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Abstract
Machine translation (MT) is an important use case in natural language 
processing (NLP) that converts a source language to a target language 
automatically. Modern intelligent system or artificial intelligence (AI) 
uses a machine learning approach and the machine has acquired 
learning ability using datasets. Nowadays, in the MT domain, the 
neural machine translation (NMT) system has almost replaced the 
statistical machine translation (SMT) system. The NMT systems use 
a deep learning framework in their implementation. To achieve higher 
accuracy during the training of the NMT model, extensive hyper-
parameter tuning is required. The paper highlights the significance of 
hyper-parameter tuning in various machine learning algorithms. And 
as a case study, in-house experimentation was conducted on a low-
resource English–Bangla language pair by designing an NMT system 
and the significance of various hyper-parameter optimizations was 
analyzed while evaluating its performance with an automatic metric 
BLEU. The BLEU scores obtained for the first, second, and third 
randomly picked test sentences are 4.1, 3.2, and 3.01, respectively.
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1. Introduction

NMT uses a deep neural network-based approach to 
translate a source language to a target language with 
the help of a trained corpus. The NMT has replaced 
the SMT by applying a neural-based approach to its 
language model design [1, 2]. In MT, there are two 
important components: the language model and the 
translation model. SMT uses a statistically based 
hidden Markov model (HMM) to design its language 
model component [3]. A phrase-based SMT model is 
better than a word-based SMT model.

NMT solves many problems that were pres-
ent in SMT and its earlier versions, such as dic-
tionary-based and rule-based approaches [4]. The 
NMT got its recognition gradually when Google first 

developed an NMT model that used an end-to-end 
approach where a multilayered LSTM model was 
used that mapped the source component to a fixed-
sized vector representation. Another deep LSTM 
model decoded this vector to produce the target 
language [5–7].

There are several other variants of NMT mod-
els proposed by various researchers; for instance, 
Google developed another refined model that elim-
inates this fixed-sized vector bottleneck problem 
by a soft search technique that considers the en-
tire portion of the source representation that is es-
sential for the target representation. Researchers 
have conducted many surveys and reviews of the 
MT domain and captured in detail its paradigm 
shift [8, 9].
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All these NMT models require hyper-parameter 
tuning to generate better results [10–12]. However, 
tuning hyper-parameters is not an easy job due to 
the high training time of deep learning models [13]. 
There are several techniques for hyper-parameter 
tuning. The hyper-parameters are actual models’ 
parameters based on their architectural complex-
ity, such as the number of hidden layers, learning 
rate, etc. These hyper-parameters are tuned before 
training any ML models [14]. When the models are 
being trained with an initial set of hyper-parame-
ters, only the optimal set of parameters is com-
puted (learned). Basic ML models such as logistic 
regression have regularization (L1, L2) as their hy-
per-parameters; support vector machine (SVM) has 
a kernel and penalty parameter as its hyper-param-
eter, and K-nearest neighbor has value K as its hy-
per-parameter. For advanced models such as arti-
ficial neural networks (ANN), learning rate, dropout, 
and activation function are some of the important 
hyper-parameters. The search space is the entire 
volume of hyper-parameters and, out of that, dif-
ferent techniques are applied to select those hy-
per-parameter values from their given range of di-
mensions so that the most optimal model can be 
designed that can return maximum accuracy and 
minimum error. There are various basic searching 
strategies, such as grid search and random search, 
that are widely used in ML models. Some of the 
advanced searching strategies, such as Bayesian 
optimization and evolutionary optimization, are also 
helpful in solving complex ML use cases. These 
searching strategies with hyper-parameters to train 
a model to achieve maximum accuracy with its new 
set of trained parameters are called hyper-param-
eter optimization techniques. However, in NMT, 
apart from hyper-parameter optimization, there 
are other approaches such as linguistic features, 
representation of abstract meaning on semantic 
graphs, and various other novel approaches used 
by researchers to improve the performance of NMT 
systems, specifically when using low-resource lan-
guage pairs [15–18].
The aims of this paper are to:

•	 explore	 various	 strategies	 toward	 hyper- 
parameter tuning in various ML models;

•	 provide	 a	 comprehensive	 review	 of	 the	 impor-
tance of hyper-parameter tuning in achieving 
various state-of-the-art results in NMT sys-
tems; and

•	 implement	 a	 case	 study	 to	 evaluate	 an	 NMT	
model on English to Bangla parallel corpus and 

evaluate its performance by using  automatic 
metric BLEU and highlight a few useful 
conclusions.

The remainder of the paper is organized as follows: 
Section 2 briefly discusses some NMT models. 
Section 3 reports some previous work on NMT and, 
based on various hyper-parameter selections, their 
performance on the automatic metric. Section 4 brief-
ly describes the methodology. Section 5 covers our 
experimentation on the MNIST data set to validate the 
hyper-parameter tuning and its effect on the perfor-
mance of the ML model. Furthermore, in this section, 
we also explored the performance of an NMT system 
with low-resource language as a case study. Section 
6 presents some analysis of the results and discus-
sion. Finally, Section 7 has some useful conclusions 
drawn from the overall research and provides future 
directions.

2. State-of-the-art NMT Models

NMT uses a neural network in the language model 
and is known as a neural language model. Unlike the 
traditional SMT systems where language and trans-
lation models need to be tuned separately, NMT in-
tegrates both the language model (a neural language 
model) and the translation model (responsible for 
translating the source to target), thereby easing its 
implementation compared to SMT models. The arti-
ficial neural network (ANN) is the basic building block 
of NMT.

ANN has an input layer, a hidden layer, and an 
output layer. In the optimization problem, specifically 
in gradient-based optimization, the gradient is consid-
ered one of the important parameter estimators that 
is used to compute the parameters of the network 
under different iterations [19, 20]. In the network, we 
have to search for the suitable values of weights so 
that we can reduce the error function, which is noth-
ing but the difference between the actual and desired 
output. The basics of feedforward neural networks 
are primarily based on the computation of the deriva-
tives of the error function [21, 22].

In a simple feedforward neural network, each 
unit in the network computes a weighted sum of the 
product of inputs, where jiw  is the weight associated 
with that connection and is the input to the unit j, as 
represented in Figure 1. Its mathematical representa-
tion is as follows:

ja  = ∑ ji i
i

w z  (1)
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The sum represented in Eq. (1) is transformed with 
the help of non-linear activation function g(.) to get Zj 
to unit j, as represented below:

jz =g ( )ja  (2)

We can represent the error function as the sum 
of all the patterns in the training data set. Each error 
pattern can be represented separately as follows:

E = ∑ n

n

E  (3)

In the above expression, E is the error and n rep-
resents labels of the pattern, where nE  can be differ-
entiable with respect to output y and hence can be 
represented as follows:

E = E n ( y1........., yc ) (4)

Here, the primary objective of the network is 
to compute the derivative of the error function with 
respect to the weights and biases of the given  
network.

∂
∂

n

ji

E
w

 = 
∂
∂

n

j

E
a

 
∂

∂
j

ji

a

w
 (5)

Now, using a new notation,

∂ j ≡ 
∂
∂

n

j

E
a

 (6)

Here, ∂ s are the errors, and using Eq. (1), we can 
write,

∂

∂
j

ji

a

w
 = iz  (7)

Substituting Eqs. (6) and (7) into Eq. (5), we finally 
obtain,

∂
∂

n

ji

E
w

 =∂ j iz  (8)

With the use of the above formulas, the final back 
propagation formulae can be represented as follows:

∂ j = ( ) ∂∑´
j kj k

k

g a w  (9)

Hence, since we know the value of one of the out-
put units, we can easily compute the values of all hid-
den units by recursively applying the above formulae 
in a feedforward neural network.

ANN optimization technique general rules: We 
start training our network with some randomly chosen 
weight values. It has already been found that optimi-
zation algorithms where the error function decreases 
monotonically often reach local minima. It is therefore 
essential to select a carefully appropriate set of ini-
tial weights that can eventually produce a good set of 
weights that can lead to faster training of the overall 
network. Even stochastic algorithms such as gradient 
descent are very sensitive toward initial weight val-
ues. In the majority of the cases, the initial weights are 
randomly selected with small values. However, if the 
initial weights are too small, then the sigmoidal acti-
vation function would be almost linear, which results 
in a longer training time [21, 22]. There are various hy-
per-parameter searching strategies used in ML and 
deep learning models. Some of the most common-
ly used searching strategies are grid search, manu-
al search, and random search. A nice comparative 
study of different types of hyper-parameter searching 
strategies is presented by the researchers Bergstra et 
al. in the paper Random Search for Hyper-parameter 
Optimization [23].

When the hidden layers are more than two, we 
consider the network a deep neural network [24]. 
Deep neural networks are widely exploited in NMT. 

Figure 1: Schematic illustration of 
computation of ∂ j for hidden unit j with 
the help of back propagation.
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Deep neural networks are a very powerful machine 
learning model as far as accuracy is concerned. 
However, in terms of interpretability, these models 
(ANN, deep learning) are difficult to interpret com-
pared to other classifiers (decision tree, SVM, etc.) 
and regression models (Fig. 2). In Figure 2, the X-axis 
represents the measure of accuracy, while the Y-axis 
represents the measure of interpretability. In terms of 
accuracy, deep learning models are more accurate 
than basic machine learning models.

The performance of various machine learning 
models is measured based on certain parameters 
such as accuracy, speed, robustness, scalabil-
ity, and interpretability. As mentioned before, deep 
learning models are the best among other machine 
learning models in terms of accuracy, but these 
models are difficult to interpret. One of the major 
challenges of a deep learning model is while it pro-
cesses the sequence of data. Deep learning has an 
essential role in solving NLP applications. As stated 
before, in designing NMT’s language model, deep 
learning has a very significant role [25]. Deep learn-
ing models try to convert the sequence of data into 
a fixed-size vector representation [26]. These NMT 
models are encoder–decoder models. An encod-
er converts the variable-length input sentence to 
a fixed-length vector representation. The decoder 
takes this vector representation and converts it to 
a variable-length target representation. One of the 
simplest NMT models is sequence-to-to-sequence. 
Because the size of the NMT source and target data 
is not fixed, sequence-to-to-sequence models have 

difficulty handling such scenarios. There are two ap-
proaches proposed for handling variable-length se-
quences: recurrent neural networks (RNN) and gat-
ed recursive convolutional neural networks (GRCN). 
One of the simplest representations of the recurrent 
language model is shown in Figure 3. In the dia-
gram, the input layer is represented with u, which is 
the weight matrix from input to hidden layer s; v is 
the weight matrix from the hidden layer to the out-
put layer. If we ignore the recurrent weight w, it is a 
bigram neural network language model. The output 
layer is represented with y, and the hidden layer is 
represented with h.

A few terms related to RNN’s language model can 
be mathematically represented as follows:

Hidden layer s (t)

( )s t  = ( ) ( )( + −. . 1 )f u x t w s t  (10)

Output layer y (t) and g (.) is the activation function 
applied

( )y t  = ( )( )g vs t  (11)

( )f z . = 1/1+ e-z (12)

( )f z  is the sigmoid activation function, and the 
range varies from 0 to 1.

( )mg z = ∑
 

zm

zk

k

e
e  (13)

Figure 2: The accuracy of deep learning models is higher, but their interpretability is low 
compared to other ML models.
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g (z) is the soft max activation function. The pur-
pose of the soft max activation function is to ensure 
that all outputs are greater than zero, and that their 
sum is one.

RNN suffers from vanishing gradient and explod-
ing gradient problems when dealing with longer sen-
tence sizes. Hence, another popular approach, long 
short-term memory (LSTM), was introduced to over-
come this problem. One of the major advantages of 
using the LSTM model is its ability to deal with long-
term temporal dependency. NMT has the challenge 
of handling rare words. Researchers have also tried 
to address this problem and achieved a satisfactory 
result as well [16].

As stated before, although the LSTM model has 
the ability to capture long-term dependencies, in 
some instances, it becomes forgetful and is unable 
to generate the correct translations. Capturing the 
context is also essential in NLP. One of the most 
popular and widely used NMT approaches is the 
attention-based model. Attention-based models are 
suitable for handling longer sentences. The atten-
tion-based model focuses on different parts of the 
source sentence and tries to capture the most im-
portant word, which decides the context of the entire 
sentence. In Figure 3, Bahdanau et al.’s bidirectional 
RNNs are used for annotating text [27]. The forward 
RNNs are used to compute the input sequence in the 

order in which it is represented in the input, i.e., from 
X1 to XT and calculate all forward hidden states from 
h1 to hT, and in a similar manner, backward RNNs are 
used to perform the same operation in the backward 
direction. Furthermore, the annotation of each word 
is explored with the help of concatenating forward 
and backward hidden states.

RNN is adequately capable of representing recent 
word annotations of a hidden state hj that contains 
the overall summaries of all preceding and succeed-
ing words. Finally, the computed sequence of anno-
tations and alignment will be used to compute the 
context vector. In Bahdanau et al.’s model [27], the 
context vector is computed with the help of embed-
ding all input words and representing them in hid-
den states. This is done by taking a weighted sum 
of all hidden states with the help of the following 
expression:

ic  = α
=
∑

1

xT

ij j
j

h  (14)

where ic  is the context vector.
Weighted sums are computed with the help of

α ij = 
( )

( )
=∑ 1

x

ij
T

ikk

exp e

exp e
 (15)

Figure 3: Schematic representation of bidirectional RNN (Source: Bahdanau et al. [26]).

 



6

Application of hyper-parameter tuning in neural machine translation: Datta et al.

This attention mechanism can be global or local. 
The global attention mechanism was originally intro-
duced by Loung et al. [28]. In global attention (Fig. 4), 
when computing the context vector ct, it considers 
all hidden states that are available on the encoder 
side. In the global attention model, the variable-length 
alignment vector (at) is computed from the target 
side’s current hidden state (ht) to each source-side 
hidden state (hs) as follows: at (s)= align (ht, hs). In a 
nutshell, global attention requires a lot of computa-
tion as it considers all hidden states. Hence, as the 
input size increases, the computation also increases. 
To overcome this problem, local attention is the solu-
tion (Fig. 5). In local attention, only a subset of hidden 
states is considered.

Another recent and popular approach is the 
transformer-based model (Fig. 6). Transformer mod-
els are faster than traditional RNN and convolutional 
models during training [29]. The transformer model’s 
Bidirectional Encoder Representation of Transformers 
(BERT) has shown significant performance improve-
ment in large-scale language modeling applications. 

BERT’s pretrained model can be used to model 
several state-of-the-art NLP cases by adding and 
fine-tuning one extra output layer [30]. Some of the 
major drawbacks of RNN, such as its inherent se-
quential nature, i.e., one word at a timestamp, make 
it slow and inefficient in making a decision. On the 
other hand, the transformer model replaces this se-
quence nature by parallelization, i.e., it considers 
all sets of input sequences with their attention in a 
parallel manner, thus making it a fast and accurate 
prediction. The transformer model considers all in-
puts and their corresponding output sequences to 
be produced in an O (1) operation with the help of its 
powerful attention mechanism. Transformer models 
are encoder–decoder-based, have a strong attention 
mechanism, and replace the need for sluggish RNN, 
thereby making them extremely suitable for NMT. The 
attention mechanism used in the transformer or any 
other deep learning model can be thought of as a 
weight vector that decides, out of several words in 
a sequence/sentence, which one is more important 
and is responsible for deciding the context of the en-
tire representation. The attention mechanism scans 
the entire sequence and tries to capture that word, 
and the highest weightage is assigned to it. The 
transformer encoder part, by default, has six layers. 
The decoder side also has six layers. The six lay-
ers are further divided into two sublayers, viz., mul-
ti-head self-attention mechanism and fully connected 
feedforward neural network. In the encoder side, at 
the very first instance, source-side input tokens are 
first embedded and then passed on to the position-
al encoder layer. The positional encoder is essential 
in transformer architecture since it has no recurrent 
and convolutional units; the language model scans 
the entire sequence of words, and the context will be 
decided based on the words. Hence, its position find-
ing is essential. In the transformer model, various sine 
and cosine operations are performed to find the po-
sition of words. After this, the embedded vectors/to-
kens are fed to the self-attention layer. By default, the 
results of the self-attention layer are passed through 
a linear layer, and some dropout operations are also 
carried out before feeding into the subsequent layers. 
The attention mechanism in transformer architecture 
is multi-head attention. If the number of heads is n, 
this implies n numbers of heads are working simulta-
neously on the different subspaces of the entire text 
and are thereby able to capture better context. There 
is another concept in transformer architecture, i.e., 
self-attention. Self-attention is the process by which 
the entire string is scanned word by word, and the 
attention mechanism also checks for its surrounding 

Figure 4: RNN with global attention.

Figure 5: RNN with local attention.
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Figure 6: Transformer model.

Figure 7: The generative adversarial network (GAN) model in the NMT case.
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words to better understand the present word. On the 
other hand, the decoder predicts the target language 
with the help of state vector representation.

One of the new paradigms in the deep learning 
framework is generative adversarial network (GAN) 
[31]. In GAN, there are two neural networks that com-
pete. One network is a generator, and the other is 
a discriminator. The generator generates plausible 
data. It is a model responsible for generating plau-
sible examples of data in the given domain space 
with a fixed-length random vector with a Gaussian 
distribution. The discriminator tries to discriminate be-
tween real data and fakes (generated by generators). 
GAN is now widely used by researchers in a variety of 
NLP applications [32–35]. Figure 7 represents GAN in 
NMT implementation. Here, the adversary network (D) 
is a discriminator, which gets its input from the gen-
erator, which is our NMT model. The discriminator re-
ceives the following inputs: candidate translation from 
the generator (NMT model), reference translation, and 
source text. The discriminator tries to identify only 
the correct translation based on the comparison be-
tween the candidate and its reference translation for 
any given input source sentence. This comparison 
generates either a reward (if it matches the reference) 
or an error signal (if there is a mismatch). This error 
signal will be treated as feedback, and the NMT mod-
el can be further trained so that going forward, it can 
generate the correct translation.

3.  Related work on NMT with 
tuned parameters for Perfor-
mance optimization

There are a number of hyper-parameters under dif-
ferent machine learning algorithms. In deep learning, 
there are many hyper-parameters compared to oth-
er machine learning algorithms. The hyper-parame-
ters in deep learning are the design parameters for 
the model, which include the number of hidden lay-
ers, the activation function, the optimizer, etc. Hyper-
parameters are variables that we need to set to some 

initial default values before training. We have summa-
rized a few hyper-parameters in Table 1. Researchers 
have focused on automating the hyper-parameter op-
timization (HPO) process, but very little work is done 
in the NMT space due to its large number of variants.

Merity et al. [36], in the NMT discussed in their 
paper, proposed a strategy involving dropping the 
weights in LSTM and introducing a new variant of 
averaged stochastic gradient along with some other 
regularizing strategies. They achieved excellent word 
level perplexities in their datasets. Liu et al.’s research 
[37] uses a deep transformer model with 60 encoder 
layers and 12 decoder layers, allowing a BLEU score 
enhancement by 2.5 to be achieved on its baseline 
model with six layers. The details of the same are 
provided in a summarized form in Tables 2 and 3. 
Zhang and Duh [38] proposed a look-up-based ap-
proach that may accelerate the use of automatic 
hyper-parameter optimization in the NMT domain. 
The look-up-based approach uses a library of pre-
trained models with a wider range of hyper-param-
eters, and such an arrangement facilitates the fast, 
efficient, and economical execution of the HPO task 
in the NMT research space. There are also proposals 
for automatically evaluating metrics for performance 
evaluation. Table 4 reports the details of the hyper-pa-
rameters used to tune the different models, with their 

Table 1. Generic hyper-parameters in 
NMT-based model.
Model Type of 

MT
Hyper-parameters

Deep 
learning 
models

NMT Hidden layers, learning 
rate, activation function, 
epochs, batch size, dropout, 
regularization

Table 2. WMT-14 English–French test 
results showed that 60L-12L ADMIN 
outperforms the default base model 
6L-6L in different automatic metrics 
(Liu et al. [35]).

Model Param TER METEOR BLEU
6L-6L Default 67M 42.2 60.5 41.3
6L-6L ADMIN 67M 41.8 60.7 41.5
60L-12LDefault 262M Diverge Diverge Diverge
60L-12LADMIN 262M 40.3 62.4 43.8

Table 3. WMT-14 English–German test 
results show that ADMIN outperforms 
the default base model 6L-6L in different 
automatic metrics (Liu et al. [35]).

Model Param TER METEOR BLEU
6L-6L Default 61M 54.4 46.6 27.6

6L-6L ADMIN 61M 54.1 46.7 27.7

60L-12LDefault 256M Diverge Diverge Diverge

60L-12LADMIN 256M 51.8 48.3 30.1
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Table 4. Models per data set and their best BLEU scores and respective 
hyper-parameter configurations (Zhang and Duh [36]).
Data set No. of 

models
Best 
BLEU

BPE No. of 
layers

No. of 
embedding

No. of 
hidden 
layers

No. of 
attention 

heads

Init-lr

Chinese–English 118 14.66 30k 4 512 1024 16 3e-4

Russian–English 176 20.23 10k 4 256 2048 8 3e-4

Japanese–English 150 16.41 30k 4 512 2048 8 3e-4

English–Japanese 168 20.74 10k 4 1024 2048 8 3e-4

Swahili–English 767 26.09 1k 2 256 1024 8 6e-4

Somali–English 604 11.23 8k 2 512 1024 8 3e-4

Table 5. MT models for different language pairs in a GPU-based single-node and 
multiple-node environment with a wider range of hyper-parameters and their BLEU 
scores (Lim et al. [11]).

Cell
Learning 

rate
roen
P100

roen
V100

enro
P100

enro
V100

deen
P100

deen
V100

ende
P100

ende
V100

GRU le-3 35.53 35.43 19.19 19.28 28.00 27.84 20.43 20.61

5e-3 34.37 34.05 19.07 19.16 26.05 22.16 N/A 19.01

le-4 35.47 35.46 19.45 19.49 27.37 27.81 Dnf 21.41

LSTM le-3 34.27 35.61 19.29 19.64 28.62 28.83 21.70 21.69

5e-3 35.05 34.99 19.48 19.43 N/A 24.36 18.53 18.01

le-4 35.41 35.28 19.43 19.48 N/A 28.50 Dnf Dnf

GRU le-3 34.22 34.17 19.42 19.43 33.03 32.55 26.55 26.85

5e-3 33.13 32.74 19.31 18.97 31.04 26.76 N/A 26.02

le-4 33.67 34.44 18.98 19.69 33.15 33.12 Dnf 28.43

LSTM le-3 33.10 33.95 19.56 19.08 33.10 33.89 28.79 28.84

5e-3 33.10 33.52 19.13 19.51 N/A 29.16 24.12 24.12

le-4 33.29 32.92 19.14 19.23 N/A 33.44 Dnf Dnf

Table 6. NMT models with some other range of learning rate (hyper-parameter) 
(Lim et al. [11]).

Cell
Learning 

rate
roen
P100

roen
t

roen
V100

roen
t

deen
P100

deen
t

deen
V100

deen
t

GRU 0.0 34.47 6:29 34.47 4:43 32.29 9:48 31.61 6:15

0.2 35.53 8:48 35.43 6:21 33.03 18:47 32.55 19:40

0.3 35.36 12:21 35.15 7:28 31.36 10:14 31.50 9:33

0.5 34.50 12:20 34.67 17:18 29.64 11:09 30.21 11.09

LSTM 0.0 34.84 6:29 34.65 4:46 32.84 12:17 32.88 7:37

0.2 34.27 8:10 35.61 6:34 33.10 16:33 33.89 13:39

0.3 35.67 9:56 35.37 11:29 33.45 20.02 33.51 15:51

0.5 34.50 15:13 34.33 12:45 32.67 20.02 32.20 13.03
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performances being measured with the automatic 
metric bilingual evaluation understudy (BLEU).

Lim et al. [11] trained a language model of their 
NMT system to explore which set of hyper-parame-
ters is able to produce better performance in terms 
of convergence rate and translation accuracy to 
produce high-performing MT systems. They tested 
their models in a GPU-based single-node and multi-
ple-node environment. Translation tasks were carried 
out for English ⇒ Romanian, Romanian ⇒ English, 
English ⇒ German, and German ⇒ English. The 
details of their models and the range of different 
hyper-parameters along with the automatic BLEU 
score are reported in Tables 5 and 6.

There is an interesting paper on NMT where the 
authors achieved a significant speedup in the train-
ing time of the NMT model. Generally, NMT requires 
more training time when the corpus size is large. 
Furthermore, when the corpus size is small, NMT 
does not produce better results. Hence, this always 
remains a challenge in NMT due to its long training 

time. However, in this research, the authors not only 
achieved less training time for their model but were 
also able to get better performance compared to 
some state-of-the-art models for German-to-English 
and English-to-French translation tasks. In their NMT 
model, they used a tan hyperbolic activation function. 
The activation function is one of the important hy-
per-parameters in the NMT model. This tan hyperbol-
ic activation function has the ability to learn the future 
and the past context. This important feature helps 
train the model faster and achieve better results [39].

4. Methodology

When we train our model, first we need to select the 
default set of hyper-parameters and using those hy-
per-parameters, our NMT model was trained. Then, 
based on these hyper-parameters, our model’s per-
formance was evaluated (Fig. 8). Based on the model 
performance, another set of hyper-parameters was 
explored and the performance was evaluated. The 

Figure 8: Typical machine learning model building steps.
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process would continue until we were satisfied with 
the model’s performance. In ML, this hyper-param-
eter tuning greatly affects the model’s performance 
in various ways. By changing the hyper-parameter 
configuration, we can restrict our model from overfit-
ting and underfitting. Out of many hyper-parameters, 
learning rate and optimizers are a few.

We have validated our work with some basic and 
advanced ML algorithms with their default and two 
popular approaches, namely grid and random search 
for hyper-parameter tuning. Results are compared 
based on the default set of hyper-parameters and 
then by applying grid and random search approach-
es. We have also used the MNIST dataset for our hy-
per-parameter optimization experimentation.

In our NMT design, the overall working method-
ology of the model is explained with the help of the 
following diagram (Figure 9):

Inputs: For the given input, which is English in our 
case, each word in the input sequence will be encod-
ed into one hot vector.

Embedded layers: In the embedding layers, words 
are turned into vectors, and the size of the vectors 
now depends on the size of the vocabulary, or the 
number of words in that vector representation that 
have the same meaning or domain.

Recurrent layers: In the recurrent layer, the context 
of the sentence from the previous layer will be applied 
to the current layer and so on.

Dense layers: These are fully connected layers 
used in the decoder side to decode the encoded in-
put sequence.

Outputs: The outputs are again a sequence of 
vectors and these vectors will be mapped to the cor-
responding Bengali word to generate the final trans-
lated output.

In the encoder part, we have an RNN model. 
Because of RNN’s long-term dependency problem, 

LSTM, GRU, bidirectional LSTM, or any advanced 
architecture, such as a transformer model, is wide-
ly used. Similarly, on the decoder side, we also have 
RNN or its other advanced variants that are used 
along with the attention model to have better accura-
cy during translation. Beam search is used to select 
the best target language representation for the corre-
sponding source language (Fig. 10).

For NMT evaluation, we have used an automatic 
evaluation metric, i.e., BLEU [40]. BLEU takes n-gram 
candidate representation and n-gram reference rep-
resentation. Apart from BLEU, there are other popular 
automatic evaluation metrics used in NMT evaluation 
these days [41]. Considering these two representa-
tions, BLEU then tries to count the total number of 
matches. The range of the BLUE metric is from 0 to 1. 
The highest score is 1, and the lowest is 0.

5. Experimental Setup

We have experimented with 70,000 grayscale 
images from the MNIST data set consisting of 
hand-written digits ranging from 0 to 9. We have 
2D images of resolution 28 × 28. The task is to 
classify the unseen image of any digit. We have 
used 60,000 images for training and 10,000 imag-
es for testing. We used Keras’s sequential model 
with densely connected layers. We fixed 512 units 
in our layer and the activation function ReLU. In 
the output layer, we have used the softmax func-
tion. We had 10 possible categories in the output 
layer, with the result that there would be 10 units 
in the output layer. To evaluate how well our model 
performs during training, we used the loss func-
tion as categorical entropy.

Our model is sequential. The total number of pa-
rameters was 669,706, the total number of trainable 
parameters was 669,706, and the total number of un-
trainable parameters was 0. We ran our model for five 
epochs, and within five epochs we got close to 100% 

Figure 9: Schematic representation of 
the NMT model.

Figure 10: Encoder–decoder-based 
NMT model.
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accuracy (Table 7). The graphical representation of 
this is shown in Figure 11.

We have run the same experiment for 10 epochs 
and the accuracies are as follows (Table 8):

We have observed (Table 8 and Figure 12) that 
there is a slight increase in training and validation ac-
curacy with increasing the number of epochs.

We then reduced the number of units in the 

different layers from 512 to 100, and report the 
 resultant training and validation accuracy in Table 9. 
A graphical illustration of the same is shown in 
Figure 13. We can see that the training and validation 
accuracy under different epochs was reduced a little 
bit. However, in the last epoch, the validation accura-
cy was marginally high. Reducing the number of units 
may cause an underfitting problem.

Table 7. Training and validation accuracy 
of our model with five epochs.
Epochs Training 

accuracy
Validation 
accuracy

1 0.9426 0.9698
2 0.9730 0.9708
3 0.9792 0.9776
4 0.9829 0.9726
5 0.9859 0.9762

Table 8. Training and validation accuracy 
of our model with a higher number of 
epochs.
Epochs Training 

accuracy
Validation 
accuracy

1 0.9431 0.9606

2 0.9742 0.9729

3 0.9796 0.9777

4 0.9835 0.9748

5 0.9865 0.9794

6 0.9872 0.9802

7 0.9896 0.9830

8 0.9898 0.9782

9 0.9916 0.9764

10 0.9924 0.9799

0.94

0.95

0.96

0.97

0.98

0.99

0 1 2 3 4 5 6
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cu
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Training and Valida�on Accuracy

Training accuracy Valida�on accuracy

Figure 11: Training and validation 
accuracy with five epochs.

Figure 12: There is a slight improvement 
in training and validation accuracy 
with increasing the number of epochs 
up to 10.

Figure 13: Graphical representation of 
training and validation accuracy with 
reduced units in different layers and up 
to five epochs.
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Table 9. Training and validation accuracy 
with 100 units in different layers with five 
epochs.
Epochs Training 

accuracy
Validation 
accuracy

1 0.9289 0.9584

2 0.9674 0.9671

3 0.9758 0.9734

4 0.9800 0.9739

5 0.9836 0.9772

1 2 3 4 5
Training accuracy 0.9289 0.9674 0.9758 0.98 0.9836
Valida�on Accuracy 0.9584 0.9671 0.9734 0.9739 0.9772

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

Ac
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cy

Epochs upto 5

Training vs Valida�on Accuracy 

Training accuracy Valida�on Accuracy
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We have now increased the number of epochs 
employed and kept the number of units under dif-
ferent layers the same, i.e., 100 units. Now our total 
parameter is 89,610, the total trainable parameter is 
89,610, and the non-trainable parameter is 0. The 
resultant training and validation accuracy is reported 
in Table 10 and the associated graphical representa-
tion in Figure 14. We can observe that the training 

and validation accuracy increased marginally with in-
creasing the number of epochs.

Our second experiment was on NMT. In our ex-
periment, we used the low-resource language pair 
English to Bangla. Bangla is mostly spoken in India 
and Bangladesh. There are machine translation 
systems developed for various Indian languages 
[42]. We used the tourism dataset, taken from TDIL 
(https://tdil.meity.gov.in/). Statistics and a snapshot 
of the corpus are shown in Table 11 and Figure 15, 
respectively.

We used the bidirectional LSTM model. We 
adopted the BiLSTM network-based technique and 
the design is depicted in Figure 15. It is made up of 
an encoder and a decoder. The encoder learns to 
turn the input source text with embeddings into a 
hot vector. The decoder learns to translate this vec-
tor to generate the output translation throughout the 
training phase. BiLSTMs are used in the encoder 
and decoder. LSTMs are a kind of recurrent neural 

Table 10. Training and validation 
accuracy with 100 units in different layers 
with 10 epochs.
Epochs Training 

accuracy
Validation 
accuracy

1 0.9293 0.9631

2 0.9674 0.9730

3 0.9763 0.9751

4 0.9807 0.9729

5 0.9829 0.9724

6 0.9852 0.9780

7 0.9882 0.9773

8 0.9890 0.9756

9 0.9908 0.9784

10 0.9913 0.9793

1 2 3 4 5 6 7 8 9 10
Training accuracy 0.9293 0.9674 0.9763 0.9807 0.9829 0.9852 0.9882 0.989 0.9908 0.9913
Valida�on accuracy 0.9631 0.973 0.9751 0.9729 0.9724 0.978 0.9773 0.9756 0.9784 0.9793

0.89
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0.92
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0.94
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0.98
0.99
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Epochs upto10
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Figure 14: Graphical representation of training and validation accuracy with reduced units per 
layer and increased number of epochs, i.e., up to 10.

Table 11. Statistics of English to Bangla 
tourism corpus (text) collected from TDIL.
Corpus (English to 
Bangla)

Size in terms of 
sentence pairs

Tourism 11,976
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network (RNN) that is often used to capture long-term 
dependencies.

RNNs record all past information in a memory cell 
to forecast the output of an input sequence, which 
limits their ability to predict the output of a very long 
sentence. To address this restriction, LSTMs were 
developed, which are composed of input, output, 

and forget gates and are capable of recording long-
term relationships.

The hyper-parameter of our model and the 
BLEU score are reported in Table 12. We random-
ly picked three sentences from the test set for 

Figure 15: Snapshots of the English–Bangla parallel corpus collected from TDIL.

Table 12. Performance of BiLSTM, 
Google Translate, and Bing in terms of 
the automatic metric BLEU.
Model Hyper-parameter BLEU 

score
BiLSTM (for English to 
Bangla; 1st sentence)
BiLSTM (for English to 
Bangla; 2nd sentence)
BiLSTM (for English to 
Bangla; 3rd sentence)

Optimizer = Adam;

Learning rate = 0.001;

No. of encoder and 
decoder layers = 6

4.1

3.2

3.01

Table 13. Translations generated by 
Google and Bing.
Translators Language pair BLEU
Google English ⇒ Bangla (1st 

sentence)
English ⇒ Bangla (2nd 
sentence)
English ⇒ Bangla (3rd 
sentence) 

36.84

6.42

4.52

Bing English ⇒ Bangla (1st 
sentence)
English ⇒ Bangla (2nd 
sentence)
English ⇒ Bangla (3rd 
sentence)

36.11

6.01

4.05
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inferencing. Our model’s score as well as Google 
and Bing translators’ scores are presented in 
Tables 12 and 13, respectively. The graphical illus-
trations of test set, sentences 1, 2, and 3, are, re-
spectively, shown in Figures 16–18.

We randomly picked the first sentence from the 
test data set:

English: Ask your tribal guide and he will show you 
the traditional fishing gears, hunting gadgets, and in-
digenous medicinal plants – an important part of their 
culture and more.

Gold Standard Output: ত�োমোর উপজো� ীয় পথপ্রদর্শককক 
জজকঞেস ককর তদক�ো আর তস ত�োমোকক প্রথোগ� মোছ ধরোর উপকরণ, জ রকোর 
করোর সোমগ্ ী ও তদরজ ঔষজধ উজভিদ তদ�োকে,যো �োকদর সংস্কৃ জ�

Google Translate: আপনোর উপজো� ীয় গোইডকক জজঞেোসো করুন 
এেং জ�জন আপনোকক ঐজ�হ্যগ� মোছ ধরোর সরঞ্োম, জ রকোকরর গ্যোকজট এেং 
তদর ীয় ঔষজধ গোছ তদ�োকেন - �োকদর সংস্কৃ জ�র একটি গুরুত্বপূণ্শ অংর এেং 
আরও অকনক জকছু।

Bing Translate: আপনোর উপজো� ীয় গোইডকক জজঞেোসো করুন এেং 
জ�জন আপনোকক ঐজ�হ্যেোহ ী মোছ ধরোর জ গয়োর, জ রকোর ী গ্যোকজট এেং তদর ীয় 
ঔষজধ গোছপোলো তদ�োকেন - �োকদর সংস্কৃ জ�র একটি গুরুত্বপূণ্শ অংর এেং আরও 
অকনক জকছু।

We randomly picked the second sentence from 
the test data set:

English: Mr. Smith has often been to India.
Gold Standard output: জমিথ-েোেু ভোরক� তের ককয়কেোর 

একসকছন।
Google Translate: জমস্োর জমিথ প্রোয়ই ভোরক� তগকছন।
Bing Translate: জমিথ প্রোয়ই ভোরক� তযক�ন।
We randomly picked the third sentence from the 

test data set:
English: Take a tour of Jaipur to know the city 

which is fairly young, less than three centuries old.
Gold standard output: জ�নকরো েছকররও কম পুরকনো নে ীন 

রহর জয়পুর ঘুকর তদ�।
Google Translate: জ�ন র�োব্ ীরও কম পুরোকনো রহরটি তমোটোমুটি 

�রুণ, রহরটি জোনক� জয়পুকর ঘুকর আসুন।
Bing Translate: জয়পুকরর একটি ভ্রমণ করুন রহরটি জোনক� যো 

তমোটোমুটি �রুণ, জ�ন র�োব্ ীরও কম পুরোকনো।

6. Analysis and Discussion

We provide a detailed analysis of our experimentation 
in this section. First, in the MNIST dataset, we start-
ed with varying different hyper-parameters such as 
the number of units in different layers, number of ep-
ochs, etc., and observed their effect on training and 
validation accuracy. In ANN/deep neural networks, it is 
difficult to predict in advance the number of iterations 
that would be needed for the model’s convergence. In 
a deep neural network, the number of hidden layers 
and the total number of neurons in each layer are two 
very important hyper-parameters [43]. Here, our study 
was mainly focused on the following hyper-parameters 
of the sequential model: activation function: ReLU, 
number of units in layers: 512 (initially), number of 
epochs, etc. In our case, we have found that the 
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Figure 16: BLEU scores produced 
by different NMT models for the first 
test data.

Figure 17: BLEU scores generated by 
different NMT models for the second 
test data.

Figure 18: BLEU score produced by 
various NMT models on third test data.
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model converges after 10 epochs. When we reduced 
the number of units in different layers, we found there 
is a slight decline in both accuracies. However, reduc-
ing more units in different layers may cause underfit-
ting. In the ML models, the number of epochs refers 
to the number of times for which the training data are 
shown to the network during training. We need to keep 
on increasing the number of epochs until the validation 
accuracy starts decreasing while the training accuracy 
is increasing. This overfits the model. To overcome this 
overfitting problem, dropout is one of the techniques. 
With dropout, the model can be regularized. The gen-
eral rule is to apply dropouts between 20% and 50%. 
In dropout, the number of neurons in layers is reduced. 
Hence, too high a dropout results in the model coming 
to be characterized by the behavior of an underlearn-
er. Another important hyper-parameter is the num-
ber of hidden layers. Several hidden layers are to be 
increased until we don’t get any further improvement 
in the test data set (error). The model’s accuracy de-
pends on the number of units in different layers.

Second, for the NMT system, we have used the 
following hyper-parameters along with others: optim-
izer, learning rate, encoder, and decoder layers. The 
selected values of our hyper-parameters are report-
ed in Table 12. We have used Adam as an optimizer. 
Adam is an appropriate selection when the data sets 
and parameters are large in a model. It combines gra-
dient descent with momentum and RMSProp [44]. The 
second hyper-parameter is the learning rate, which is 
one of the important hyper-parameters for training the 
neural network model. The learning rate value ranges 
from 0.0 to 1.0. We have selected the learning rate val-
ue as 0.001. If the learning rate value is too high, then 
the model may converge faster but to a suboptimal level 
of solution. And if the value is too low, then it will take 
longer to train the model, i.e., will require more epochs. 
As stated before, several hidden layers need to be in-
creased till we don’t get any further improvement in test 
data. In our model, we have taken the number of en-
coder and decoder layers to six. With this hyper-param-
eter setting of our bidirectional LSTM model and with 
randomly picked three English sentences from the test 
data set, we achieved BLEU scores of 4.1, 3.2, and 3.01 
for sentences 1, 2, and 3, respectively. We compared 
the results of our model with the output from the trans-
lation services offered by Google and Bing. Referring to 
the results shown in Tables 12 and 13 and their graph-
ical representation in Figures 16–18, we observe that 
our model’s BLEU score is much lower than those of 
the Google and Bing translation services for the three 
randomly picked English sentences from the test data 

set, although we are not aware of the optimized hy-
per-parameters used in either of the translation engines, 
Bing Translator and Google Translate. However, there 
are several possible reasons for this. Some of the rea-
sons are as follows: we used a corpus that is not large 
enough as demanded by the deep learning model. A 
sufficient and appropriate corpus has a significant im-
pact on NMT performance [45]. We experimented with 
a limited corpus, and that too from the low-resource 
category. Also, our language pairs are highly morpho-
logical and syntactically different. These are some of the 
linguistic challenges along with our model constraint. 
However, neither the BLEU scores that are generated 
for our model nor those for Google Translate and Bing 
Translator are completely reliable. BLEU’s score gener-
ation process solely depends on matching criteria be-
tween the translated results (sentences) and the gold 
standard output (reference sentences). It matches n to-
kens at a time, i.e., 1-gram (uni-gram), 2-gram (bigram), 
and n-gram from candidate tokens and reference to-
kens. Candidate tokens are the tokens from the trans-
lated sentences, and reference tokens are the tokens 
from the reference sentences. Based on the translated 
results as reported in Tables 12 and 13 as well as their 
graphical representations in Figures 16–18, it can be ob-
served that the scores for the three sample test sen-
tences are quite low. However, the translations gener-
ated by our model, as well as those by the Google and 
Bing translation services, are comprehensible and can 
be understood by the human evaluator. In MT evalua-
tion, human evaluation is considered to be the best but 
is a time-consuming process. These generated results 
were shown to five human evaluators, and according 
to the opinions of each of these five, all the translated 
results are comprehensible and their average score 
comes out to be more than 60 and in a range of 60–85. 
The maximum scores are for Google Translate and Bing 
Translator, and the lower scores, ranging from 60 to 65, 
are for our model.

7. Conclusions and Future Work

In this research, we have systematically examined 
the significance of hyper-parameter adjustment in 
several machine learning algorithms. By altering the 
hyper-parameters and evaluating the overall impact of 
this alteration on the model’s performance, we have 
also confirmed the phenomenon of this adjustment 
having a significance in terms of the MNIST dataset. 
For every machine learning model, hyper-parameter 
optimization plays a critical role in the avoidance of 
overfitting and underfitting. We also looked into a 
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case study where NMT was applied to see how 
well it performed on language pairings with limit-
ed resources. The effectiveness of NMT on several 
low-resource language pairings with various sets 
of hyper-parameters was thoroughly examined. As 
previously mentioned, we employed the English to 
Bangla tourism language pair (corpus), a low-re-
source language, for a case study and evaluated the 
performance of our NMT model using a chosen set 
of hyper-parameters; and resultantly, we have derived 
the following insightful conclusions:
•	 Optimal hyper-parameter optimization is crucial in 

attaining optimal model behavior and resulting in 
improved accuracy.

•	 A substantial and relevant corpus is highly vital in 
NMT for better performance.

•	 Owing to data-centricity, it is crucial to choose the 
right model and hyper-parameters in conjunction with 
suitable linguistic preprocessing such as tokenization, 
word embedding, named entity, true-casing, stem-
ming, lemmatization, etc.

To improve accuracy when models are trained with 
low-resource languages, many techniques and meth-
ods have been proposed by researchers in terms 
of model setting with hyper-parameter tuning, mod-
el selection, and linguistic aspects, such as transfer 
learning, exploiting advanced NLP models with multi-
level attention, byte-pair encoding (BPE), etc. [46, 47].

In the future, we intend to develop an NMT system 
while looking for the right hyper-parameters, which 
might aid us in speeding up the training of advanced 
deep learning models and enhancing accuracy, particu-
larly for low-resource, highly morphological languages.
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