
1 Open Access. Published by Sciendo.
© 2023 Datta et al. This work is licensed under the Creative Commons Attribution-Non-
Commercial-NoDerivs 4.0 License https://creativecommons.org/licenses/by-nc-nd/4.0/

Issue 1 | Vol. 16 (2023)Article | DOI: 10.2478/ijssis-2023-0010

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Hyper-parameter optimization in neural-based translation
systems: A case study

Goutam Datta1,2,*, Nisheeth Joshi1
and Kusum Gupta1

1Deparment of Mathematical and
Computer Science, Banasthali
Vidyapeeth, Rajasthan, India
2School of Computer Science,
University of Petroleum and Energy
Studies, Dehradun, India

*Emails: gdatta1@yahoo.com;
jnisheeth@banasthali.in;
gupta_kusum@yahoo.com

Received for publication:
February 22, 2023.

Abstract
Machine translation (MT) is an important use case in natural language
processing (NLP) that converts a source language to a target language
automatically. Modern intelligent system or artificial intelligence (AI)
uses a machine learning approach and the machine has acquired
learning ability using datasets. Nowadays, in the MT domain, the
neural machine translation (NMT) system has almost replaced the
statistical machine translation (SMT) system. The NMT systems use
a deep learning framework in their implementation. To achieve higher
accuracy during the training of the NMT model, extensive hyper-
parameter tuning is required. The paper highlights the significance of
hyper-parameter tuning in various machine learning algorithms. And
as a case study, in-house experimentation was conducted on a low-
resource English–Bangla language pair by designing an NMT system
and the significance of various hyper-parameter optimizations was
analyzed while evaluating its performance with an automatic metric
BLEU. The BLEU scores obtained for the first, second, and third
randomly picked test sentences are 4.1, 3.2, and 3.01, respectively.

Keywords
Neural machine translation, LSTM, transformer, GAN, hyper-
parameter

1. Introduction

NMT uses a deep neural network-based approach to
translate a source language to a target language with
the help of a trained corpus. The NMT has replaced
the SMT by applying a neural-based approach to its
language model design [1, 2]. In MT, there are two
important components: the language model and the
translation model. SMT uses a statistically based
hidden Markov model (HMM) to design its language
model component [3]. A phrase-based SMT model is
better than a word-based SMT model.

NMT solves many problems that were pres-
ent in SMT and its earlier versions, such as dic-
tionary-based and rule-based approaches [4]. The
NMT got its recognition gradually when Google first

developed an NMT model that used an end-to-end
approach where a multilayered LSTM model was
used that mapped the source component to a fixed-
sized vector representation. Another deep LSTM
model decoded this vector to produce the target
language [5–7].

There are several other variants of NMT mod-
els proposed by various researchers; for instance,
Google developed another refined model that elim-
inates this fixed-sized vector bottleneck problem
by a soft search technique that considers the en-
tire portion of the source representation that is es-
sential for the target representation. Researchers
have conducted many surveys and reviews of the
MT domain and captured in detail its paradigm
shift [8, 9].

2

Application of hyper-parameter tuning in neural machine translation: Datta et al.

All these NMT models require hyper-parameter
tuning to generate better results [10–12]. However,
tuning hyper-parameters is not an easy job due to
the high training time of deep learning models [13].
There are several techniques for hyper-parameter
tuning. The hyper-parameters are actual models’
parameters based on their architectural complex-
ity, such as the number of hidden layers, learning
rate, etc. These hyper-parameters are tuned before
training any ML models [14]. When the models are
being trained with an initial set of hyper-parame-
ters, only the optimal set of parameters is com-
puted (learned). Basic ML models such as logistic
regression have regularization (L1, L2) as their hy-
per-parameters; support vector machine (SVM) has
a kernel and penalty parameter as its hyper-param-
eter, and K-nearest neighbor has value K as its hy-
per-parameter. For advanced models such as arti-
ficial neural networks (ANN), learning rate, dropout,
and activation function are some of the important
hyper-parameters. The search space is the entire
volume of hyper-parameters and, out of that, dif-
ferent techniques are applied to select those hy-
per-parameter values from their given range of di-
mensions so that the most optimal model can be
designed that can return maximum accuracy and
minimum error. There are various basic searching
strategies, such as grid search and random search,
that are widely used in ML models. Some of the
advanced searching strategies, such as Bayesian
optimization and evolutionary optimization, are also
helpful in solving complex ML use cases. These
searching strategies with hyper-parameters to train
a model to achieve maximum accuracy with its new
set of trained parameters are called hyper-param-
eter optimization techniques. However, in NMT,
apart from hyper-parameter optimization, there
are other approaches such as linguistic features,
representation of abstract meaning on semantic
graphs, and various other novel approaches used
by researchers to improve the performance of NMT
systems, specifically when using low-resource lan-
guage pairs [15–18].
The aims of this paper are to:

•	 explore various strategies toward hyper-
parameter tuning in various ML models;

•	 provide a comprehensive review of the impor-
tance of hyper-parameter tuning in achieving
various state-of-the-art results in NMT sys-
tems; and

•	 implement a case study to evaluate an NMT
model on English to Bangla parallel corpus and

evaluate its performance by using automatic
metric BLEU and highlight a few useful
conclusions.

The remainder of the paper is organized as follows:
Section 2 briefly discusses some NMT models.
Section 3 reports some previous work on NMT and,
based on various hyper-parameter selections, their
performance on the automatic metric. Section 4 brief-
ly describes the methodology. Section 5 covers our
experimentation on the MNIST data set to validate the
hyper-parameter tuning and its effect on the perfor-
mance of the ML model. Furthermore, in this section,
we also explored the performance of an NMT system
with low-resource language as a case study. Section
6 presents some analysis of the results and discus-
sion. Finally, Section 7 has some useful conclusions
drawn from the overall research and provides future
directions.

2. State-of-the-art NMT Models

NMT uses a neural network in the language model
and is known as a neural language model. Unlike the
traditional SMT systems where language and trans-
lation models need to be tuned separately, NMT in-
tegrates both the language model (a neural language
model) and the translation model (responsible for
translating the source to target), thereby easing its
implementation compared to SMT models. The arti-
ficial neural network (ANN) is the basic building block
of NMT.

ANN has an input layer, a hidden layer, and an
output layer. In the optimization problem, specifically
in gradient-based optimization, the gradient is consid-
ered one of the important parameter estimators that
is used to compute the parameters of the network
under different iterations [19, 20]. In the network, we
have to search for the suitable values of weights so
that we can reduce the error function, which is noth-
ing but the difference between the actual and desired
output. The basics of feedforward neural networks
are primarily based on the computation of the deriva-
tives of the error function [21, 22].

In a simple feedforward neural network, each
unit in the network computes a weighted sum of the
product of inputs, where jiw is the weight associated
with that connection and is the input to the unit j, as
represented in Figure 1. Its mathematical representa-
tion is as follows:

ja = ∑ ji i
i

w z � (1)

3

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

The sum represented in Eq. (1) is transformed with
the help of non-linear activation function g(.) to get Zj
to unit j, as represented below:

jz =g ()ja � (2)

We can represent the error function as the sum
of all the patterns in the training data set. Each error
pattern can be represented separately as follows:

E = ∑ n

n

E � (3)

In the above expression, E is the error and n rep-
resents labels of the pattern, where nE can be differ-
entiable with respect to output y and hence can be
represented as follows:

E = E n ( y1........., yc )� (4)

Here, the primary objective of the network is
to compute the derivative of the error function with
respect to the weights and biases of the given
network.

∂
∂

n

ji

E
w

 =
∂
∂

n

j

E
a

∂

∂
j

ji

a

w
� (5)

Now, using a new notation,

∂ j ≡
∂
∂

n

j

E
a

� (6)

Here, ∂ s are the errors, and using Eq. (1), we can
write,

∂

∂
j

ji

a

w
 = iz � (7)

Substituting Eqs. (6) and (7) into Eq. (5), we finally
obtain,

∂
∂

n

ji

E
w

 =∂ j iz � (8)

With the use of the above formulas, the final back
propagation formulae can be represented as follows:

∂ j = () ∂∑´
j kj k

k

g a w � (9)

Hence, since we know the value of one of the out-
put units, we can easily compute the values of all hid-
den units by recursively applying the above formulae
in a feedforward neural network.

ANN optimization technique general rules: We
start training our network with some randomly chosen
weight values. It has already been found that optimi-
zation algorithms where the error function decreases
monotonically often reach local minima. It is therefore
essential to select a carefully appropriate set of ini-
tial weights that can eventually produce a good set of
weights that can lead to faster training of the overall
network. Even stochastic algorithms such as gradient
descent are very sensitive toward initial weight val-
ues. In the majority of the cases, the initial weights are
randomly selected with small values. However, if the
initial weights are too small, then the sigmoidal acti-
vation function would be almost linear, which results
in a longer training time [21, 22]. There are various hy-
per-parameter searching strategies used in ML and
deep learning models. Some of the most common-
ly used searching strategies are grid search, manu-
al search, and random search. A nice comparative
study of different types of hyper-parameter searching
strategies is presented by the researchers Bergstra et
al. in the paper Random Search for Hyper-parameter
Optimization [23].

When the hidden layers are more than two, we
consider the network a deep neural network [24].
Deep neural networks are widely exploited in NMT.

Figure 1: Schematic illustration of
computation of ∂ j for hidden unit j with
the help of back propagation.

4

Application of hyper-parameter tuning in neural machine translation: Datta et al.

Deep neural networks are a very powerful machine
learning model as far as accuracy is concerned.
However, in terms of interpretability, these models
(ANN, deep learning) are difficult to interpret com-
pared to other classifiers (decision tree, SVM, etc.)
and regression models (Fig. 2). In Figure 2, the X-axis
represents the measure of accuracy, while the Y-axis
represents the measure of interpretability. In terms of
accuracy, deep learning models are more accurate
than basic machine learning models.

The performance of various machine learning
models is measured based on certain parameters
such as accuracy, speed, robustness, scalabil-
ity, and interpretability. As mentioned before, deep
learning models are the best among other machine
learning models in terms of accuracy, but these
models are difficult to interpret. One of the major
challenges of a deep learning model is while it pro-
cesses the sequence of data. Deep learning has an
essential role in solving NLP applications. As stated
before, in designing NMT’s language model, deep
learning has a very significant role [25]. Deep learn-
ing models try to convert the sequence of data into
a fixed-size vector representation [26]. These NMT
models are encoder–decoder models. An encod-
er converts the variable-length input sentence to
a fixed-length vector representation. The decoder
takes this vector representation and converts it to
a variable-length target representation. One of the
simplest NMT models is sequence-to-to-sequence.
Because the size of the NMT source and target data
is not fixed, sequence-to-to-sequence models have

difficulty handling such scenarios. There are two ap-
proaches proposed for handling variable-length se-
quences: recurrent neural networks (RNN) and gat-
ed recursive convolutional neural networks (GRCN).
One of the simplest representations of the recurrent
language model is shown in Figure 3. In the dia-
gram, the input layer is represented with u, which is
the weight matrix from input to hidden layer s; v is
the weight matrix from the hidden layer to the out-
put layer. If we ignore the recurrent weight w, it is a
bigram neural network language model. The output
layer is represented with y, and the hidden layer is
represented with h.

A few terms related to RNN’s language model can
be mathematically represented as follows:

Hidden layer s (t)

()s t = () ()(+ −. . 1)f u x t w s t � (10)

Output layer y (t) and g (.) is the activation function
applied

()y t = ()()g vs t � (11)

()f z . = 1/1+ e-z� (12)

()f z is the sigmoid activation function, and the
range varies from 0 to 1.

()mg z = ∑

zm

zk

k

e
e � (13)

Figure 2: The accuracy of deep learning models is higher, but their interpretability is low
compared to other ML models.

5

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

g (z) is the soft max activation function. The pur-
pose of the soft max activation function is to ensure
that all outputs are greater than zero, and that their
sum is one.

RNN suffers from vanishing gradient and explod-
ing gradient problems when dealing with longer sen-
tence sizes. Hence, another popular approach, long
short-term memory (LSTM), was introduced to over-
come this problem. One of the major advantages of
using the LSTM model is its ability to deal with long-
term temporal dependency. NMT has the challenge
of handling rare words. Researchers have also tried
to address this problem and achieved a satisfactory
result as well [16].

As stated before, although the LSTM model has
the ability to capture long-term dependencies, in
some instances, it becomes forgetful and is unable
to generate the correct translations. Capturing the
context is also essential in NLP. One of the most
popular and widely used NMT approaches is the
attention-based model. Attention-based models are
suitable for handling longer sentences. The atten-
tion-based model focuses on different parts of the
source sentence and tries to capture the most im-
portant word, which decides the context of the entire
sentence. In Figure 3, Bahdanau et al.’s bidirectional
RNNs are used for annotating text [27]. The forward
RNNs are used to compute the input sequence in the

order in which it is represented in the input, i.e., from
X1 to XT and calculate all forward hidden states from
h1 to hT, and in a similar manner, backward RNNs are
used to perform the same operation in the backward
direction. Furthermore, the annotation of each word
is explored with the help of concatenating forward
and backward hidden states.

RNN is adequately capable of representing recent
word annotations of a hidden state hj that contains
the overall summaries of all preceding and succeed-
ing words. Finally, the computed sequence of anno-
tations and alignment will be used to compute the
context vector. In Bahdanau et al.’s model [27], the
context vector is computed with the help of embed-
ding all input words and representing them in hid-
den states. This is done by taking a weighted sum
of all hidden states with the help of the following
expression:

ic = α
=
∑

1

xT

ij j
j

h � (14)

where ic is the context vector.
Weighted sums are computed with the help of

α ij =
()

()
=∑ 1

x

ij
T

ikk

exp e

exp e
� (15)

Figure 3: Schematic representation of bidirectional RNN (Source: Bahdanau et al. [26]).

6

Application of hyper-parameter tuning in neural machine translation: Datta et al.

This attention mechanism can be global or local.
The global attention mechanism was originally intro-
duced by Loung et al. [28]. In global attention (Fig. 4),
when computing the context vector ct, it considers
all hidden states that are available on the encoder
side. In the global attention model, the variable-length
alignment vector (at) is computed from the target
side’s current hidden state (ht) to each source-side
hidden state (hs) as follows: at (s)= align (ht, hs). In a
nutshell, global attention requires a lot of computa-
tion as it considers all hidden states. Hence, as the
input size increases, the computation also increases.
To overcome this problem, local attention is the solu-
tion (Fig. 5). In local attention, only a subset of hidden
states is considered.

Another recent and popular approach is the
transformer-based model (Fig. 6). Transformer mod-
els are faster than traditional RNN and convolutional
models during training [29]. The transformer model’s
Bidirectional Encoder Representation of Transformers
(BERT) has shown significant performance improve-
ment in large-scale language modeling applications.

BERT’s pretrained model can be used to model
several state-of-the-art NLP cases by adding and
fine-tuning one extra output layer [30]. Some of the
major drawbacks of RNN, such as its inherent se-
quential nature, i.e., one word at a timestamp, make
it slow and inefficient in making a decision. On the
other hand, the transformer model replaces this se-
quence nature by parallelization, i.e., it considers
all sets of input sequences with their attention in a
parallel manner, thus making it a fast and accurate
prediction. The transformer model considers all in-
puts and their corresponding output sequences to
be produced in an O (1) operation with the help of its
powerful attention mechanism. Transformer models
are encoder–decoder-based, have a strong attention
mechanism, and replace the need for sluggish RNN,
thereby making them extremely suitable for NMT. The
attention mechanism used in the transformer or any
other deep learning model can be thought of as a
weight vector that decides, out of several words in
a sequence/sentence, which one is more important
and is responsible for deciding the context of the en-
tire representation. The attention mechanism scans
the entire sequence and tries to capture that word,
and the highest weightage is assigned to it. The
transformer encoder part, by default, has six layers.
The decoder side also has six layers. The six lay-
ers are further divided into two sublayers, viz., mul-
ti-head self-attention mechanism and fully connected
feedforward neural network. In the encoder side, at
the very first instance, source-side input tokens are
first embedded and then passed on to the position-
al encoder layer. The positional encoder is essential
in transformer architecture since it has no recurrent
and convolutional units; the language model scans
the entire sequence of words, and the context will be
decided based on the words. Hence, its position find-
ing is essential. In the transformer model, various sine
and cosine operations are performed to find the po-
sition of words. After this, the embedded vectors/to-
kens are fed to the self-attention layer. By default, the
results of the self-attention layer are passed through
a linear layer, and some dropout operations are also
carried out before feeding into the subsequent layers.
The attention mechanism in transformer architecture
is multi-head attention. If the number of heads is n,
this implies n numbers of heads are working simulta-
neously on the different subspaces of the entire text
and are thereby able to capture better context. There
is another concept in transformer architecture, i.e.,
self-attention. Self-attention is the process by which
the entire string is scanned word by word, and the
attention mechanism also checks for its surrounding

Figure 4: RNN with global attention.

Figure 5: RNN with local attention.

7

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Figure 6: Transformer model.

Figure 7: The generative adversarial network (GAN) model in the NMT case.

8

Application of hyper-parameter tuning in neural machine translation: Datta et al.

words to better understand the present word. On the
other hand, the decoder predicts the target language
with the help of state vector representation.

One of the new paradigms in the deep learning
framework is generative adversarial network (GAN)
[31]. In GAN, there are two neural networks that com-
pete. One network is a generator, and the other is
a discriminator. The generator generates plausible
data. It is a model responsible for generating plau-
sible examples of data in the given domain space
with a fixed-length random vector with a Gaussian
distribution. The discriminator tries to discriminate be-
tween real data and fakes (generated by generators).
GAN is now widely used by researchers in a variety of
NLP applications [32–35]. Figure 7 represents GAN in
NMT implementation. Here, the adversary network (D)
is a discriminator, which gets its input from the gen-
erator, which is our NMT model. The discriminator re-
ceives the following inputs: candidate translation from
the generator (NMT model), reference translation, and
source text. The discriminator tries to identify only
the correct translation based on the comparison be-
tween the candidate and its reference translation for
any given input source sentence. This comparison
generates either a reward (if it matches the reference)
or an error signal (if there is a mismatch). This error
signal will be treated as feedback, and the NMT mod-
el can be further trained so that going forward, it can
generate the correct translation.

3. �Related work on NMT with
tuned parameters for Perfor-
mance optimization

There are a number of hyper-parameters under dif-
ferent machine learning algorithms. In deep learning,
there are many hyper-parameters compared to oth-
er machine learning algorithms. The hyper-parame-
ters in deep learning are the design parameters for
the model, which include the number of hidden lay-
ers, the activation function, the optimizer, etc. Hyper-
parameters are variables that we need to set to some

initial default values before training. We have summa-
rized a few hyper-parameters in Table 1. Researchers
have focused on automating the hyper-parameter op-
timization (HPO) process, but very little work is done
in the NMT space due to its large number of variants.

Merity et al. [36], in the NMT discussed in their
paper, proposed a strategy involving dropping the
weights in LSTM and introducing a new variant of
averaged stochastic gradient along with some other
regularizing strategies. They achieved excellent word
level perplexities in their datasets. Liu et al.’s research
[37] uses a deep transformer model with 60 encoder
layers and 12 decoder layers, allowing a BLEU score
enhancement by 2.5 to be achieved on its baseline
model with six layers. The details of the same are
provided in a summarized form in Tables 2 and 3.
Zhang and Duh [38] proposed a look-up-based ap-
proach that may accelerate the use of automatic
hyper-parameter optimization in the NMT domain.
The look-up-based approach uses a library of pre-
trained models with a wider range of hyper-param-
eters, and such an arrangement facilitates the fast,
efficient, and economical execution of the HPO task
in the NMT research space. There are also proposals
for automatically evaluating metrics for performance
evaluation. Table 4 reports the details of the hyper-pa-
rameters used to tune the different models, with their

Table 1. Generic hyper-parameters in
NMT-based model.
Model Type of

MT
Hyper-parameters

Deep
learning
models

NMT Hidden layers, learning
rate, activation function,
epochs, batch size, dropout,
regularization

Table 2. WMT-14 English–French test
results showed that 60L-12L ADMIN
outperforms the default base model
6L-6L in different automatic metrics
(Liu et al. [35]).

Model Param TER METEOR BLEU
6L-6L Default 67M 42.2 60.5 41.3
6L-6L ADMIN 67M 41.8 60.7 41.5
60L-12LDefault 262M Diverge Diverge Diverge
60L-12LADMIN 262M 40.3 62.4 43.8

Table 3. WMT-14 English–German test
results show that ADMIN outperforms
the default base model 6L-6L in different
automatic metrics (Liu et al. [35]).

Model Param TER METEOR BLEU
6L-6L Default 61M 54.4 46.6 27.6

6L-6L ADMIN 61M 54.1 46.7 27.7

60L-12LDefault 256M Diverge Diverge Diverge

60L-12LADMIN 256M 51.8 48.3 30.1

9

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Table 4. Models per data set and their best BLEU scores and respective
hyper-parameter configurations (Zhang and Duh [36]).
Data set No. of

models
Best
BLEU

BPE No. of
layers

No. of
embedding

No. of
hidden
layers

No. of
attention

heads

Init-lr

Chinese–English 118 14.66 30k 4 512 1024 16 3e-4

Russian–English 176 20.23 10k 4 256 2048 8 3e-4

Japanese–English 150 16.41 30k 4 512 2048 8 3e-4

English–Japanese 168 20.74 10k 4 1024 2048 8 3e-4

Swahili–English 767 26.09 1k 2 256 1024 8 6e-4

Somali–English 604 11.23 8k 2 512 1024 8 3e-4

Table 5. MT models for different language pairs in a GPU-based single-node and
multiple-node environment with a wider range of hyper-parameters and their BLEU
scores (Lim et al. [11]).

Cell
Learning

rate
roen
P100

roen
V100

enro
P100

enro
V100

deen
P100

deen
V100

ende
P100

ende
V100

GRU le-3 35.53 35.43 19.19 19.28 28.00 27.84 20.43 20.61

5e-3 34.37 34.05 19.07 19.16 26.05 22.16 N/A 19.01

le-4 35.47 35.46 19.45 19.49 27.37 27.81 Dnf 21.41

LSTM le-3 34.27 35.61 19.29 19.64 28.62 28.83 21.70 21.69

5e-3 35.05 34.99 19.48 19.43 N/A 24.36 18.53 18.01

le-4 35.41 35.28 19.43 19.48 N/A 28.50 Dnf Dnf

GRU le-3 34.22 34.17 19.42 19.43 33.03 32.55 26.55 26.85

5e-3 33.13 32.74 19.31 18.97 31.04 26.76 N/A 26.02

le-4 33.67 34.44 18.98 19.69 33.15 33.12 Dnf 28.43

LSTM le-3 33.10 33.95 19.56 19.08 33.10 33.89 28.79 28.84

5e-3 33.10 33.52 19.13 19.51 N/A 29.16 24.12 24.12

le-4 33.29 32.92 19.14 19.23 N/A 33.44 Dnf Dnf

Table 6. NMT models with some other range of learning rate (hyper-parameter)
(Lim et al. [11]).

Cell
Learning

rate
roen
P100

roen
t

roen
V100

roen
t

deen
P100

deen
t

deen
V100

deen
t

GRU 0.0 34.47 6:29 34.47 4:43 32.29 9:48 31.61 6:15

0.2 35.53 8:48 35.43 6:21 33.03 18:47 32.55 19:40

0.3 35.36 12:21 35.15 7:28 31.36 10:14 31.50 9:33

0.5 34.50 12:20 34.67 17:18 29.64 11:09 30.21 11.09

LSTM 0.0 34.84 6:29 34.65 4:46 32.84 12:17 32.88 7:37

0.2 34.27 8:10 35.61 6:34 33.10 16:33 33.89 13:39

0.3 35.67 9:56 35.37 11:29 33.45 20.02 33.51 15:51

0.5 34.50 15:13 34.33 12:45 32.67 20.02 32.20 13.03

10

Application of hyper-parameter tuning in neural machine translation: Datta et al.

performances being measured with the automatic
metric bilingual evaluation understudy (BLEU).

Lim et al. [11] trained a language model of their
NMT system to explore which set of hyper-parame-
ters is able to produce better performance in terms
of convergence rate and translation accuracy to
produce high-performing MT systems. They tested
their models in a GPU-based single-node and multi-
ple-node environment. Translation tasks were carried
out for English ⇒ Romanian, Romanian ⇒ English,
English ⇒ German, and German ⇒ English. The
details of their models and the range of different
hyper-parameters along with the automatic BLEU
score are reported in Tables 5 and 6.

There is an interesting paper on NMT where the
authors achieved a significant speedup in the train-
ing time of the NMT model. Generally, NMT requires
more training time when the corpus size is large.
Furthermore, when the corpus size is small, NMT
does not produce better results. Hence, this always
remains a challenge in NMT due to its long training

time. However, in this research, the authors not only
achieved less training time for their model but were
also able to get better performance compared to
some state-of-the-art models for German-to-English
and English-to-French translation tasks. In their NMT
model, they used a tan hyperbolic activation function.
The activation function is one of the important hy-
per-parameters in the NMT model. This tan hyperbol-
ic activation function has the ability to learn the future
and the past context. This important feature helps
train the model faster and achieve better results [39].

4. Methodology

When we train our model, first we need to select the
default set of hyper-parameters and using those hy-
per-parameters, our NMT model was trained. Then,
based on these hyper-parameters, our model’s per-
formance was evaluated (Fig. 8). Based on the model
performance, another set of hyper-parameters was
explored and the performance was evaluated. The

Figure 8: Typical machine learning model building steps.

11

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

process would continue until we were satisfied with
the model’s performance. In ML, this hyper-param-
eter tuning greatly affects the model’s performance
in various ways. By changing the hyper-parameter
configuration, we can restrict our model from overfit-
ting and underfitting. Out of many hyper-parameters,
learning rate and optimizers are a few.

We have validated our work with some basic and
advanced ML algorithms with their default and two
popular approaches, namely grid and random search
for hyper-parameter tuning. Results are compared
based on the default set of hyper-parameters and
then by applying grid and random search approach-
es. We have also used the MNIST dataset for our hy-
per-parameter optimization experimentation.

In our NMT design, the overall working method-
ology of the model is explained with the help of the
following diagram (Figure 9):

Inputs: For the given input, which is English in our
case, each word in the input sequence will be encod-
ed into one hot vector.

Embedded layers: In the embedding layers, words
are turned into vectors, and the size of the vectors
now depends on the size of the vocabulary, or the
number of words in that vector representation that
have the same meaning or domain.

Recurrent layers: In the recurrent layer, the context
of the sentence from the previous layer will be applied
to the current layer and so on.

Dense layers: These are fully connected layers
used in the decoder side to decode the encoded in-
put sequence.

Outputs: The outputs are again a sequence of
vectors and these vectors will be mapped to the cor-
responding Bengali word to generate the final trans-
lated output.

In the encoder part, we have an RNN model.
Because of RNN’s long-term dependency problem,

LSTM, GRU, bidirectional LSTM, or any advanced
architecture, such as a transformer model, is wide-
ly used. Similarly, on the decoder side, we also have
RNN or its other advanced variants that are used
along with the attention model to have better accura-
cy during translation. Beam search is used to select
the best target language representation for the corre-
sponding source language (Fig. 10).

For NMT evaluation, we have used an automatic
evaluation metric, i.e., BLEU [40]. BLEU takes n-gram
candidate representation and n-gram reference rep-
resentation. Apart from BLEU, there are other popular
automatic evaluation metrics used in NMT evaluation
these days [41]. Considering these two representa-
tions, BLEU then tries to count the total number of
matches. The range of the BLUE metric is from 0 to 1.
The highest score is 1, and the lowest is 0.

5. Experimental Setup

We have experimented with 70,000 grayscale
images from the MNIST data set consisting of
hand-written digits ranging from 0 to 9. We have
2D images of resolution 28 × 28. The task is to
classify the unseen image of any digit. We have
used 60,000 images for training and 10,000 imag-
es for testing. We used Keras’s sequential model
with densely connected layers. We fixed 512 units
in our layer and the activation function ReLU. In
the output layer, we have used the softmax func-
tion. We had 10 possible categories in the output
layer, with the result that there would be 10 units
in the output layer. To evaluate how well our model
performs during training, we used the loss func-
tion as categorical entropy.

Our model is sequential. The total number of pa-
rameters was 669,706, the total number of trainable
parameters was 669,706, and the total number of un-
trainable parameters was 0. We ran our model for five
epochs, and within five epochs we got close to 100%

Figure 9: Schematic representation of
the NMT model.

Figure 10: Encoder–decoder-based
NMT model.

12

Application of hyper-parameter tuning in neural machine translation: Datta et al.

accuracy (Table 7). The graphical representation of
this is shown in Figure 11.

We have run the same experiment for 10 epochs
and the accuracies are as follows (Table 8):

We have observed (Table 8 and Figure 12) that
there is a slight increase in training and validation ac-
curacy with increasing the number of epochs.

We then reduced the number of units in the

different layers from 512 to 100, and report the
resultant training and validation accuracy in Table 9.
A graphical illustration of the same is shown in
Figure 13. We can see that the training and validation
accuracy under different epochs was reduced a little
bit. However, in the last epoch, the validation accura-
cy was marginally high. Reducing the number of units
may cause an underfitting problem.

Table 7. Training and validation accuracy
of our model with five epochs.
Epochs Training

accuracy
Validation
accuracy

1 0.9426 0.9698
2 0.9730 0.9708
3 0.9792 0.9776
4 0.9829 0.9726
5 0.9859 0.9762

Table 8. Training and validation accuracy
of our model with a higher number of
epochs.
Epochs Training

accuracy
Validation
accuracy

1 0.9431 0.9606

2 0.9742 0.9729

3 0.9796 0.9777

4 0.9835 0.9748

5 0.9865 0.9794

6 0.9872 0.9802

7 0.9896 0.9830

8 0.9898 0.9782

9 0.9916 0.9764

10 0.9924 0.9799

0.94

0.95

0.96

0.97

0.98

0.99

0 1 2 3 4 5 6

Ac
cu

ra
cy

Epochs

Training and Valida�on Accuracy

Training accuracy Valida�on accuracy

Figure 11: Training and validation
accuracy with five epochs.

Figure 12: There is a slight improvement
in training and validation accuracy
with increasing the number of epochs
up to 10.

Figure 13: Graphical representation of
training and validation accuracy with
reduced units in different layers and up
to five epochs.

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

epochs

Training and Valida�on Accuracy

Training accuracy Valida�on Accuracy

Table 9. Training and validation accuracy
with 100 units in different layers with five
epochs.
Epochs Training

accuracy
Validation
accuracy

1 0.9289 0.9584

2 0.9674 0.9671

3 0.9758 0.9734

4 0.9800 0.9739

5 0.9836 0.9772

1 2 3 4 5
Training accuracy 0.9289 0.9674 0.9758 0.98 0.9836
Valida�on Accuracy 0.9584 0.9671 0.9734 0.9739 0.9772

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

Ac
cu

ra
cy

Epochs upto 5

Training vs Valida�on Accuracy

Training accuracy Valida�on Accuracy

13

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

We have now increased the number of epochs
employed and kept the number of units under dif-
ferent layers the same, i.e., 100 units. Now our total
parameter is 89,610, the total trainable parameter is
89,610, and the non-trainable parameter is 0. The
resultant training and validation accuracy is reported
in Table 10 and the associated graphical representa-
tion in Figure 14. We can observe that the training

and validation accuracy increased marginally with in-
creasing the number of epochs.

Our second experiment was on NMT. In our ex-
periment, we used the low-resource language pair
English to Bangla. Bangla is mostly spoken in India
and Bangladesh. There are machine translation
systems developed for various Indian languages
[42]. We used the tourism dataset, taken from TDIL
(https://tdil.meity.gov.in/). Statistics and a snapshot
of the corpus are shown in Table 11 and Figure 15,
respectively.

We used the bidirectional LSTM model. We
adopted the BiLSTM network-based technique and
the design is depicted in Figure 15. It is made up of
an encoder and a decoder. The encoder learns to
turn the input source text with embeddings into a
hot vector. The decoder learns to translate this vec-
tor to generate the output translation throughout the
training phase. BiLSTMs are used in the encoder
and decoder. LSTMs are a kind of recurrent neural

Table 10. Training and validation
accuracy with 100 units in different layers
with 10 epochs.
Epochs Training

accuracy
Validation
accuracy

1 0.9293 0.9631

2 0.9674 0.9730

3 0.9763 0.9751

4 0.9807 0.9729

5 0.9829 0.9724

6 0.9852 0.9780

7 0.9882 0.9773

8 0.9890 0.9756

9 0.9908 0.9784

10 0.9913 0.9793

1 2 3 4 5 6 7 8 9 10
Training accuracy 0.9293 0.9674 0.9763 0.9807 0.9829 0.9852 0.9882 0.989 0.9908 0.9913
Valida�on accuracy 0.9631 0.973 0.9751 0.9729 0.9724 0.978 0.9773 0.9756 0.9784 0.9793

0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

Ac
cu

ra
cy

Epochs upto10

Training accuracy Valida�on accuracy

Figure 14: Graphical representation of training and validation accuracy with reduced units per
layer and increased number of epochs, i.e., up to 10.

Table 11. Statistics of English to Bangla
tourism corpus (text) collected from TDIL.
Corpus (English to
Bangla)

Size in terms of
sentence pairs

Tourism 11,976

14

Application of hyper-parameter tuning in neural machine translation: Datta et al.

network (RNN) that is often used to capture long-term
dependencies.

RNNs record all past information in a memory cell
to forecast the output of an input sequence, which
limits their ability to predict the output of a very long
sentence. To address this restriction, LSTMs were
developed, which are composed of input, output,

and forget gates and are capable of recording long-
term relationships.

The hyper-parameter of our model and the
BLEU score are reported in Table 12. We random-
ly picked three sentences from the test set for

Figure 15: Snapshots of the English–Bangla parallel corpus collected from TDIL.

Table 12. Performance of BiLSTM,
Google Translate, and Bing in terms of
the automatic metric BLEU.
Model Hyper-parameter BLEU

score
BiLSTM (for English to
Bangla; 1st sentence)
BiLSTM (for English to
Bangla; 2nd sentence)
BiLSTM (for English to
Bangla; 3rd sentence)

Optimizer = Adam;

Learning rate = 0.001;

No. of encoder and
decoder layers = 6

4.1

3.2

3.01

Table 13. Translations generated by
Google and Bing.
Translators Language pair BLEU
Google English ⇒ Bangla (1st

sentence)
English ⇒ Bangla (2nd
sentence)
English ⇒ Bangla (3rd
sentence)

36.84

6.42

4.52

Bing English ⇒ Bangla (1st
sentence)
English ⇒ Bangla (2nd
sentence)
English ⇒ Bangla (3rd
sentence)

36.11

6.01

4.05

15

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

inferencing. Our model’s score as well as Google
and Bing translators’ scores are presented in
Tables 12 and 13, respectively. The graphical illus-
trations of test set, sentences 1, 2, and 3, are, re-
spectively, shown in Figures 16–18.

We randomly picked the first sentence from the
test data set:

English: Ask your tribal guide and he will show you
the traditional fishing gears, hunting gadgets, and in-
digenous medicinal plants – an important part of their
culture and more.

Gold Standard Output: ত�োমার উপজাত ীয় পথপ্রদর্শককে
জিজ্ঞেস করে দেখ�ো আর সে ত�োমাকে প্রথাগত মাছ ধরার উপকরণ, শি কার
করার সামগ্ রী ও দেশজ ঔষধি উদ্ভিদ দেখাবে,যা তাদের সংস্কৃ তি

Google Translate: আপনার উপজাত ীয় গাইডকে জিজ্ঞাসা করুন
এবং তিনি আপনাকে ঐতিহ্যগত মাছ ধরার সরঞ্জাম, শি কারের গ্যাজেট এবং
দেশ ীয় ঔষধি গাছ দেখাবেন - তাদের সংস্কৃ তির একটি গুরুত্বপূর্ণ অংশ এবং
আরও অনেক কিছু।

Bing Translate: আপনার উপজাত ীয় গাইডকে জিজ্ঞাসা করুন এবং
তিনি আপনাকে ঐতিহ্যবাহ ী মাছ ধরার গিয়া র, শি কার ী গ্যাজেট এবং দেশ ীয়
ঔষধি গাছপালা দেখাবেন - তাদের সংস্কৃ তির একটি গুরুত্বপূর্ণ অংশ এবং আরও
অনেক কিছু।

We randomly picked the second sentence from
the test data set:

English: Mr. Smith has often been to India.
Gold Standard output: স্মিথ-বাব ভারতে বেশ কয়েকবার

এসেছেন।
Google Translate: মিস্টার স্মিথ প্রায়ই ভারতে গেছেন।
Bing Translate: স্মিথ প্রায়ই ভারতে যেতেন।
We randomly picked the third sentence from the

test data set:
English: Take a tour of Jaipur to know the city

which is fairly young, less than three centuries old.
Gold standard output: তিনশ�ো বছরেরও কম পুরন�ো নব ীন

শহর জয়পুর ঘুরে দেখ।
Google Translate: তিন শতাব্ দীরও কম পুরান�ো শহরটি ম�োটামুটি

তরুণ, শহরটি জানতে জয়পুরে ঘুরে আসুন।
Bing Translate: জয়পুরের একটি ভ্রমণ করুন শহরটি জানতে যা

ম�োটামুটি তরুণ, তিন শতাব্ দীরও কম পুরান�ো।

6. Analysis and Discussion

We provide a detailed analysis of our experimentation
in this section. First, in the MNIST dataset, we start-
ed with varying different hyper-parameters such as
the number of units in different layers, number of ep-
ochs, etc., and observed their effect on training and
validation accuracy. In ANN/deep neural networks, it is
difficult to predict in advance the number of iterations
that would be needed for the model’s convergence. In
a deep neural network, the number of hidden layers
and the total number of neurons in each layer are two
very important hyper-parameters [43]. Here, our study
was mainly focused on the following hyper-parameters
of the sequential model: activation function: ReLU,
number of units in layers: 512 (initially), number of
epochs, etc. In our case, we have found that the

0
10
20
30
40

Bi LSTM (for
Eng. To Bangla)

Google Bing

BLEU score

Figure 16: BLEU scores produced
by different NMT models for the first
test data.

Figure 17: BLEU scores generated by
different NMT models for the second
test data.

Figure 18: BLEU score produced by
various NMT models on third test data.

0
2
4
6
8

BLEU

0
2
4
6 3.01

4.52 4.05

BLEU

16

Application of hyper-parameter tuning in neural machine translation: Datta et al.

model converges after 10 epochs. When we reduced
the number of units in different layers, we found there
is a slight decline in both accuracies. However, reduc-
ing more units in different layers may cause underfit-
ting. In the ML models, the number of epochs refers
to the number of times for which the training data are
shown to the network during training. We need to keep
on increasing the number of epochs until the validation
accuracy starts decreasing while the training accuracy
is increasing. This overfits the model. To overcome this
overfitting problem, dropout is one of the techniques.
With dropout, the model can be regularized. The gen-
eral rule is to apply dropouts between 20% and 50%.
In dropout, the number of neurons in layers is reduced.
Hence, too high a dropout results in the model coming
to be characterized by the behavior of an underlearn-
er. Another important hyper-parameter is the num-
ber of hidden layers. Several hidden layers are to be
increased until we don’t get any further improvement
in the test data set (error). The model’s accuracy de-
pends on the number of units in different layers.

Second, for the NMT system, we have used the
following hyper-parameters along with others: optim-
izer, learning rate, encoder, and decoder layers. The
selected values of our hyper-parameters are report-
ed in Table 12. We have used Adam as an optimizer.
Adam is an appropriate selection when the data sets
and parameters are large in a model. It combines gra-
dient descent with momentum and RMSProp [44]. The
second hyper-parameter is the learning rate, which is
one of the important hyper-parameters for training the
neural network model. The learning rate value ranges
from 0.0 to 1.0. We have selected the learning rate val-
ue as 0.001. If the learning rate value is too high, then
the model may converge faster but to a suboptimal level
of solution. And if the value is too low, then it will take
longer to train the model, i.e., will require more epochs.
As stated before, several hidden layers need to be in-
creased till we don’t get any further improvement in test
data. In our model, we have taken the number of en-
coder and decoder layers to six. With this hyper-param-
eter setting of our bidirectional LSTM model and with
randomly picked three English sentences from the test
data set, we achieved BLEU scores of 4.1, 3.2, and 3.01
for sentences 1, 2, and 3, respectively. We compared
the results of our model with the output from the trans-
lation services offered by Google and Bing. Referring to
the results shown in Tables 12 and 13 and their graph-
ical representation in Figures 16–18, we observe that
our model’s BLEU score is much lower than those of
the Google and Bing translation services for the three
randomly picked English sentences from the test data

set, although we are not aware of the optimized hy-
per-parameters used in either of the translation engines,
Bing Translator and Google Translate. However, there
are several possible reasons for this. Some of the rea-
sons are as follows: we used a corpus that is not large
enough as demanded by the deep learning model. A
sufficient and appropriate corpus has a significant im-
pact on NMT performance [45]. We experimented with
a limited corpus, and that too from the low-resource
category. Also, our language pairs are highly morpho-
logical and syntactically different. These are some of the
linguistic challenges along with our model constraint.
However, neither the BLEU scores that are generated
for our model nor those for Google Translate and Bing
Translator are completely reliable. BLEU’s score gener-
ation process solely depends on matching criteria be-
tween the translated results (sentences) and the gold
standard output (reference sentences). It matches n to-
kens at a time, i.e., 1-gram (uni-gram), 2-gram (bigram),
and n-gram from candidate tokens and reference to-
kens. Candidate tokens are the tokens from the trans-
lated sentences, and reference tokens are the tokens
from the reference sentences. Based on the translated
results as reported in Tables 12 and 13 as well as their
graphical representations in Figures 16–18, it can be ob-
served that the scores for the three sample test sen-
tences are quite low. However, the translations gener-
ated by our model, as well as those by the Google and
Bing translation services, are comprehensible and can
be understood by the human evaluator. In MT evalua-
tion, human evaluation is considered to be the best but
is a time-consuming process. These generated results
were shown to five human evaluators, and according
to the opinions of each of these five, all the translated
results are comprehensible and their average score
comes out to be more than 60 and in a range of 60–85.
The maximum scores are for Google Translate and Bing
Translator, and the lower scores, ranging from 60 to 65,
are for our model.

7. Conclusions and Future Work

In this research, we have systematically examined
the significance of hyper-parameter adjustment in
several machine learning algorithms. By altering the
hyper-parameters and evaluating the overall impact of
this alteration on the model’s performance, we have
also confirmed the phenomenon of this adjustment
having a significance in terms of the MNIST dataset.
For every machine learning model, hyper-parameter
optimization plays a critical role in the avoidance of
overfitting and underfitting. We also looked into a

17

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

case study where NMT was applied to see how
well it performed on language pairings with limit-
ed resources. The effectiveness of NMT on several
low-resource language pairings with various sets
of hyper-parameters was thoroughly examined. As
previously mentioned, we employed the English to
Bangla tourism language pair (corpus), a low-re-
source language, for a case study and evaluated the
performance of our NMT model using a chosen set
of hyper-parameters; and resultantly, we have derived
the following insightful conclusions:
•	 Optimal hyper-parameter optimization is crucial in

attaining optimal model behavior and resulting in
improved accuracy.

•	 A substantial and relevant corpus is highly vital in
NMT for better performance.

•	 Owing to data-centricity, it is crucial to choose the
right model and hyper-parameters in conjunction with
suitable linguistic preprocessing such as tokenization,
word embedding, named entity, true-casing, stem-
ming, lemmatization, etc.

To improve accuracy when models are trained with
low-resource languages, many techniques and meth-
ods have been proposed by researchers in terms
of model setting with hyper-parameter tuning, mod-
el selection, and linguistic aspects, such as transfer
learning, exploiting advanced NLP models with multi-
level attention, byte-pair encoding (BPE), etc. [46, 47].

In the future, we intend to develop an NMT system
while looking for the right hyper-parameters, which
might aid us in speeding up the training of advanced
deep learning models and enhancing accuracy, particu-
larly for low-resource, highly morphological languages.

Data Availability

The source of the data and its URL are already pro-
vided in the manuscript.

Conflicts of Interest

The authors declare that there are no conflicts of in-
terest regarding the publication of this paper.

References

[1]	 I. J. Unanue, E. Z. Borzeshi, and M. Piccardi,
“Regressing Word and Sentence Embeddings for Low-
Resource Neural Machine Translation,” IEEE Trans.
Artif. Intell., vol. 00, no. 0, pp. 1–15, 2022, doi: 10.1109/
TAI.2022.3187680.

[2]	 H. Wang, H. Wu, Z. He, L. Huang, and
K. W. Church, “Progress in Machine Translation,”
Engineering, vol. 18, pp. 143–153, 2022, doi: 10.1016/j.
eng.2021.03.023.

[3]	 S. A. Wang Na, Zhang Xiaohong, “A Research
on HMM based Speech Recognition in Spoken
English,” Recent Adv. Electr. Electron. Eng., 2021.

[4]	 A. Banerjee et al., “BENGALI-ENGLISH
RELEVANT CROSS LINGUAL INFORMATION ACCESS
USING FINITE AUTOMATA,” 2010, pp. 595–599, doi:
10.1063/1.3516373.

[5]	 P. Koehn, F. J. Och, and D. Marcu, “Statistical
Phrase-Based Translation,” no. June, pp. 48–54, 2003.

[6]	 P. Koehn et al., “Moses: open source toolkit
for statistical machine translation,” Proc. 45th Annu.
Meet. ACL Interact. Poster Demonstr. Sess. - ACL ’07,
no. June, p. 177, 2007, doi: 10.3115/1557769.1557821.

[7]	 Y. Wu et al., “Google’s Neural Machine
Translation System: Bridging the Gap between Human
and Machine Translation,” pp. 1–23, 2016, [Online].
Available: http://arxiv.org/abs/1609.08144.

[8]	 F. Stahlberg, “Neural machine translation:
A review,” J. Artif. Intell. Res., vol. 69, pp. 343–418,
2020, doi: 10.1613/JAIR.1.12007.

[9]	 Z. Tan et al., “Neural machine translation:
A review of methods, resources, and tools,” AI Open,
vol. 1, no. October 2020, pp. 5–21, 2020, doi: 10.1016/j.
aiopen.2020.11.001.

[10]	 E. Salesky, A. Runge, A. Coda, J. Niehues,
and G. Neubig, “Optimizing segmentation granularity
for neural machine translation,” Mach. Transl.,
vol. 34, no. 1, pp. 41–59, 2020, doi: 10.1007/
s10590-019-09243-8.

[11]	 R. Lim, K. Heafield, H. Hoang, M. Briers, and
A. Malony, “Exploring Hyper-Parameter Optimization
for Neural Machine Translation on GPU Architectures,”
pp. 1–8, 2018, [Online]. Available: http://arxiv.org/
abs/1805.02094.

[12]	 R. Rubino, B. Marie, R. Dabre, A. Fujita, M.
Utiyama, and E. Sumita, Extremely low-resource neural
machine translation for Asian languages, vol. 34, no. 4.
Springer Netherlands, 2020.

[13]	 Y. Li, J. Li, and M. Zhang, “Deep Transformer
modeling via grouping skip connection for neural
machine translation,” Knowledge-Based Syst., vol. 234,
p. 107556, 2021, doi: 10.1016/j.knosys.2021.107556.

[14]	 N. Tran, J.-G. Schneider, I. Weber, and A. K. Qin,
“Hyper-parameter Optimization in Classification: To-do
or Not-to-do,” Pattern Recognit., vol. 103, p. 107245, Jul.
2020, doi: 10.1016/j.patcog.2020.107245.

[15]	 L. H. B. Nguyen, V. H. Pham, and D. Dinh,
“Improving Neural Machine Translation with AMR
Semantic Graphs,” Math. Probl. Eng., vol. 2021, 2021,
doi: 10.1155/2021/9939389.

[16]	 G. X. Luo, Y. T. Yang, R. Dong, Y. H. Chen, and
W. B. Zhang, “A Joint Back-Translation and Transfer

18

Application of hyper-parameter tuning in neural machine translation: Datta et al.

Learning Method for Low-Resource Neural Machine
Translation,” Math. Probl. Eng., vol. 2020, 2020, doi:
10.1155/2020/6140153.

[17]	 J. G. Carbonell, R. E. Cullingford, and A. V.
Gershman, “Steps Toward Knowledge-Based Machine
Translation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. PAMI-3, no. 4, pp. 376–392, 1981, doi: 10.1109/
TPAMI.1981.4767124.

[18]	 C. K. Wu, C. C. Shih, Y. C. Wang, and R. T. H.
Tsai, “Improving low-resource machine transliteration
by using 3-way transfer learning,” Comput. Speech
Lang., vol. 72, no. February 2020, p. 101283, 2022,
doi: 10.1016/j.csl.2021.101283.

[19]	 L. Yang and A. Shami, “On hyperparameter
optimization of machine learning algorithms: Theory
and practice,” Neurocomputing, vol. 415, pp. 295–316,
2020, doi: 10.1016/j.neucom.2020.07.061.

[20]	 Y. Bengio, “Practical recommendations
for gradient-based training of deep architectures,”
Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 7700 LECTU, pp. 437–478, 2012, doi:
10.1007/978-3-642-35289-8_26.

[21]	 M. Y. Mikheev, Y. S. Gusynina, and T. A.
Shornikova, Building Neural Network for Pattern
Recognition. 2020.

[22]	 C. M. Bishop, Neural Networks for Pattern
Recognition. USA: Oxford University Press, Inc., 1995.

[23]	 J. Bergstra and Y. Bengio, “Random search for
hyper-parameter optimization,” J. Mach. Learn. Res.,
vol. 13, pp. 281–305, 2012.

[24]	 G. Dhiman, V. Vinoth Kumar, A. Kaur, and
A. Sharma, “DON: Deep Learning and Optimization-
Based Framework for Detection of Novel Coronavirus
Disease Using X-ray Images,” Interdiscip. Sci. –
Comput. Life Sci., vol. 13, no. 2, pp. 260–272, 2021,
doi: 10.1007/s12539-021-00418-7.

[25]	 G. Melis, C. Dyer, and P. Blunsom, “On
the state of the art of evaluation in neural language
models,” arXiv Prepr. arXiv1707.05589, 2017.

[26]	 I. Sutskever, O. Vinyals, and Q. V. Le,
“Sequence to sequence learning with neural networks,”
Adv. Neural Inf. Process. Syst., vol. 4, no. January,
pp. 3104–3112, 2014.

[27]	 D. Bahdanau, K. H. Cho, and Y. Bengio,
“Neural machine translation by jointly learning to align
and translate,” 3rd Int. Conf. Learn. Represent. ICLR
2015 - Conf. Track Proc., pp. 1–15, 2015.

[28]	 M. T. Luong, H. Pham, and C. D. Manning,
“Effective approaches to attention-based neural
machine translation,” Conf. Proc. - EMNLP 2015 Conf.
Empir. Methods Nat. Lang. Process., pp. 1412–1421,
2015, doi: 10.18653/v1/d15-1166.

[29]	 A. Vaswani et al., “Attention is all you need,”
Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no.
Nips, pp. 5999–6009, 2017.

[30]	 J. Devlin, M. W. Chang, K. Lee, and K.
Toutanova, “BERT: Pre-training of deep bidirectional
transformers for language understanding,” NAACL HLT
2019 - 2019 Conf. North Am. Chapter Assoc. Comput.
Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, no.
Mlm, pp. 4171–4186, 2019.

[31]	 I. Goodfellow et al., “Generative adversarial
networks,” Commun. ACM, vol. 63, no. 11, pp.
139–144, 2020, doi: 10.1145/3422622.

[32]	 Z. Yang, W. Chen, F. Wang, and B. Xu,
“Generative adversarial training for neural machine
translation,” Neurocomputing, vol. 321, pp. 146–155,
2018, doi: 10.1016/j.neucom.2018.09.006.

[33]	 L. Wu et al., “Adversarial Neural Machine
Translation,” 2017, [Online]. Available: http://arxiv.org/
abs/1704.06933.

[34]	 Z. Zhang, S. Liu, M. Li, M. Zhou, and E. Chen,
“Bidirectional generative adversarial networks for
neural machine translation,” CoNLL 2018 - 22nd Conf.
Comput. Nat. Lang. Learn. Proc., no. CoNLL, pp. 190–
199, 2018, doi: 10.18653/v1/k18-1019.

[35]	 C. H. Lin, C. J. Lin, Y. C. Li, and S. H. Wang,
“Using generative adversarial networks and parameter
optimization of convolutional neural networks for lung
tumor classification,” Applied Sciences (Switzerland),
vol. 11, no. 2. pp. 1–17, 2021, doi: 10.3390/
app11020480.

[36]	 S. Merity, N. S. Keskar, and R. Socher,
“Regularizing and optimizing LSTM language models,”
6th Int. Conf. Learn. Represent. ICLR 2018 - Conf.
Track Proc., 2018.

[37]	 X. Liu, K. Duh, L. Liu, and J. Gao, “Very Deep
Transformers for Neural Machine Translation,” 2020,
[Online]. Available: http://arxiv.org/abs/2008.07772.

[38]	 X. Zhang and K. Duh, “Reproducible and
Efficient Benchmarks for Hyperparameter Optimization
of Neural Machine Translation Systems,” Trans. Assoc.
Comput. Linguist., vol. 8, pp. 393–408, 2020, doi:
10.1162/tacl_a_00322.

[39]	 X. Liu, W. Wang, W. Liang, and Y. Li, “Speed
Up the Training of Neural Machine Translation,” Neural
Process. Lett., vol. 51, no. 1, pp. 231–249, 2020, doi:
10.1007/s11063-019-10084-y.

[40]	 K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,
“{B}leu: a Method for Automatic Evaluation of Machine
Translation,” in Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, Jul.
2002, pp. 311–318, doi: 10.3115/1073083.1073135.

[41]	 G. Datta, N. Joshi, and K. Gupta, “Analysis
of Automatic Evaluation Metric on Low-Resourced
Language: BERTScore vs BLEU Score,” in Speech and
Computer, 2022, pp. 155–162.

[42]	 A. Pathak and P. Pakray, “Neural machine
translation for Indian languages,” J. Intell. Syst.,
vol. 28, no. 3, pp. 465–477, 2019, doi: 10.1515/
jisys-2018-0065.

19

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

[43]	 A. Koutsoukas, K. J. Monaghan, X. Li,
and J. Huan, “Deep-learning: Investigating deep
neural networks hyper-parameters and comparison
of performance to shallow methods for modeling
bioactivity data,” J. Cheminform., vol. 9, no. 1, pp. 1–13,
2017, doi: 10.1186/s13321-017-0226-y.

[44]	 D. P. Kingma and J. L. Ba, “Adam: A method for
stochastic optimization,” 3rd Int. Conf. Learn. Represent.
ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.

[45]	 H. Gete and T. Etchegoyhen, “Making the most
of comparable corpora in Neural Machine Translation:

a case study,” Lang. Resour. Eval., 2022, doi: 10.1007/
s10579-021-09572-2.

[46]	 B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer
learning for low-resource neural machine translation,”
EMNLP 2016 - Conf. Empir. Methods Nat. Lang. Process.
Proc., pp. 1568–1575, 2016, doi: 10.18653/v1/d16-1163.

[47]	 R. Sennrich, B. Haddow, and A. Birch, “Neural
machine translation of rare words with subword units,”
54th Annu. Meet. Assoc. Comput. Linguist. ACL 2016 -
Long Pap., vol. 3, pp. 1715–1725, 2016, doi: 10.18653/
v1/p16-1162.

