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Abstract
This study investigates the thermohaline convection in MHD Casson fluid over an exponentially stretching sheet. This study
has practical significance in industrial processes, materials processing, energy systems, and environmental applications.
The governing equations describing the conservation for an electrically conducting fluid flow, thermal and concentration
transports are considered based on the principles of mass, momentum, energy and concentration equations. Our first step
involves transforming the governing nonlinear partial differential equations into a coupled nonlinear ordinary differential
equations with the help of suitable similarity transformations. Second step, infinite domain [0, ∞) of the problem to a finite
domain [0, 1] through a coordinate transformations. This specific choice is motivated by the wavelet’s significance in the
finite domain of [0, 1]. Third step, we effectively solve the resulting coupled nonlinear ordinary differential equations
using the numerical Hermite wavelet method (HWM). This approach proves to be a valuable technique for obtaining
significant results and insights in our study. Finally, the effect of known physical parameters on velocity, temperature and
concentration are analysed through tables and graphs.

Keywords: Boundary layer flow, casson fluid, non-uniform heat source/sink, stretching sheet.
AMS 2020 codes: 34K28; 34K40.

1 Introduction

The flow over a stretching surface is an important problem in many engineering processes with applications
in industries such as extrusion, glass-fiber production, the hot rolling, melt-spinning, wire drawing, manufacture
of plastic and rubber sheets, cooling of a large metallic plate in a bath, which may be an electrolyte, etc [1, 2].
Experiments show that the velocity of the stretching surface is approximately proportional to the distance from
the orifice [3]. Crane [4] studied the steady two-dimensional incompressible boundary layer flow of a Newtonian
fluid caused by the stretching sheet. Nazar et al. [5] are studied boundary layer flow in the region of the stagnation
point on a stretching sheet. Fang et al. [6] are examined boundary layer flow over a stretching sheet with variable
thickness.

In recent years, some interest has been given to the study of convective transport of Non-Newtonian fluids.
Non-Newtonian fluids encompass a captivating and diverse group of fluids that present behaviours distinct from
the conventional Newtonian fluid model. Diverging from Newtonian fluids, which maintain a consistent viscos-
ity irrespective of the applied shear stress, non-Newtonian fluids possess viscosities that fluctuate in response to
external forces. The study of non-Newtonian fluids also has applications in biomedical engineering, geophysics,
rheology, and many other fields [7–10]. Casson fluid is one such type of non-Newtonian fluid that is widely
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used for modelling blood flow in narrow arteries. Bhattacharyya [11] studied the research examines the stable
boundary layer stagnation-point flow and heat transmission of Casson fluid on a sheet undergoing contraction
or expansion. Mustafa et al. [12] investigate the time-varying behavior of the flow and heat transfer of a non-
Newtonian fluid (Casson fluid) over a moving flat plate that is exposed to a parallel free stream. Stagnation-point
flow and heat transfer of a Casson fluid towards a stretching sheet is studied by Mustafa et al. [13]. Mukhopad-
hyay et al. [14] examined the flow and heat transmission of a Casson past a symmetric wedge, under the forced
convection regime.

However, thermohaline convection is a phenomenon that occurs when there are gradients in both temperature
and concentration in a fluid. It is a significant topic in fluid mechanics and has several real-life applications
[15–17]. Verma and Mondal [18] are reviewed heat and mass transfer of Casson fluids. Ibrahim et al. [19] are
investigated how the flow of a non-Newtonian (Casson fluid) is affected by a heat source, suction/injection,
and chemical reaction when it passes over an exponentially stretching sheet. Aghighi et al. [20] are examined
double-diffusive natural convection of Casson fluids in an enclosure.

Magnetohydrodynamics (MHD) is extensively used as a tool for studying fluid dynamics in general. MHD
plays a crucial role in understanding natural phenomena in space propulsion [21], industrial applications [22] and
geophysics and astrophysics [23]. It helps in understanding the behavior of conducting fluids in the presence of
magnetic fields, including the interaction of magnetic fields with fluid flow [24–26]. Moreover, a non-uniform
heat source/sink refers to a situation where the heat generation or absorption within a system is not evenly
distributed. This phenomenon has significant implications in various fields, including thermal engineering [27],
industrial processes [28] and environmental engineering [29]. The combination of double diffusive convection,
non-uniform heat source and magnetic field possesses a wide range of applications [30–32]. A study by Nadeem
et al. [33] examined the MHD boundary layer flow of a fluid with Casson rheology over a shrinking sheet that
has an exponential permeability.Mukhopadhyay et al. [34] used a computer simulation to study the flow of
non- Newtonian (Casson fluid) over a sheet that is stretching exponentially, in the existence of a magnetic flux.
Ghilasi and Saleh [35] studied the Casson flow over a stationary plate in the influence of a magnetic flux and a
non-uniform heat source/sink using the homotopy analysis method. Bhatti et al. [36] are obtained differential
transform solution for Hall and ion-slip effects on radiative-convective Casson flow from a stretching sheet with
convective heating. Ganesh and Sridhar [37] are examined the double convection characteristics of a MHD
non-Newtonian fluid over an exponentially porous stretching sheet.

Mathematical modeling of various phenomena in diverse fields such as engineering, science and technol-
ogy often involves nonlinear differential equations. Such nonlinear equations naturally arise in many real-world
problems pertaining to fluid dynamics, materials science, physics, biology and other domains [38–40]. However,
analytical solutions are rarely feasible for most nonlinear problems except trivial cases. As a result, numerical
methods are commonly employed to obtain approximate solutions. In recent years, several numerical techniques
have been proposed for solving highly nonlinear differential equations, including the Runge-Kutta method,fi-
nite difference approaches, optimal homotopy analysis, homotopy perturbation method, and numerical wavelet
approaches. Numerical wavelet methods have gained significant attention in recent years for solving differen-
tial equations arising in diverse fields such as signal processing, image analysis and mathematical modeling.
Notable contributions include the use of Laguerre wavelets [41], Taylor wavelets [42], cardinal B-splines [43],
Bernoulli wavelets [44] and Hermite wavelets [45,46]. Among these, the HWM has been widely utilized due to
its accuracy. Given the effectiveness of numerical wavelet techniques, developing a parametric Hermite wavelet
approach for nonlinear problems is important. With the availability of powerful computational software, Her-
mite wavelet methods have been successfully employed by researchers to solve various nonlinear boundary
value problems, including different fluid flow models [47–53].

In this paper, we apply the HWM to analyze MHD double diffusive non-Newtonian (Casson fluid) fluid
flow of a over a sheet with a variable heat source or sink. Our numerical wavelet results are more effective
and accurate than other numerical techniques. The impact of influential physical parameters such as the Prandtl
number, Schmidt number, Magnetic field, suction or blowing, chemical reaction and radiation parameters on the
velocity, temperature and concentration distributions in the boundary layer are examined.

The paper is organized as follows: Section 2 mathematical model of the problem. Sections 3 and 4 present
the methodology of HWM and the integration of matrix, respectively. 5 present the method of solution proce-
dure. Section 6 discusses the results. Section 7 provides the conclusions of this paper.
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2 Mathematical model

We examine a steady, laminar boundary layer flow of an incompressible Casson fluid over an exponentially
expanding surface aligned with the y = 0 plane, with the fluid flow constrained to y > 0. This flow increases
from the linear stretching of the surface, induced by the concurrent application of two equal and opposite forces
along the x-axis. Preserving the original configuration, the sheet stretches at velocity Uw(x). The lower and
upper boundaries are held at constant temperatures T (w) and T∞, respectively, while solute concentration is held
at fixed values C(w) and C∞, respectively, as represented in Figure 1. Within the common boundary layer flow
approximations, heat and mass transfer characteristics of the Casson fluid can be described by the following
equations for continuity, momentum, energy and concentration in Cartesian coordinates x and y [54, 55]

∂u
∂x

+
∂u
∂y

= 0, (1)

u
∂u
∂x

+v
∂u
∂y

= ν

(
1+

1
β

)
∂ 2u
∂y2 −

σB2u
ρ

, (2)

u
∂T
∂x

+v
∂T
∂y

=
κT

ρCp

∂ 2T
∂y2 − 1

ρCp

∂qr

∂y
+

Q
ρCp

(T −T∞) , (3)

u
∂C
∂x

+v
∂C
∂y

=
κC

ρCp

∂ 2C
∂y2 −K1 (C−C∞) , (4)

where x- axis velocity (u), y-axis velocity (v), density of fluid (ρ), electrical conductivity (σ), kinematic
viscosity(ν), specific heat at constant pressure (Cp), temperature (T ), thermal diffusivity (κT ), dimensional
heat source(Q), solute diffusivity (κC), chemical reaction(K1), radiative heat flux (qr), Casson parameter(β )
and magnetic field(B).
Using the Rossel and approximation for radiation, we get

qr =− 4σ

3K∗
∂T 4

∂y
,T 4 ≈ 4T 3

∞T −3T 4
∞ ,

qr =− 4σ

3K∗
∂
(
4T 3

∞T −3T 4
∞

)
∂y

=−16σT 3
∞

3K∗
∂T
∂y

. (5)

Hence, (3) reduce to

u
∂T
∂x

+v
∂T
∂y

=
κT

ρCp

∂ 2T
∂y2 +

16σT 3
∞

3K∗
1

ρCp

∂ 2T
∂y2 +

Q
ρCp

(T −T∞) . (6)

The boundary conditions are

u =Uw (x) , v =−V (x) , T = Tw,C =Cw at y = 0,
u = 0, T = T∞,C =C∞ at y → ∞.

(7)

The wall and the boundary layer’s outer edge have different conditions, which are denoted by the subscripts w
and ∞.
Introducing the following similarity variables as

η = ye
x

2L
√ u0

2νL , B = B0e
x

2L , u = u0e
x
L f ′ (η) , v =−e

x
2L
√ u0

2νL ( f (η)+η f ′ (η))
T = T∞ +T0e

x
2L θ (η) , C =C∞ +C0e

x
2L ϕ (η) , Q = Q0e

x
2L , K1 = k0e

x
2L

. (8)

Substitute (8) in (1) to (6) we have, (
1+

1
β

)
f ′′′+ f f ′′−2 f ′2 −M f ′ = 0, (9)
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1+

4
3

R
)

θ
′′+Pr

(
f θ

′− f ′θ
)
+PrHsθ = 0, (10)

ϕ
′′+Sc

(
f ϕ

′− f ′ϕ
)
−2γϕ = 0. (11)

The corresponding boundary conditions becomes,

f (0) = S, f ′ (0) = 1, f ′ (∞)→ 0;θ (0) = 1,θ (∞)→ 0 ;ϕ (0) = 1,ϕ (∞)→ 0 . (12)

Where, Pr = µCp
κT

is the Prandtl number, M =
σB2

02L
u0ρ

is the magnetic field parameter, S = v0√
u0ν

2L

is the suction or

blowing parameter, Sc = µCp
κC

is the Schmidt number, γ = k0L
u0

is the chemical reaction parameter, R = 4σT 3
∞

κT K∗ is the
radiation parameter, Hs = Q0

ρCp

2L
u0ρ

is the source/sink parameter. Via Table 1, the physical meanings of parameters
are given.

Table 1 Nomenclature.

Symbol Meanings
Cp Specific heat at constant pressure(J/kg oC)
B Magnetic field (Tesla)
C Concentration of the fluid

(
mol/m3)

Cw Concentration of the wall of the surface
(
mol/m3)

C∞ Free stream concentration
f Dimensionless stream function

Hs Heat source/sink parameter
κT Coefficient of thermal diffusivity

(
m2/s

)
κC Coefficient of solute diffusivity
M MHD parameter
Pr Prandtl number
Q∗ Coefficient of heat source

(
W/m3)

R Radiation parameter
S Suction/blowing parameter
Sc Schmidt number
T Temperature of the fluid(K)
Tw Temperature of the wall of the surface(K)
T∞ Free stream temperature(K)
u0 Reference velocity(m/s)
u, v Velocities in x and y directions (m/s)
x, y Cartesian coordinates (m)

Greek Symbols
β Casson fluid parameter
η Similarity variable
γ Chemical reaction parameter
ρ Density of the fluid

(
kg/m3)

ν Kinematic viscosity
(
m2/s

)
θ Non dimensional temperature
ϕ Non dimensional concentration

3 Fundamentals of HWM

Hermite wavelets are well-defined as [45, 47],

φn.m(x) =

{
2

k−1
2√
π

Hm
(
2kx−2n+1

)
, n−1

2k−1 ≤ x ≤ n
2k−1

0 elsewhere
.
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Where n = 1,2,3, · · · ,2k−1 and m = 0,1,2,3, · · · ,M−1 and k ∈ N Here Hm(x) represents Hermite polyno-
mials of degree m with regards to weight function W (x) =

√
1− x2 on the real line R and pleases the succeeding

recurrence formula H0(x) = 1,H1(x) = 2x,Hm+2(x) = 2xHm+1(x)−2(m+1)Hm(x) where, m = 0,1,2,3, · · · .
For a specified nonlinear differential equation, we approximated to the solution as y(x)with the assistance of

HWM as follows

y(x) =
∞

∑
n=1

∞

∑
m=0

Cn,mφn,m(x).

We estimated y(x)by truncating the series as follows

y(x)≈
2k−1

∑
n=1

M−1

∑
m=0

Cn,mφn,m(x) = AT
φ(x),

where A and φ(x) are 2k−1M×1 matrix,

AT = [C1,0, · · ·C1,M−1,C2,0 · · ·C2,M−1, · · ·C2k−1,0, · · ·C2k−1,M−1], .

φ(x) = [φ1,0, · · ·φ1,M−1,φ2,0, · · ·φ2,M−1, · · ·φ2k−1,0, · · ·φ2k−1,M−1]
T .

Let
{

φi, j
}

be the system of Hermite wavelets, n=1, 2, · · · and m = 0, 1, · · · . For each fixed n, there is
a Hermite space generated by the elements of the sequence

{
φi, j

}
. That is, L

({
φi, j

})
= H2[0,1) is Banach

space.This article is associated to some essential theorems that can be seen in [45, 47].

4 Process of integration of matrix

The following are some of the Hermite wavelet basis at k = 1

φ1,0(x) = 2√
π
,

φ1,1(x) = 1√
π
(8x−4),

φ1,2(x) = 1√
π
(32x2 −32x+4),

φ1,3(x) = 1√
π
(128x3 −192x2 +48x+8),

φ1,4(x) = 1√
π
(512x4 −1024x3 +384x2 +128x−40),

φ1,5(x) =
1√
π
(2048x5 −5120x4 +2560x3 +1280x2 −800x+16),

φ1,6(x) =
1√
π
(8192x6 −24576x5 +15360x4 +10240x3 −9600x2 +384x+368),

φ1,7(x) =
1√
π
(32768x7 −114688x6 +86016x5 +71680x4 −89600x3 +5376x2 +10304x−928),

φ1,8(x) = 1√
π
(131072x8 −524288x7 +458752x6 +458752x5 −716800x4+

57344x3 +164864x2 −29696x−3296)
,

φ1,9(x) = 1√
π
(524288x9 −2359296x8 +2359296x7 +2752512x6 −5160960x5 +516096x4+

1978368x3 −534528x2 −118656x+21440)
,

φ1,10(x) = 1√
π
(2097152x10 −10485760x9 +11796480x8 +15728640x7 −34406400x6+

4128768x5 +19783680x4 −7127040x3 −2373120x2 +857600x+16448)
,

φ1,11(x) = 1√
π
(8388608x11 −46137344x10 +57671680x9 +86507520x8 −216268800x7+

30277632x6 +174096384x5 −78397440x4 −34805760x3 +18867200x2 ,
+723712x−461696)
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φ1,12(x) = 1√
π
(33554432x12 −201326592x11 +276824064x10 +461373440x9 −1297612800x8

+207618048x7 +1392771072x6 −752615424x5 −417669120x4 +301875200x3

+17369088x2 −22161408x+561536),

where, φ9(x) = [φ1,0(x), φ1,1(x), φ1,2(x), φ1,3(x), φ1,4(x), φ1,5(x), φ1,6(x), φ1,7(x), φ1,8(x)]T .
Apply the integration regarding with x and limits from 0 to x the above nine bases and explicit it as a linear
combination of Hermite wavelet basis as follows.

ˆ x

0
φ1,0(x) =

[ 1
2

1
4 0 0 0 0 0 0 0

]
φ9(x),

ˆ x

0
φ1,1(x) =

[ −1
4 0 1

8 0 0 0 0 0 0
]

φ9(x),

ˆ x

0
φ1,2(x) =

[ −1
3 0 0 1

12 0 0 0 0 0
]

φ9(x),

ˆ x

0
φ1,3(x) =

[ 5
4 0 0 0 1

16 0 0 0 0
]

φ9(x),

ˆ x

0
φ1,4(x) =

[ −2
5 0 0 0 0 1

20 0 0 0
]

φ9(x),

ˆ x

0
φ1,5(x) =

[ −23
3 0 0 0 0 0 1

24 0 0
]

φ9(x),

ˆ x

0
φ1,6(x) =

[ 116
7 0 0 0 0 0 0 1

28 0
]

φ9(x),

ˆ x

0
φ1,7(x) =

[ 103
2 0 0 0 0 0 0 0 1

32

]
φ9(x),

ˆ x

0
φ1,8(x) =

[ −2680
9 0 0 0 0 0 0 0 0

]
φ9(x)+

1
36

φ1,9 (x).

Hence, ˆ x

0
φ(x)dx = H9×9 φ9(x)+ φ̄9 (x),

where

H9×9 =



1
2

1
4 0 0 0 0 0 0 0

−1
4 0 1

8 0 0 0 0 0 0
−1
3 0 0 1

12 0 0 0 0 0
5
4 0 0 0 1

16 0 0 0 0
−2
5 0 0 0 0 1

20 0 0 0
−23

3 0 0 0 0 0 1
24 0 0

116
7 0 0 0 0 0 0 1

28 0
103

2 0 0 0 0 0 0 0 1
32

−2680
9 0 0 0 0 0 0 0 0


, φ9(x) =



0
0
0
0
0
0
0
0

1
36 φ1,9(x)


.

Implement the integration to the above nine bases is as follows
ˆ x

0

ˆ x

0
φ1,0(x)dxdx =

[ 3
16

1
8

1
32 0 0 0 0 0 0

]
φ9(x),

ˆ x

0

ˆ x

0
φ1,1(x)dxdx =

[ −1
6

−1
16 0 1

96 0 0 0 0 0
]

φ9(x),
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ˆ x

0

ˆ x

0
φ1,2(x)dxdx =

[ −1
16

−1
12 0 0 1

192 0 0 0 0
]

φ9(x),

ˆ x

0

ˆ x

0
φ1,3(x)dxdx =

[ 3
5

5
16 0 0 0 1

320 0 0 0
]

φ9(x),

ˆ x

0

ˆ x

0
φ1,4(x)dxdx =

[ −7
12

−1
10 0 0 0 0 1

480 0 0
]

φ9(x),

ˆ x

0

ˆ x

0
φ1,5(x)dxdx =

[ −22
7

−23
12 0 0 0 0 0 1

672 0
]

φ9(x),

ˆ x

0

ˆ x

0
φ1,6(x)dxdx =

[ 81
8

29
7 0 0 0 0 0 0 1

896

]
φ9(x),

ˆ x

0

ˆ x

0
φ1,7(x)dxdx =

[ 148
9

103
8 0 0 0 0 0 0 0

]
φ9(x)+

1
1152

φ1,9(x),

ˆ x

0

ˆ x

0
φ1,8(x)dxdx =

[ −773
5

−670
9 0 0 0 0 0 0 0

]
φ9(x)+

1
1440

φ1,10(x).

Hence, ˆ x

0

ˆ x

0
φ(x) dxdx = H ′

9×9 φ9(x)+ φ̄
′
9(x),

where

H ′
9×9 =



3
16

1
8

1
32 0 0 0 0 0 0

−1
6

−1
16 0 1

96 0 0 0 0 0
−1
16

−1
12 0 0 1

192 0 0 0 0
3
5

5
16 0 0 0 1

320 0 0 0
−7
12

−1
10 0 0 0 0 1

480 0 0
−22

7
−23
12 0 0 0 0 0 1

672 0
81
8

29
7 0 0 0 0 0 0 1

896
148

9
103

8 0 0 0 0 0 0 0
−773

5
−670

9 0 0 0 0 0 0 0


, φ ′

9(x) =



0
0
0
0
0
0
0

1
1152 φ1,9(x)
1

1440 φ1,10 (x)


.

Again employ the integration to the above nine bases is as follows
ˆ x

0

ˆ x

0

ˆ x

0
φ1,0(x)dxdxdx =

[ 5
96

3
64

1
64

1
384 0 0 0 0 0

]
φ9(x),

ˆ x

0

ˆ x

0

ˆ x

0
φ1,1(x)dxdxdx =

[ −7
128

−1
24

−1
128 0 1

1536 0 0 0 0
]

φ9(x),

ˆ x

0

ˆ x

0

ˆ x

0
φ1,2(x)dxdxdx =

[ −1
80

−1
64

−1
96 0 0 1

3840 0 0 0
]

φ9(x),

ˆ x

0

ˆ x

0

ˆ x

0
φ1,3(x)dxdxdx =

[ 19
96

3
20

5
128 0 0 0 1

7680 0 0
]

φ9(x),

ˆ x

0

ˆ x

0

ˆ x

0
φ1,4(x)dxdxdx =

[ −13
56

−7
48

−1
80 0 0 0 0 1

13440 0
]

φ9(x),

ˆ x

0

ˆ x

0

ˆ x

0
φ1,5(x)dxdxdx =

[ −65
64

−11
14

−23
96 0 0 0 0 0 1

21504

]
φ9(x),

ˆ x

0

ˆ x

0

ˆ x

0
φ1,6(x)dxdxdx =

[ 133
36

81
32

29
56 0 0 0 0 0 0

]
φ9(x)+

1
32256

φ1,9(x),
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ˆ x

0

ˆ x

0

ˆ x

0
φ1,7(x)dxdxdx =

[ 193
40

37
9

103
64 0 0 0 0 0 0

]
φ9(x)+

1
46080

φ1,10(x),

ˆ x

0

ˆ x

0

ˆ x

0
φ1,8(x)dxdxdx =

[ −1211
22

−773
20

−335
36 0 0 0 0 0 0

]
φ9(x)+

1
63360

φ1,11(x).

Hence, ˆ x

0

ˆ x

0

ˆ x

0
φ(x)dxdxdx = H ′′

9×9 φ9(x)+ φ̄
′′
9 (x),

where

H ′′
9×9 =



5
96

3
64

1
64

1
384 0 0 0 0 0

−7
128

−1
24

−1
128 0 1

1536 0 0 0 0
−1
80

−1
64

−1
96 0 0 1

3840 0 0 0
19
96

3
20

5
128 0 0 0 1

7680 0 0
−13
56

−7
48

−1
80 0 0 0 0 1

13440 0
−65
64

−11
14

−23
96 0 0 0 0 0 1

21504
133
36

81
32

29
56 0 0 0 0 0 0

193
40

37
9

103
64 0 0 0 0 0 0

−1211
22

−773
20

−335
36 0 0 0 0 0 0


,φ ′′

9 (x) =



0
0
0
0
0
0

1
32256 φ1,9(x)

1
46080 φ1,10(x)

1
63360 φ1,11(x)


.

5 Method of solution

The semi-infinite interval in [0,∞) in (9-11) can be transformed to [0,1] by using the coordinate transformation
χ = η

η∞
and the following change of variables

F (χ) =
f (η)

η∞

, Θ(χ) =
θ (η)

η∞

, /0 (χ) =
ϕ (η)

η∞

, (13)

where η∞ is an unknown finite boundary. Using the above transformations, (9-11) becomes(
1+

1
β

)
F ′′′ (χ)+η

2
∞F (χ)F ′′ (χ)−2η

2
∞F ′2 (χ)−η

2
∞MF ′ (χ) = 0, (14)

(
1+

4
3

R
)

Θ
′′
(χ)+Prη

2
∞F (χ)Θ

′ (χ)−Prη
2
∞F ′ (χ)Θ(χ)+PrHsη

2
∞Θ(χ) = 0, (15)

/0 ′′ (χ)+Scη
2
∞F (χ) /0′ (χ)−Scη

2
∞F ′ (χ) /0(χ)−2γη

2
∞ /0(χ) = 0. (16)

The transformed boundary conditions are,

F (0) =
S

η∞

, F ′ (0) = 1,F ′ (1) = 0; Θ(0) = /0 (0) =
1

η∞

, Θ(1) = /0 (1) = 0. (17)

5.1 The numerical HWM

Let’s assume,

F ′′′ (χ) = AT
φ . (18)

Integrate (18), with respect to χ limit varies form 0 toχ , we get,

F ′′ (χ) = F ′′ (0)+AT (Hφ + φ̄
)
. (19)
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Integrate (19), with respect to χ limit varies form 0 toχ , we get,

F ′ (χ) = F ′ (0)+χF ′′0)+AT (H ′
φ +φ ′

)
. (20)

Integrate (20), with respect toχlimit varies from 0 toχ , we get,

F (χ) = F (0)+χF ′ (0)+
χ2

2
F ′′0)+AT (H ′′

φ +φ ′′
)
, (21)

using boundary conditions (17), then the Eqs. (20) and (21) becomes,

F (χ) =
S

η∞

+χ +
χ2

2
F ′′0)+AT (H ′′

φ +φ ′′
)
, (22)

F ′′ (0) =−1−
(
H ′

φ +φ ′
)∣∣

χ=1 . (23)

Again,

Θ
′′ (χ) = BT

φ . (24)

Integrate (24), with respect toχlimit varies from 0 toχ , we get,

Θ
′ (χ) = Θ

′ (0)+BT (Hφ + φ̄
)
. (25)

Integrate (25), with respect toχlimit varies from 0 toχ , we get,

Θ(χ) = Θ(0)+χΘ
′
(0)+BT (H ′

φ +φ ′
)
, (26)

apply boundary conditions (17) then (26) becomes,

Θ
′ (0) =

−1
η∞

−BT (
H ′

φ +φ ′
)∣∣

χ=1 . (27)

Again,
/0 ′′ (χ) =CT

φ . (28)

Integrate (28), with respect toχlimit varies from 0 toχ , we get,

/0′ (χ) = /0′ (0)+CT (Hφ + φ̄
)
. (29)

Integrate (29), with respect toχlimit varies from 0 toχ , we get,

/0(χ) = /0(0)+χ /0′ (0)+CT (H ′
φ +φ ′

)
, (30)

apply boundary conditions (17) then (30) becomes,

/0′ (0) =
−1
η∞

−CT (
H ′

φ +φ ′
)∣∣

χ=1 . (31)

To collocate the equations and obtain the Hermite wavelet’s unknown coefficients. We can substitute F ′′′ (χ) ,

F ′′ (χ) ,F ′ (χ) , F (χ) ,Θ′′ (χ) ,Θ′ (χ) ,Θ(χ) , /0 ′′ (χ) , /0 ′ (χ) , /0 (χ) and F (χ) = f (η)
η∞

, Θ(χ) = θ(η)
η∞

, /0 (χ) =
ϕ(η)
η∞

in Eqs. (9-11). Utilize collocation steps usingχi =
2i−1
2N , where i = 1,2,3 · · ·N. This step involves selecting

suitable values for N based on the problem’s requirements. With the collocation points a collection of algebraic
equations is formed. The numerical solutions for Eqs. (9-11), subjected to the conditions specified in equation
(12), can be obtained using the calculated Hermite wavelet coefficients.
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6 Result and discussion

The HWM is applied to study the thermohaline convection in MHD Casson fluid over an exponentially
stretching sheet. The heat transfer coefficient −θ ′(0) results obtained from HWM are validated by comparing
with other published studies Pramanik [55]. As shown in Table 2, an excellent agreement is observed. This com-
parison confirms the suitability of HWM over other numerical techniques for solving highly nonlinear coupled
differential equations modeling such complex flow problems.

The fluid velocity decreases with increasing stress parameter as shown in Figures 2 and 4. Because, stress
is high, the fluid will resist deformation and flow less eagerly. Figure 3 shows that the velocity decreases with
increase in the values of the suction/blowing parameter is a result of the interaction between the fluid flow and
the applied suction or blowing mechanism. When a suction parameter is applied, it creates a negative pressure
gradient in the direction of the flow. This means that the pressure decreases in the direction of the flow. As a
result, the fluid is drawn into the system, and the velocity increases. However, as the suction parameter increases
beyond a certain point, the negative pressure gradient becomes more significant. This causes a stronger suction
effect, leading to a larger draw of fluid into the system. Consequently, the velocity profiles start to decrease
because more fluid is being drawn in, reducing the overall velocity within the system. In the case of blowing,
a positive pressure gradient is applied in the direction of the flow. This means that the pressure increases in
the direction of the flow. Initially, the blowing parameter causes an increase in pressure, which results in an
increase in velocity as fluid is pushed through the system. However, as the blowing parameter continues to
increase, the positive pressure gradient becomes more substantial. This increased pressure opposes the flow of
fluid, leading to a reduction in velocity. The stronger the blowing parameter, the greater the opposition to the
fluid flow, causing a decrease in velocity profiles.

In MHD flow, the interaction between the fluid and the magnetic field can lead to changes in the fluid
velocity. The specific effect of the magnetic flux on the velocity of the fluid depends on the direction and
strength of the magnetic field, as well as the conductivity of the fluid. In general, when the magnetic parameter
increases, which typically refers to an increase in the strength of the magnetic field, the velocity of the fluid tends
to decrease. This phenomenon is known as magnetohydrodynamic drag force. The decrease in fluid velocity can
be attributed to the Lorentz force, which arises due to the interaction between the magnetic field and the moving
charged particles in the fluid. The Lorentz force acts perpendicular to both the magnetic field and the direction
of fluid flow. As a result, it can oppose the fluid motion and lead to a decrease in velocity. Furthermore, the
Lorentz force can also induce fluid currents that circulate in specific patterns, which can further affect the fluid’s
velocity. These induced currents can create additional resistance to the fluid flow, causing a decrease in velocity
as we can observe in Figures 5 and 6.

In the context of temperature profile in Figure 7, increasing the Casson fluid parameter can lead to an
increase in the temperature of the fluid. This is because the higher yield stress or plastic viscosity results in a
more resistant or sluggish flow behavior. As the fluid requires a greater force to flow, more energy is dissipated
as heat due to the increased resistance and interaction between the fluid particles. This dissipated heat can
cause a increase in the temperature of the fluid, leading to an increase in the temperature profile. When the
suction/blowing parameter increases, it often leads to decreased temperature gradients as shown in Figure 8.
In the case of a heat source/sink in a fluid system, the heat added or removed affects the internal energy of
the fluid. When the temperature of the fluid increases, it implies that more heat is being added to the system,
resulting in an increase in the heat source/sink parameter (Figure 9). The magnetic fluid properties can be
influenced by temperature due to the effect of thermal energy on the fluid’s molecular structure. When the
temperature of a fluid increases seen in Figure 10, the thermal energy causes the molecules within the fluid to
move more vigorously, leading to an increase in their kinetic energy. This increased molecular motion can affect
the alignment and orientation of the fluid’s magnetic dipoles or particles. The temperature profile in a fluid can be
influenced by radiative heat transfer. Radiative heat transfer occurs when energy is transferred between objects
or regions through electromagnetic waves, without the need for direct physical contact. If there are temperature
differences within the fluid, radiation can transfer heat from hotter regions to cooler regions, leading to an
increase in the temperature profile (Figure 11). At higher Prandtl numbers, the thermal diffusivity becomes
relatively smaller compared to the momentum diffusivity. This means that heat is transported less efficiently
compared to momentum in the fluid. Consequently, the convective heat transfer becomes less dominant, and the
temperature profiles tend to decrease (Figure 12).

An increasing Schmidt number can lead to a decreasing concentration profile (Figure 13) due to the dom-
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inance of momentum transport over mass transport. The enhanced momentum diffusivity allows for more ef-
ficient mixing and dispersion of the fluid, which results in a reduction in the concentration gradients. As the
chemical reaction parameter increases, the reaction becomes more intense, leading to a more efficient consump-
tion or production of the species involved. This enhanced reaction activity tends to smoothen out concentration
gradients and results in a decreasing concentration profile (Figure 14). The Casson fluid and magnetic field
parameters effectively reduce the fluid motion, causing the concentration to increase across the boundary layer
for improved mass transfer as shown in Figures 15 and 16.

Fig. 1 Physical configuration.

Fig. 2 Influence of β on f ′(η).
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Fig. 3 Influence of S on f ′(η).

Fig. 4 Influence of β on f (η).
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Fig. 5 Influence of M on f (η).

Fig. 6 Influence of M on f ′(η).
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Fig. 7 Influence of β on θ(η).

Fig. 8 Influence of S on θ(η).
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Fig. 9 Influence of Hs on θ(η).

Fig. 10 Influence of M on θ(η).
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Fig. 11 Influence of R on θ(η).

Fig. 12 Influence of Pr on θ(η).
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Fig. 13 Influence of Sc on ϕ(η).

Fig. 14 Influence of γ on ϕ(η).
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Fig. 15 Influence of β on ϕ(η).

Fig. 16 Influence of M on ϕ(η).

https://www.sciendo.com


Thermohaline convection in MHD Casson fluid over an exponentially stretching sheet 219

Table 2 Comparison of our results with Pramanik [55].

Pr Bidin and Nazar [56] HWM with S=M=Hs=Sc=γ=0 Pramanik [55] Ishak [57]
1 0.9547 0.9547 0.9547 0.9548
2 1.4714 1.4714 1.4714 1.4715
3 1.8691 1.8691 1.8691 1.8691
5 - 2.5001 2.5001 2.5001

10 - 3.6603 3.6603 3.6604

7 Conclusion

The paper applies Hermite wavelet numerical method to solve the governing equations of modeling MHD
double diffusive convection in a non-Newtonian fluid (Casson fluid) over an exponentially stretching sheet. The
HWM is utilized to handle the highly nonlinear differential equations characterizing the electrically conducting,
non-uniform heat source/sink and exponentially stretching sheet problem. We solved the problem by using
Mathematica 13.0 version on a 2 G.B. ram sized desktop. Results demonstrated the capability of HWM to
accurately solve this complex flow scenario, with solutions closely matching numerical data.

The noteworthy findings obtained from this research can be summarized as follows:

• The fluid velocity decreases with increase in the strength of the magnetic field.

• The temperature of the fluid increases with increasing heat source.

• The temperature profiles decreases with increasing Prandtl number.

• The Schmidt number and chemical reaction parameter are increases leads to a decrease in the concentra-
tion gradients of the fluid.

Future work will consider a complex non-Newtonian fluid flow problems analysed in computational fluid dy-
namics.
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