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Abstract
Identifying vulnerabilities within source code remains paramount in assuring software quality and security. This study
introduces a refined semi-supervised learning methodology that capitalizes on pattern-exploiting training coupled with
cloze-style interrogation techniques. The research strategy employed involves the training of a linguistic model on the
Software Assurance Reference Dataset (SARD) and Devign datasets, which are replete with vulnerable code fragments.
The training procedure entails obscuring specific segments of the code and subsequently prompting the model to ascertain
the obfuscated tokens. Empirical analyses underscore the efficacy of our method in pinpointing vulnerabilities in source
code, benefiting substantially from patterns discerned within the code fragments. This investigation underscores the po-
tential of integrating pattern-exploiting training and cloze-based queries to enhance the precision of vulnerability detection
within source code.

Keywords: Language models, software vulnerabilities, vulnerability detection, cloze-style questions, pattern-exploiting training,
RoBERTa .
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1 Introduction

The digital platform domain is witnessing an escalation in intricate and malevolent cyber incursions. These
transgressions predominantly harness system susceptibilities, defined as system lacunae manipulable by cyber
adversaries for multifaceted gains [1–34]. A significant precipitant of these cyber onslaughts is the inherent
software vulnerabilities. Even with significant strides by academic and industrial entities in fortifying software
integrity, the continued emergence of vulnerabilities, as underscored by annual records in the Common Vul-
nerabilities and Exposures (CVE) database [16], remains alarming [28]. Considering the inevitable nature of
these susceptibilities, their early detection becomes imperative. Static analysis of source code offers one such
detection avenue, embracing methodologies ranging from code similarity assessment to pattern-recognition tech-
niques. Notably, while code similarity evaluation can pinpoint vulnerabilities emanating from code replication,
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considerable false negatives may incur [1, 2, 9, 10, 15–24]. In a bid to tackle these vulnerability detection quan-
daries, the academic sphere has introduced methods such as fuzzing, symbolic scrutiny, and rule-centric testing.
These methodologies, despite their acclaim, are hindered by constraints like manual attack signature and pattern
definitions, compromising their efficacy on extensive code repositories. Moreover, conventional techniques for
vulnerability detection are plagued by false positives, performance hindrances, and challenges in vulnerabil-
ity typology discernment [4, 18]. In a progressive move, the integration of machine learning-specifically deep
learning-into vulnerability detection paradigms has been pursued. Such integrations streamline manual inter-
ventions and expedite the vulnerability detection process. Forefront machine learning algorithms like longshort-
term memories (LSTMs) and transformers undertake the classification of API sequences from program execution
traces into benign or malignant categories, even prognosticating the exploit genre. However, their computational
voracity diminishes their applicability [22]. This research endeavors to harness a "pattern-exploiting training"
(PET) and "iterative pattern-exploiting training" (iPET) paradigm, leveraging cloze-style interrogation, to archi-
tect an expansive linguistic model aimed at software vulnerability detection. In this context, cloze interrogatives,
which entail blanks within content that necessitate completion [26], are framed upon code fragments; the lacu-
nae represent the extant vulnerabilities. The rationale for our methodology is grounded in the notion that a
comprehensive language model, cultivated on a vast dataset of code-based cloze interrogatives, imbibes both the
vulnerable and benign code exemplars. Such exposure equips the model with the proficiency to discern code
configurations suggestive of vulnerabilities. This trained model can then discern potential vulnerabilities in fresh
code segments by complementing the lacunae in the cloze interrogatives. For instance, code manifesting a prob-
able buffer overflow vulnerability is analyzed using the PET paradigm by determining the code configurations
associated with buffer overflow susceptibilities and subsequently generating cloze interrogatives for linguistic
model training. Following this, the linguistic model, equipped with cloze training, becomes adept at examining
new code segments, pinpointing configurations reminiscent of established vulnerability blueprints. This modus
operandi avails an automated vulnerability pattern detection, obviating the necessity for expert manual exami-
nation. In this scholarly endeavor, we introduce "VulDefend," a vulnerability detection architecture employing
the RoBERTa model for C and C++ source codes. Our seminal contributions encompass:

1. The conceptualization of VulDefend, an innovative system harnessing pattern-exploiting training and
cloze methodology for software vulnerability detection, capitalizing on expansive linguistic model com-
petencies.

2. Through benchmark datasets and the RoBERTa-based linguistic model, we evidence VulDefend’s profi-
ciency in identifying code susceptibilities across multiple programming languages, inclusive of C/C++
and Java.

3. Comparative analyses depict VulDefend’s superior performance over dual contemporary benchmark tech-
niques in software vulnerability identification.

2 Related work

The quest to identify vulnerabilities in source code has engrossed researchers in recent years. Myriad stud-
ies have unveiled methodologies that employ machine learning techniques for this pursuit. Some concentrate
on static analysis, extracting salient features from the code to be input into predictive machine-learning frame-
works [1, 2], while others hinge on dynamic analysis, running the code and monitoring its behavior to discern
vulnerabilities [3,4]. A nascent inclination towards harnessing deep learning models for source code vulnerabil-
ity detection has been observed. Certain researches harness recurrent neural networks (RNNs) to encapsulate the
code, whether in its pristine form [5,6] or post its transmutation into an abstract syntax tree (AST) [7,8]. Mean-
while, other investigations employ transformers, which have gained acclaim in the realm of natural language pro-
cessing [9, 10]. Literature has extensively analyzed deep learning architectures like Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs) for vulnerability detection [3,12–14,25,29,31,34]. Yet,
these models necessitate structured data to discern vulnerability-associated features. This spurred the inception
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of techniques, including lexed C/C++ code representation [13], code gadgets [25], code property graphs [35],
augmented code gadgets considering code attention and system dependency graphs, and minimal intermediate
representation learning [31]. Software vulnerability detection has also seen the application of graph neural net-
works [34]. The Devign model embodies compound programmatic representations like abstract syntax trees,
control flow, and data flow from the source code. In an archetype, Russell et al. [27] showcased the prowess of
deep learning in identifying software vulnerabilities within raw source code. Their innovative proposition uti-
lized CNN and RNN as feature extractors that subsequently informed a Random Forest classifier. This paradigm,
when trialed on pragmatic datasets, rendered an impressive AUC score of 90.4 Building upon the momentum,
Vuldeepecker [36] emerged, offering multi-class vulnerability classification and even specifying the vulnerabil-
ity location within the source code. Research has also navigated graph-centric vulnerability detection strategies.
Notably, Devign [35] and DeepWukong [7] employed Graph Neural Network models. Beyond traditional lan-
guages, DeepTective [25] discerned vulnerabilities in PHP, and another study [32] probed HTML5-based appli-
cations. Dataset quality enhancements for deep learning-based vulnerability detection have also been prioritized,
as seen with REVEAL [6] and D2A. In a recent endeavor, Naif et al. [11] launched VulBERTa, a deeply repre-
sentational model of C/C++ code. However, it lacked a mechanism to identify novel 0-day vulnerabilities within
real-world, open-source ventures. Our research dovetails with the contemporary thrust towards leveraging deep
learning for source code vulnerability detection. Distinctively, we employ pattern-exploiting training combined
with cloze queries to endow a compact student model with the insights of a larger language model. The ultimate
aim is to amplify the student model’s vulnerability detection prowess. This strategy delineates itself from prior
work which primarily revolved around using RNNs, transformers, or knowledge distillation with deep learning
for varied tasks.

Fig. 1 An overview of our defense framework.

The underlying rationale for employing pattern-exploiting training to reshape input data into cloze-style
queries in a semi supervised learning environment revolves around manipulating discernible patterns within in-
put data. The objective is to generate fresh training instances [26], subsequently honing machine learning models
specific to vulnerability detection. This methodology gains prominence particularly in scenarios with sparse la-
belled data, granting the model the capacity to discern from inherent patterns rather than being excessively
dependent on labelled instances. Let’s delve into a hypothetical scenario: tasked with the detection of vulner-
abilities within function calls utilizing a benchmark dataset, for instance, REVEAL [6]. Contextually, within
source code function calls, core patterns would encompass function names invoked, argument types passed to
these functions, and the associated security ramifications of such calls. Morphing these samples into cloze-style
questions, where portions of this data are concealed, empowers the model to prognosticate the concealed data.

Deploying this technique to the REVEAL dataset, aimed at vulnerability detection within source code, yields
multifaceted advantages. Primarily, the emphasis on inherent data patterns equips the model with a broader and
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more generalized data representation, subsequently applicable to novel code fragments. The semi-supervised
learning milieu further capacitates the model to exploit data patterns, even in the face of limited labelled data.
Furthermore, cloze-style queries offer the model a more regimented learning platform, potentially augmenting
its efficacy. To encapsulate, harnessing pattern-exploiting training to metamorphose input data into cloze-style
queries within a semi-supervised learning context emerges as a propitious avenue for unearthing vulnerabilities
in source code. By tapping into inherent data patterns, the model can extrapolate concealed data and spotlight
potential security predicaments in unfamiliar code snippets. Such an innovative strategy holds the promise of
bolstering software security, allowing for early vulnerability interception during the development trajectory.

3 Methodology

This section delineates the intricacies of the methodology incorporated for discerning vulnerabilities within
source code, leveraging PET and cloze-style queries. We will unpack the preprocessing regime, elucidate the
training paradigm, and touch upon the evaluative measures to gauge model performance. The overarching aim
is to furnish readers with a lucid grasp of the executional steps and the rationale guiding these choices. The
initial preprocessing phase is pivotal, morphing raw source code into a digestible format suitable for PET. The
flowchart in Figure 1 captures this transformation succinctly. The processes entail:

Tokenization: Dissecting source code into discrete tokens, categorizing them as keywords, variables, or punc-
tuation. Normalization: Homogenizing these tokens to maintain data uniformity. A case in point: converting all
function names to lowercase.

Labeling: Assigning a descriptive tag to each token to indicate its role within the code. This might entail clas-
sifying tokens as function names, variables, or keywords.

Cloze generation: Exploiting these processed tokens to spawn cloze-style questions, wherein a code segment
is substituted with a mask token, prompting the model to forecast the concealed segment.

These steps are instrumental in curating a structured dataset, primed for training, ensuring the language
model adeptly comprehends source code intricacies vital for vulnerability detection.

3.1 Pattern-exploiting training

Visualize a training set D comprising N input-output duos, wherein each input xi symbolizes a code fragment
and its counterpart output yi denotes the vulnerability status of said code. The ambition is to harness PET,
metamorphosing these inputs into cloze-styled statements for vulnerability detection.

This transformation begins with discerning prominent patterns P within the input. Each pivotal pattern p j
correlates with an index set I j, ensuring that for every i ∈ I j,xi encapsulates p j. This leads to a new input
set X , formulated by masking segments of each input xi such that Xi =cloze(xi, p j) for some p j ∈ P . For
clarity, consider the pattern "function call" and an input xi with the function call "strcpy". The transformed
X ′

i = cloze(xi, p j) would mask "strcpy". A machine learning model f is then calibrated using the altered inputs
X ′

i and associated outputs y. Predictions for new inputs utilize the same cloze transformation. Mathematically,
the formulae for this transformation and subsequent prediction are:

X = cloze(xi, p j) for i ∈ 1,2, · · · ,N, p j ∈ P
f = train(X ,y)
ynew = f (xnew).

Cross-entropy loss, a staple in supervised learning, gauges discrepancies between forecasted and actual labels.
Formally:

L(p,q) =−Σ
K
k=1qklog(pk).
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Minimizing this loss during training fine-tunes the model, ensuring predictions mirror true probabilities.
Post-training, this model becomes adept at vulnerability detection using cloze-style queries.

Leveraging the BERT architecture, one could optimize a pre-existing BERT model using reformulated inputs
X ′ and outputs y, aiming to predict concealed segments in cloze-style queries.

4 System overview

Within this segment, we introduce "VulDefend" a classification model sculpted atop the colossal language
model BERT, envisaged to autonomously unearth security vulnerabilities in source code, as portrayed in Figure
1. This fine-tuned BERT incarnation deciphers vectors tied to vulnerable code components drawn from a targeted
source. VulDefend ingests inputs as elongated character strings, representing C files. A subsequent tokenizer
dissects this string into words and sub-words, noting that syntactic characters (e.g., periods, semicolons) are
treated as standalone words. Following tokenization, an encoder translates these words into vectorial form,
either ingesting them piecemeal into the model or in bulk. In our vulnerability identification construct, the
output vector mirrors the count of vulnerability classes within the dataset. Given a dataset with 124 unique
vulnerability classes, the resultant output vector boasts a 124-dimensional span. A subsequent Softmax function
refines this vector into a probability distribution, ensuring all probabilities cumulatively equate to 1. Each vector
component forecasts the likelihood of its associated vulnerability class manifesting within the analyzed code
file.

4.1 Data sources

In our research, we have selected multiple datasets which are considered benchmarks in the realm of vul-
nerability detection. These datasets, previously employed in several studies such as SARD [34], D2A [33],
REVEAL [6], and the Devign dataset [30].

1. Devign: Introduced in [30], the Devign dataset stands as a practical representation of data tailored for vul-
nerability detection in software. It’s an aggregation of C/C++ source code functions pulled from renowned
open-source projects such as QEMU and FFmpeg. The data’s reliability is reinforced by a rigorous two-
phase validation process performed by seasoned security experts.

2. SARD: Offered as a robust reference, the SARD [34] acts as a repository of details and tools catering to
software assurance and its security. With a focus on real-world vulnerabilities and the code that accom-
panies them, SARD’s library spans a range of vulnerability types including buffer overflows and XSS.
Updated consistently, SARD is recognized in both academic and industrial circles for assessing the effi-
cacy of software assurance tools.

3. REVEAL: The REVEAL dataset, highlighted in [6], emerges as an answer to the redundancy and skewed
vulnerability distribution in current datasets. By concentrating on binary detection, REVEAL incorporates
source code from notable open-source endeavors, namely the Linux Debian kernel and Chromium. This
dataset stands as a fresh portrayal of authentic vulnerability situations and fosters further exploration in
this domain.

4. D2A: Originated by the IBM Research division [33], the D2A dataset stands as an exhaustive reservoir
of real world vulnerability detection data. Incorporating code from renowned open-source projects such
as FFmpeg, Nginx, and more, it’s structured using a differential analysis technique that labels issues
pinpointed by static analysis instruments.

4.2 Experimental setup

Our experiments are conducted on an ASUS TUF Gaming laptop powered by an Intel Core i7-8th gen
processor. The processor boasts six cores, each having a peak operational speed of 2.2 GHz.
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Table 1 The average accuracy and the standard deviation for BERT base on SARD, D2A, REVEAL and DEVIGN over 5
training set sizes.

Line Examples Method SARD D2A REVEAL Devign
1. | T |= 0 unsupervised (avg) 38.8 ±9.6 69.5 ±7.2 44.0 ±9.1 39.1 ±4.3
2. | T |= 0 unsupervised (max) 42.8 ±0.0 79.4 ±0.0 56.4 ±0.0 43.8 ±0.0
3. | T |= 0 iPet 66.7 ±0.2 89.5 ±0.1 73.7 ±0.1 63.6 ±0.1
4. | T |= 15 supervised 32.1 ±1.6 25.0 ±0.1 10.1 ±0.1 34.2 ±2.1
5. | T |= 15 Pet 52.9 ±0.1 87.5 ±0.0 63.8 ±0.2 41.8 ±0.1
6. | T |= 15 iPet 57.6 ±0.0 89.3 ±0.1 70.7 ±0.1 43.2 ±0.0
7. | T |= 60 supervised 44.8 ±2.7 82.1 ±2.5 52.5 ±3.1 45.6 ±1.8
8. | T |= 60 Pet 60.0 ±0.1 86.3 ±0.0 66.2 ±0.1 63.9 ±0.0
9. | T |= 60 iPet 64.7 ±0.1 88.4 ±0.1 69.7 ±0.0 67.4 ±0.3
10. | T |= 200 supervised 53.0 ±3.1 86.0 ±0.7 62.9 ±0.9 47.9 ±2.8
11. | T |= 200 Pet 61.9 ±0.0 88.3 ±0.1 69.2 ±0.0 74.7 ±0.3
12. | T |= 200 iPet 62.9 ±0.0 89.6 ±0.1 71.2 ±0.1 78.4 ±0.7
13. | τ |= 1000 supervised 63.0 ±0.5 86.9 ±0.4 70.5 ±0.3 73.1 ±0.2
14. | τ |= 1000 Pet 68.8 ±0.1 89.9 ±0.2 72.7 ±0.0 85.3 ±0.2

5 Outcome analysis

In our research, we present the outcome of a vulnerability detection exercise as shown in Table 1. For
the three distinct training sessions, both mean accuracy and its standard deviation are detailed. The initial two
rows (L1-L2) in the table showcase unsupervised method outcomes, highlighting the highest average across all
test datasets. This prominent variation between the two rows underscores the necessity to consult the test set
to gauge the best-performing method. Zeroshot iPET consistently surpasses the unsupervised standards across
datasets and even outdoes regular supervised training with 1000 samples for D2A. On the other hand, with only
15 samples, conventional supervised learning is no better than a random guess. Yet, with successive generations
of iPET training, PET consistently shows improvements. Although the advantage of PET and iPET narrows as
we augment the training dataset, even with 60 and 100 samples, PET remains substantially superior.

Table 2 A comparison of PET with VulBERTa and VulDeBERT methods using BERT (base).
Ex. Method SARD D2A REVEAL Devign

| T |= 15 VulDeBERT 40.45 72.6 36.7 34.7
| T |= 15 VulBERTa 43.23 81.1 320.6 32.9
| T |= 15 Pet 49.60 84.1 59.0 39.5
| T |= 15 iPet 54.60 87.5 67.0 42.1
| T |= 60 VulDeBERT 46.6 83.0 60.2 40.8
| T |= 60 VulBERTa 39.5 84.8 61.5 34.8
| T |= 60 Pet 55.3 86.4 63.3 55.1
| T |= 60 iPet 57.7 87.3 69.6 56.3
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Fig. 2 The inclusion of Additional Language Modeling during training resulted in improvements in accuracy for PET.

5.1 Enhanced language modeling

We explored the influence of an additional language modeling task on PET’s performance. Figure 2 show-
cases the enhanced outcomes from this task over four distinct training dataset sizes. The outcomes suggest a
significant boost from the supplementary task with a mere 15 samples. But as training data grows, this task’s
relevance lessens, occasionally even diminishing performance. Nevertheless, for the Devign dataset, this task
consistently enhances outcomes.

5.2 iPET explanation

"Iterative distillation and amplification", or iPET, builds on the foundational PET algorithm. It augments
PET’s capabilities by cyclically transferring insights from the primary model to a secondary model, intensifying
their predictive differences. This cycle helps the secondary model absorb intricate nuances from the primary
model, leading to enhanced outcomes [5, 8]. In our method, merging insights from individual models might
curtail mutual learning since some patterns may falter compared to others. This results in numerous mislabelled
samples in the ultimate dataset. We combat this through the iterative iPET strategy. Its essence is in training
multiple model generations on expanding datasets. We enlarge the foundational dataset T by integrating labeled
samples from D using some trained PET models. Successive PET model generations are then trained, allowing
consistent refinement towards a robust final model.

5.3 Comparative study

This study’s pivotal segment is comparing PET with leading software vulnerability detection tools, namely,
VulBERTa and VulDeBERT. PET operates on pattern identification, while the latter two demand supervised
training using extensive labeled samples on a 12-layer Transformer, i.e., BERT (base). We contrasted several
iterations of both methods directly on the test dataset and highlighted the peak performances. Table 2 clearly
indicates the marked superiority of both PET and iPET across all datasets when juxtaposed with the other two.
This distinction clearly showcases the merit of integrating knowledge distillation. A glance at Table 2 reinforces
that PET and iPET outshine VulBERTa and VulDeBERT, emphasizing the value of amalgamating knowledge
distillation and transfer learning methodologies.

5.4 VulDefend’s identified vulnerabilities

We exhibit some vulnerability instances detected via our methodology, followed by a performance discourse
on varied vulnerability classes. Vulnerabilities identified by our method:

SQL injection risk: Several code snippets harbored SQL injection risks, identified by our method. Our
model spotted patterns that let unchecked user input feed directly into SQL statements sans validation.
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Cross-site scripting (XSS) risk: Similarly, our method pinpointed multiple XSS risks. Patterns allowing
unchecked user inputs to populate web content without validation were identified by our model. Our method
adeptly spotted vulnerabilities with evident code patterns, like SQL injection and XSS risks. But, the efficacy
dipped for intricate vulnerabilities involving multitiered code interactions. Examples include race conditions or
privilege escalation, which might lack distinct patterns. To summarize, our method shows potential in identifying
select vulnerability categories, especially those with clear patterns. Still, a broader vulnerability scope requires
evaluation, and strategies to spot intricate vulnerabilities warrant further investigation.

6 Challenges faced

The technique of utilizing cloze-style patterns in Pattern Exploiting Training (PET) alongside language mod-
els for spotting vulnerabilities shows potential, but it isn’t without challenges. First, data constraints: Gathering
labeled data for cloze-style training can be labor-intensive and challenging. The model’s effectiveness is bound
to the quality and volume of this data. Second, versatility challenges: Although a model fine-tuned for one
coding language might excel, transitioning to different languages or varied syntax might pose hurdles. Third,
inherent model constraints: Language models, despite their vast training, might not grasp coding intricacies.
They might falter with highly sophisticated or unique code features. Fourth, domain-specific issues: Recog-
nizing vulnerabilities requires comprehensive code and security concept comprehension, which cloze-training
might not always capture comprehensively. Lastly, understanding challenges: Deciphering the reasoning behind
neural network-based model predictions can be daunting. To mitigate these challenges, we’re exploring innova-
tive strategies like parameter-sharing and experimenting with diverse language models like reformers to refine
our vulnerability detection mechanisms

7 Versatility and evolution

For the PET methodology to cater to various coding languages, model architecture and training cloze ques-
tions might need adjustments. An approach could be employing pre-training datasets specific to a language.
For instance, a Python specific dataset might feature prominent Python libraries, while a JavaScript one would
highlight key web development libraries. Future endeavors involve refining the PET technique for enhanced ac-
curacy in spotting vulnerabilities across coding languages. This includes innovating model structures, perfecting
the training regime, and weaving the model into existing software creation processes. Efforts are also directed
at expanding the model’s testing parameters, pinpointing false positive and negative origins, and strategizing the
integration of human expertise in the vulnerability detection chain.

8 Conclusion

The cybersecurity domain critically hinges on proficient, efficient, and precise language models, especially
when preemptively pinpointing software vulnerabilities to bolster security frameworks. Our empirical analysis
confirms the merit of using cloze-style patterns in PET with language models for scrutinizing source code for
vulnerabilities. Transforming input samples into cloze-style queries enables the model to forecast code gaps and,
consequently, detect vulnerabilities. The potential of this approach in enhancing the precision and efficiency of
source code vulnerability detection is evident. Paving the way forward, we aspire to innovate around parameter-
sharing concepts and harness avant-garde language models like GPT and reformers to architect sophisticated
and resilient models for software vulnerability detection.
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