h ),ψ))+ ε((∇ϕ
n
h ,∇ψ)), (74)

for all φ ,ψ ∈V h.
In what follows, we show the existence, uniqueness, and stability of sequences ((ϕn

h ),(w
n
h)).

Theorem 7. For every ϕ0
h ∈ V h, there exist two sequences, (ϕn

h ) and (vn
h), generated by equations (73)-(74),

which satisfy the following:

J (ϕn
h )+

α

2
||ϕn

h ||2 +
1

2ηt
||ϕn

h −ϕ
n−1
h ||2−1 ≤ J (ϕn−1

h )+
α

2
||ϕn−1

h ||2, for all n ≥ 1. (75)

In addition, if ηt < ηt∗ , where ηt∗ = 4ε

m and m= 1
ε
+ ηtα2

2 +εη2tα2Vol2(Ω), then these sequences are uniquely
defined.

Proof. Consider the following minimization problem:

Π
ϕ = inf

w∈V h
Π

h(w), (76)

where

Π
h(w) = J (w)+

α

2
||w||2 + 1

2ηt
||w−ϕ

n−1
h ||2−1. (77)

We can see that
Π

h(w)≥ ε

2
||∇ϕ||2 +(

c1

ε
+

α

2
)||w||2 +C.

Since Πh(.) is continuous, it follows that that there exists a solution to the variational problem (76). This solution
satisfies Euler-Lagrange’s equation

ε((∇ϕ,∇φ))+
1
ε
(( f (ϕ),φ))+α((D−1,h

L ϕ,φ))+
1

2ηt
((ϕ −ϕ

n−1
h ,φ))− ((φ ,1)) = 0, (78)
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for all φ ∈ V h.
We set ϕn

h = ϕ and vn
h = φ −D−1,h

L ( 1
ηt (ϕ −ϕ

n−1
h )−αϕ), and we see that ((ϕn

h ),(w
n
h)) satisfies (73)-(74). By

construction, we have
J h(ϕn

h )≤ J h(ϕn−1
h ),

and as a result, we can derive (75).
To establish uniqueness, we consider κϕ = (ϕn

h )
1 − (ϕn

h )
2 and κv = (vn

h)
1 − (vn

h)
2 as the discrepancies between

two solutions ((ϕn
h )

i,(wn
h)

i) (where i = 1,2) of (73)-(74) with respect to a given ϕ
n−1
h . Then, (κϕ ,κv) satisfies

((κϕ ,φ)) =−ηt((∇κ
v,∇φ))−ηt.α((κϕ ,φ)), (79)

((κv,ψ)) =
1
ε
(( f ((ϕn

h ))
1)− f ((ϕn

h )
2),ψ))+ ε((∇κ

ϕ ,∇ψ)), (80)

for all φ ,ψ ∈V h.
By choosing φ = κv and ψ = κϕ and subtracting the resulting equations, we obtain

ηt||∇κ
v||2 + ε||∇κ

ϕ ||2 + 1
ε

Re(( f (ϕn,1
h )− f (ϕn,2

h ),κϕ))−ηt.α((κϕ ,κv)) = 0. (81)

Set ϕ
n,1
h = z,ϕn,2

h = z′ in Proposition 3.1 of the reference [25], and observe that

|Re(( f (z)− f (z′),κϕ))| ≥ c0

ˆ
Ω

[|κϕ |4 + |z|2.|κϕ |2 +2Re(z̄κ
ϕ)]dx−||κϕ ||2

≥ −||κϕ ||2, (82)

hence
ηt||∇κ

v||2 + ε||∇κ
ϕ ||2 ≤ 1

ε
||κϕ ||2 +ηtα||κϕ ||.||κv||, (83)

which yields

ηt||∇κ
v||2 + ε||∇κ

ϕ ||2 ≤ (
1
ε
+

α2.ηt
2

)||κϕ ||2 + ηt
2
||κv||2. (84)

Let now φ = ψ = Vol(Ω) in (79) and (80) and proceeding as above, we have

〈κϕ〉 ≤ ηt.α.Vol(Ω)||κϕ ||

and

〈κv〉 ≤
k f

ε.Vol(Ω)
||κϕ ||.

Therefore, inequality (84) can be rewritten as

ηt
2
||κv||2H1(Ω)+ ε||κϕ ||2H1(Ω)

≤ (
1
ε
+

α2.(ηt)2

2
+ ε.(ηt)2t.α2.Vol2(Ω)+

k2
f

ηt.ε2.Vol2(Ω)
)||κϕ ||2

≤ m||κϕ ||2.

(85)

Next, by choosing φ = m.κϕ in (79), we infer that

m||κϕ ||2 +m.α.ηt||κϕ ||2 =−m.ηt((∇κ
ϕ ,∇κ

ϕ))≤ ηt
2
||∇κ

v||2 + m2ηt
2

||∇κ
v||.
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We then deduce the following inequality,

(ε − m2ηt
4

)||κϕ ||2H1(Ω) ≤ 0.

At the end, since ((θ ϕ ,1)) = 0, the smallness assumption on ηt implies that κϕ = 0, and using (3.61) we can
see that κw = 0.

4 Conclusions

In this article, we proposed a complex version of the Cahn-Hilliard-Oono type equation, with applications
in grayscale phase separation. Instead of considering the Cahn-Hilliard-Oono system for long interaction phase
separation as proposed in [26], we suggested examining a multi-phase metal treated as grayscale, where the
concentration of each phase ranges between 0 and 1. We utilized the complex version of the Cahn-Hilliard
equation, revealing that the real part of the solution represents the resulting separation.

We established the existence of a unique solution for the stationary problem using Schauder’s fixed point
theorem. Furthermore, we considered a numerical scheme based on finite element space discretization in space
and Backward Euler discretization in time. After deriving error estimates for the semi-discrete solution, we
demonstrated the convergence of the semi-discrete solution to the continuous one. Additionally, we proved the
stability of the backward Euler scheme, enabling convergence of the fully discrete scheme to the continuous
problem.

It is worth noting that numerical simulations are crucial for showcasing the efficiency of the model under
investigation in future works. Furthermore, exploring the mathematical aspects of the evolution problem (well-
posedness, attractors, convergence) will be a significant focus in future studies. Moreover, for long interaction
phase separation and to streamline numerical simulations, we can use the complex version of the Cahn-Hilliard-
Oono equation.
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