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Abstract: The present study used three machine learning models, including Least Square Support Vector Regression 
(LSSVR) and two non-parametric models, namely, Quantile Regression Forest (QRF) and Gaussian Process Regression 
(GPR), to quantify uncertainty and precisely predict the side weir discharge coefficient (Cd) in rectangular channels. So, 
15 input structures were examined to develop the models. The results revealed that the machine learning models used in 
the study offered better accuracy compared to the classical equations. While the LSSVR and QRF models provided a good 
prediction performance, the GPR slightly outperformed them. The best input structure that was developed included all four 
dimensionless parameters. Sensitivity analysis was conducted to identify the effective parameters. To evaluate the 
uncertainty in the predictions, the LSSVR, QRF, and GPR were used to generate prediction intervals (PI), which quantify 
the uncertainty coupled with point prediction. Among the implemented models, the GPR and LSSVR models provided 
more reliable results based on PI width and the percentage of observed data covered by PI. According to point prediction 
and uncertainty analysis, it was concluded that the GPR model had a lower uncertainty and could be successfully used to 
predict Cd. 
 
Keywords: Machine learning; Prediction intervals; Sensitivity analysis; Side weir discharge coefficient; Uncertainty 
analysis. 

 
INTRODUCTION 
 

Side weirs are the most important and common devices used 
in water resource management, flow distribution and control, 
sewerage, flood control, and urban runoff applications to divert 
water from the main channel to the lateral channel (Abbasi et al.,  
 
 

2021; Haddadi and Rahimpour, 2012; Kilic and Emin Emiroglu, 
2022). Determining the lateral flow in the side weir is crucial for 
water management, water resource projects, water use (industry, 
agriculture), and water level control (Pospíšilík and Zachoval, 
2023; Říha and Zachoval, 2015; Salmasi et al., 2021). Figure 1 
illustrates the schematic of a side weir. 
 

 
Fig. 1. Schematic representation of flow over a rectangular sharp-crested side weir. 
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A review of the literature shows that the flow and hydraulics 
characteristics of rectangular side weirs have widely been stud-
ied numerically, theoretically, and experimentally by many re-
searchers (Granata et al., 2013; Hager, 1987; Maranzoni et al., 
2017). 

Owing to the complexity of hydraulic characteristics of side 
weirs and human and laboratory equipment errors, the existing 
equations (regression-based) cannot accurately estimate the 
discharge coefficient (Cd), so machine learning has been used to 
predict it (Parsaie and Haghiabi, 2015; Seyedian et al., 2014). 
Since experimental methods are subject to uncertainty and a 
limited number of tests yield to the empirical relationships, there 
is still a need for methods that consider different hydraulic and 
geometric parameters for the target parameter prediction 
(Ebtehaj et al., 2018). 

Over the past decade, numerous machine learning and soft 
computing methods have been used in civil engineering, water 
resources science, hydrology, and hydraulics to model complex 
phenomena (Seyedian and Rouhani, 2015; Yadav et al., 2022). 
Out of the many available machine learning techniques, we 
chose Least Square Support Vector Regression (LSSVR), 
Quantile Regression Forest (QRF), and Gaussian Process 
Regression (GPR) in this study due to their computational 
efficiency, ease of training, and ability to provide Prediction 
Intervals (PI). Despite extensive research on these models and 
their applications, there is a lack of information concerning 
prediction uncertainty in the literature. 

The LSSVR was used as a powerful tool to solve regression 
analysis problems in various fields (Suykens et al., 2002). This 
technique has been used in many studies for function 
approximation between variables and predictors (Kisi and 
Ozkan, 2017; Prayogo and Susanto, 2018; Yi et al., 2018). Liao 
et al. (2019) showed that the LSSVR was an appropriate tool for 
reducing the computational burden. 

Olyaie et al. (2019) simulation indicated that the LSSVR 
could predict the Cd of the piano key (PK) weir accurately 
enough. The LSSVR was used to model the Cd of curved 
labyrinth overflows (Hu et al., 2021). They found that it could be 
a suitable tool for predicting Cd. Zounemat-Kermani et al. 
(2019) examined the precision of the LSSVR in estimating 
discharge passing triangular arced labyrinth weirs. The outcomes 
indicated a good agreement between the model estimates and 
observed discharge. Roushangar and Akhgar (2020) applied the 
LSSVR to model the discharge coefficient of stepped spillways. 
According to the results, it performed well in modelling 
discharge coefficients at stepped spillways. 

Another machine learning technique that has many 
applications in various fields of water engineering sciences is 
Gaussian Process Regression (GPR) which is an efficient 
technique. The GPR is a non-parametric powerful probabilistic 
modelling instrument that enables observations in continuous 
spaces or time (Bonakdari et al., 2019; Williams and Rasmussen, 
2006). Akbari et al. (2019) studied the proficiency of Machine 
Learning (ML) and nonlinear and multilinear regression models 
for the Cd of PK and showed that the GPR model surpasses other 
ML models in predicting the Cd of PK weir. Karbasi et al. (2021) 
showed that the GPR provided higher accuracy in predicting the 
side orifice discharge coefficient. The modelling results of a Cd 
radial gate indicated that the GPR attained acceptable predictable 
performance (Tao et al., 2022). Nourani et al. (2021) estimated 
the Cd over broad-crested weirs using the GPR.  

Random forests were also presented as a machine learning 
technique by Breiman (2001) and proven to be a very powerful 
and popular tool for regression analysis. A generalization of 
random forests is Quantile Regression Forests (QRF) which can 

derive conditional quantiles (Meinshausen and Ridgeway, 
2006). The QRF has been used in different areas (Ahmed and 
Lin, 2021; Bhuiyan et al., 2018; Francke et al., 2008). In a QRF 
model, prediction intervals (PI) are created based on the spread 
of the dependent variable. 

There is no doubt that the accuracy of any measured variable 
that contributes to determining dependent laboratory data has a 
straight effect due to its own bias (Borghei et al., 2013). There 
are some measured values that can cause certain uncertainty in 
the experimental value (Coleman and Steele, 2009; Johnson and 
Ayyub, 1996). Borghei et al. (2013), Johnson and Ayyub (1996), 
and Říha and Zachoval (2014) examined the uncertainty analysis 
of the Cd. The Cd uncertainty could be estimated by Monte Carlo 
(MC), bootstrap method (BM), and analytical method 
(Mohammed and Golijanek-Jędrzejczyk, 2020; Parsaie and 
Haghiabi, 2021). Gholami et al. (2018) performed uncertainty 
analysis to quantitatively evaluate the Cd models. They created 
PI using standard deviation. 

Because of the uncertainty inherent in experimental methods, 
uncertainty analysis is essential (Ebtehaj et al., 2018) and 
consequently, it remains crucial to conduct testing and 
comparisons of various techniques for quantifying prediction 
uncertainty. In recent years, advancements in machine learning 
models and optimization methods have resulted in better Cd 
prediction. However, these models are still unable to accurately 
predict uncertainties. Although the Cd of side weirs has 
extensively been studied in theory and in the laboratory, PI is 
usually ignored by most studies and only limited research has 
been conducted on uncertainty (Parsaie and Haghiabi, 2021). To 
the best of the authors’ knowledge, the GPR, LSSVR, and QRF 
have not been reported in quantifying side weir uncertainty, and 
this is the first effort to use them to determine the uncertainty of 
innovation in the field of hydraulics structures. In this study, the 
discharge coefficient was predicted using three methods: GPR, 
LSSVR, and QRF. A sensitivity analysis was performed to 
determine the effective parameters. To validate the given 
schemes, the results were compared with empirical equations. 
Then, for the first time, the discharge coefficient uncertainty was 
evaluated using these three methods. This paper is intended to 
provide more understanding of the Cd uncertainty. 

Based on the abovementioned explanation, the main 
contribution of this study can be expressed as (i) developing 
GPR, LSSVR, and QRF models for the prediction of Cd and (ii) 
quantifying the discharge coefficient uncertainty using the three 
models mentioned. 

 
MATERIAL AND METHODS 
Data collection 

 
The study used the datasets presented by Bagheri et al. (2014) 

and Emiroglu et al. (2011). The experimental setup of Emiroglu 
et al. (2011) was implemented at Firat University in Elazig, 
Turkey. The rectangular channel was 12 m long. The channel 
depth and width were 0.5 m and 0.5 m, respectively. The primary 
channel flow depth was controlled by a sluice gate. Steel plates 
were used for the rectangular weir, which was installed on the 
right wall of the primary channel at the same level. An 
electromagnetic flowmeter was used to measure discharge in the 
primary channel, and the discharge over the weir was passed into 
a secondary channel that was calibrated with a standard 
rectangular weir. Subcritical flow conditions were carried out in 
all experiments. 

Using sharp-crested rectangular weirs, Bagheri et al. (2014) 
conducted several experiments. The sluice gate controlled the 
downstream discharge and the flow depth in the primary channel. 
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Electromagnetic flowmeters were used to measure the discharge 
in the upstream primary channels. 

The statistical description of the experimental data collected 
for the present study is shown in Table 1 where Fr, y1/L, p/y1, 
L/b, and Cd denote the Froude number, ratios of upstream flow 
depth to weir length, weir height to upstream flow depth, 
dimensionless length of a weir, and coefficient of discharge, 
respectively.  

Figure 2 presents the histogram distribution for each variable 
and the matrix of correlations between the variables used in Cd  
prediction. In general, there is a weak linear correlation between the 
variables and Cd, so it is difficult to make precision predictions. 

 
Input structure 
 

Using the data that was described, the LSSVR, QRF, and GPR 
were employed to model the Cd of rectangular side weirs. Data 
were separated into two portions for training and testing pur-
poses. Approximately 75% of the data was used for training and 
25% for simulation tests. 

Proper input parameter selection is essential for the develop-
ment and application of machine learning models. Physical pro-
cesses can be simulated accurately by selecting the variables that 
control the phenomenon (Bowden et al., 2005). To explore the 
effect of each dimensionless parameter influencing side weir Cd 
prediction (sensitivity analysis), four different models (M2-M5) 
were defined. Also, to determine the best combination of dimen-
sionless parameters to predict the Cd with the best accuracy, 10 
other models (M6-M15) were presented. As shown in Figure 3, 
all 15 models were defined for the LSSVR, QRF, and GPR.  

 
Table 1. Statistical parameters for the present study. 
 

 Fr p/y1 L/b y1/L Cd 
Minimum 0.09 0.23 0.30 0.09 0.09 
Average 0.39 0.68 1.38 0.63 0.54 
Maximum 0.83 0.91 3.00 2.88 1.75 
Standard deviation 0.18 0.18 0.95 0.61 0.26 
Coefficient of variation 0.45 0.26 0.69 0.96 0.47 
Skewness 0.48 –0.62 0.66 1.55 1.70 

 
 

 
 

Fig. 2. Histogram and correlation matrix between all variables. 
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Fig. 3. Input structure for machine learning models. 
 

Dimensional analysis 
 
Dimensional analysis was performed to estimate a function 

for the side weir discharge coefficient. It is possible to express 
the discharge coefficient of side weirs as a function of the side 
weir (𝑉), the upstream depth of the flow (y1), the width of the 
primary channel (b), the dynamic viscosity of the water (μ), the 
acceleration gravity (𝑔), the weir crest length (𝐿), the density of 
the water (ρ), the channel slope (S0), the deviation of the angle 
of flow (ψ), and the side weir height (p). 

Dimensionless parameters that impact the Cd were derived 
through the application of the Buckingham π theorem. The di-
mensionless parameters can be obtained as follows: 

 𝐶ௗ = 𝑓(𝑝, 𝐿, 𝑏, 𝑔, 𝑉, 𝑦ଵ, 𝜌, 𝜇, ω, 𝑆଴ )                (1) 
 
According to the parameters affecting the discharge coeffi-

cient and the research conducted in this field (Borghei et al., 
1999; Ebtehaj et al., 2015; Subramanya and Awasthy, 1972), the 
discharge coefficient is presented as follows: 

 𝐶ௗ = 𝑓 ቀ𝐹𝑟 = ௏√௚௬భ , ௣௬భ , ௬భ௅ , ௅௕ , ω, 𝑆଴ ቁ    (2) 
 
New dimensionless parameters affecting the prediction of the 

discharge coefficient can be obtained as follows: 
 𝐶ௗ = 𝑓 ቀ𝐹𝑟ଵ, ௣௬భ , ௬భ௅ , ௅௕ቁ                      (3) 
 

Least squares support vector regression 
 
Cortes and Vapnik (1995) proposed the Support Vector  

Machine (SVM) model based on statistical learning theory and 
the principle of structure risk minimization. Later, Suykens and 
Vandewalle (1999) introduced the Least Squares Support Vector 

Machine (LSSVM) method as an alternative to the SVM. Unlike 
the SVM, the LSSVM employs linear equations instead of a  
second-degree programming problem to find solutions. This 
approach reduces the complexity compared to the standard SVM 
by utilizing the least-squares optimization method rather than the 
second-order method. The LSSVM maps inputs from lower 
dimensions to higher dimensions to transform nonlinear 
relationships between inputs and outputs into linear ones. This is 
particularly useful for solving nonlinear problems and 
miniaturization (Anandhi et al., 2008). As a result, the LSSVM 
has a higher calculation precision compared to the classic SVM. 
In the LSSVM model, the linear least-square system is used as 
the loss function, and the inequality constraints are modified to 
equality constraints. 

Assume that the relationship between the response variables 
and the independent variable is based on the following function: 

 𝑦(𝑥) = 𝑤்𝜑(𝑥) + 𝑏                      (4)  
 
where 𝑥 ∈ 𝑅௡ , 𝑦 ∈ 𝑅 , and 𝜑 represent the high-dimensional 
space of features as a feature map. To calculate Eq. (4), the fol-
lowing optimization problem is formulated as follows: 
 minimize      𝐽௣(𝑤, 𝜁) = ଵଶ (𝑤்𝑤 + 𝛾 ∑ 𝜁௜ଶ௞௟ୀଵ )        (5) 

 
s.t.  𝑦௟ = 𝑤்𝜑(𝑥௟) + 𝑏 + 𝜁௟ , 𝑙 = 1, … , 𝑘 
where 𝛾 ൐ 0 and 𝜁௟ ∈ 𝑅 are the regularization constant and the 
error variables, respectively. 

The Lagrangian function for Eq. (5) using Karush-Kuhn-
Tucker conditions is given by the following linear system.  

 ൥ 0 1ఐ்1ఐ ψ + ଵఊ 𝐼௞൩ ቂ𝑏𝑟ቃ = ቂ0𝑌ቃ     (6) 

 
where  

1-Input 

M12: 1 

M13: 2 

M14: 3 

M15: 4 

2-Input 

M6:1,2 

M7: 1,3 

M8: 1,4 

M9: 2,3 

M10: 2,4 

M11: 3,4 

3-Input 

M2: 1,2,3 

M3: 1,2,4 

M4: 1,3,4 

M5: 2,3,4 

4-Input 
M1: 1,2,3,4 

Cd

1:Fr

2:p/y1

3:L/b

4:y1/L
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𝑟 = ሾ𝑟ଵ, … , 𝑟௞ሿ், 𝑌 = ሾ𝑌ଵ, … , 𝑌௞ሿ், 1ఐ = ሾ1, … ,1ሿ்    (7) 
 ψ௞௟ = 𝜑(𝑋௞)்𝜑(𝑋௟) = 𝐾(𝑋௞, 𝑋௟)         (8) 

 
The resulting LSSVR regression equation is obtained as: 
 𝑚ෝ(𝑥) = ∑ 𝑟̂௟𝐾(𝑋௞, 𝑋௟) + 𝑏෠௞௟ୀଵ       (9) 

 
where 𝐾 ∶ ℝௗ × ℝௗ → ℝ  and d is the number of dimensions. 
Many methods are used to estimate 𝑛ො 𝑜𝑓 𝑛, one of which is lin-
ear smoother. In this method, the LSSVR estimates Eq. (9) as 
follows: 
 𝑛ො(𝑥) = ∑ 𝑙௟(𝑥)𝑌௟௡௟ୀଵ         (10) 
 
where  𝑥 ∈ ℝௗand  𝐿(𝑥) = (𝑙ଵ(𝑥), … , 𝑙௞(𝑥))் ∈ ℝ௡. Also, one 
can use Eq. (11) to estimate confidence intervals (Brabanter et 
al., 2011). 
 ௡ො(௫)ି௉ሾ௡ො(௫)|௑ୀ௫ሿඥ௏ሾ௡ො(௫)|௑ୀ௫ሿ ஽→ 𝒩(0,1)                (11) 

 

Distribution convergence is indicated by 
஽→. There is condi-

tional variance in the model V ሾ𝑛ො(𝑥)|𝑋 = 𝑥ሿ =∑ 𝑙௟(𝑥)ଶ𝜎ଶ(𝑥௟௞௟ୀଵ )  and conditional mean  𝑃ሾ𝑛ො(𝑥)|𝑋 = 𝑥ሿ =∑ 𝑙௟(𝑥)𝑛(𝑥௟)௞௟ୀଵ . Also, 𝜎ଶ(𝑥) = V ሾ𝑌|𝑋 = 𝑥ሿ = 𝑃ሾ𝑌ଶ|𝑋 = 𝑥ሿ −ሼ𝑃ሾ𝑌|𝑋 = 𝑥ሿሽଶ . Confidence intervals can be approximated as 
follows: 

 𝑛ො(𝑥) ± 𝑧ଵ − 𝑟 2ൗ ඥ𝑉ሾ𝑛ො(𝑥)|𝑋 = 𝑥ሿ               (12) 
 
where 𝑧ଵ − 𝑟 2ൗ  represents ൫1 − 𝑟 2ൗ ൯th standard normal distri-
bution of quantile. 

 
Quantile regression forests  

 
In this research, a non-parametric tree-based regression 

method called Quantile Regression Forests (QRF) was used to 
predict the discharge coefficient using dimensionless parame-
ters. The QRF is highly capable of data handling and can save 
the trained model for future predictions (Nateghi et al., 2014). 
The QRF is derived from random forest regression. The QRF 
uses a bagged version of decision trees, which reduces the vari-
ance and avoids overfitting, which improves the accuracy and 
stability of the model. The non-parametric approach is employed 
by QRF to assess conditional quantiles of variables' high-dimen-
sional predictors. 

Suppose Y is a response variable (observed value) and X is a 
predictor variable or covariate, possibly high-dimensional. The 
primary objective of conducting regression analysis is to 
determine the correlation between two variables, X and Y. A tree 
ensemble is generated by random forest using n independent 
observations (𝑌௜, 𝑋௜), 𝑖 = 1, … , 𝑛 . A bagged version of the 
training data is used for each tree. In the case of new data X = x, 
the single tree prediction 𝑇(𝜃) equals the observed value in the 
leaf 𝑙(𝑥, 𝜃). When the observation (Xi) belongs to the leaf, the 
weight vector 𝑤௜(𝑥, 𝜃) will have a positive value; otherwise, it 
will be equal to zero. The total weight is equal to 1, so 

 𝑤௜(𝑥, 𝜃) = ଵቄ೉೔∈ೃ೗(ೣ,ഇ)ቅ#൛௝:௑ೕ∈ோ೗(ೣ,ഇ)ൟ               (13) 
 
in which 𝑅௟(௫,ఏ) is a rectangular subspace. 

Single tree prediction for X = x based on the weighted average 
of observations 𝑌௜, 𝑖 = 1, … , 𝑛 is done as follows: 

𝜇̂(𝑥) = ∑ 𝑤௜(𝑥, 𝜃) 𝑌௜௡௜ୀଵ                              (14) 
 
Conditional mean 𝐸(𝑌|𝑋 = 𝑥) is estimated by averaging k 

single trees. If 𝑤௜(𝑥) is the average of 𝑤௜(𝜃) in this set of trees: 
 𝑤௜(𝑥) = 𝑘ିଵ ∑ 𝑤௜(𝑥, 𝜃௧)௞௧ୀଵ                               (15) 
 
Moreover, the final forecast will be in the form of the follow-

ing relationship. 
 

μො(x)= ∑ wi(x)Yi
n
i=1                               (16) 

 
For X = x, the definition of the conditional distribution func-

tion of Y can be expressed as follows. 
 𝑅(𝑦|𝑋 = 𝑥) = 𝑃(𝑌 ≤ 𝑦|𝑋 = 𝑥) = 𝐸൫1ሼ௒ஸ௬ሽห𝑋 = 𝑥൯ (17) 

 
where Y is observations of the response variable, X refers to the 
predictor variable or covariate, and 𝐸൫1ሼ௒ஸ௬ሽห𝑋 = 𝑥൯ is the con-
ditional mean which is estimated by the weighted mean over the 
observation of 1ሼ௒ஸ௬ሽ (Meinshausen and Ridgeway, 2006). 

According to QRF, Y has the following conditional distribu-
tion function for a given X = x. 

 𝑅෠(𝑦|𝑋 = 𝑥) = ∑ 𝑤௜(𝑥)௡௜ୀଵ 1ሼ௒೔ஸ௬ሽ                 (18) 
 
For any α value, the prediction intervals can be constructed 

using quantile regression. In this study, a 95% prediction interval 
is used, which is defined as: 

 𝐼(𝑥)ሾ𝑄଴.଴ଶହ(𝑥), 𝑄଴.ଽ଻ହ(𝑥)ሿ                                (19) 
 

Gaussian process regression  
 
The Gaussian Process Regression (GPR) is a non-parametric 

kernel-based model with high computational efficiency and 
precision (Liu et al., 2016). This method is highly capable of 
modelling complex nonlinear issues. 

The Gaussian Process Regression (GPR) utilizes several ran-
dom variables, some of which exhibit Gaussian distributions. 
This extends the concept of the Gaussian distribution (Zhao et 
al., 2011). The GPR is a way of establishing prior distributions 
in function space, which is a natural generalization of the Gauss-
ian distribution whose mean and covariance are represented by a 
vector and matrix, respectively. Although the Gaussian distribu-
tion is defined over vectors, it is applied to functions. The GPR 
is a suitable method that allows for the development of flexible 
classification and regression models, without being limited to 
simple parametric forms for regression or class probability func-
tions. One significant advantage of using GPR is the availability 
of a diverse range of covariance functions. These functions have 
varying degrees of smoothness and continuous structures, allow-
ing modellers to select the most suitable function for their spe-
cific application. Gaussian processes are important in statistical 
modelling because of their normal properties. They allow for the 
specification of distributions across functions that have one or 
more input variables. For instance, in a regression model with 
Gaussian errors, the use of matrix calculations can help deduce 
outcomes that are suitable for datasets with sample sizes larger 
than one thousand. 

By considering x and y as the input and output domains, re-
spectively, from which n pairs (xi, yi) are drawn identically and 
independently distributed. The main assumption of GPR is that 
y is given by: 

 𝑦 = 𝑓(𝑥) + 𝜀                   (20) 
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The observation error, 𝜀, can be characterized by a zero-mean 
value distribution (𝜇(𝑥) = 0), and variance 𝜎ଶ and 𝑓(𝑥) are the 
GPR function values (Williams and Rasmussen, 2006). 

The joint distribution is determined by the kernel function as 
follows: 

 ቂ 𝑦𝑦௧ቃ ~𝑁 ൬0, ൤𝑘(𝑥, 𝑥) + 𝜎ேଶ𝐼ே 𝑘(𝑥௧, 𝑥)்𝑘(𝑥௧, 𝑥) 𝑘(𝑥௧, 𝑥௧)൨൰          (21) 
 
where 𝑘(𝑥௧, 𝑥) = ሾ𝑘(𝑥௧, 𝑥ଵ), 𝑘(𝑥௧, 𝑥ଶ), … , 𝑘(𝑥௧, 𝑥ே)ሿ     (22) 
 𝑥 = ሾ𝑥ଵ, 𝑥ଶ, … , 𝑥ேሿ்  is the training input matrix, 𝑦 =ሾ𝑦ଵ, 𝑦ଶ, … , 𝑦ேሿ் is the training output vector, 𝑥௧ is the test input, 
and 𝑦௧ is the test output dataset. The predictor distribution over 𝑦௧ is expressed as Eq. (23). 
 𝑃(𝑦௧|𝑥, 𝑦, 𝑥௧)~𝑁(𝑦ത௧, 𝑐𝑜𝑣(𝑦௧))                            (23) 
 
where 𝑦ത௧ = 𝑘(𝑥௧, 𝑥)ሾ𝑘(𝑥, 𝑥) + 𝜎ேଶ𝐼ேሿିଵ𝑦                   (24) 
 𝑐𝑜𝑣(𝑦௧) = 𝑘(𝑥௧, 𝑥௧) − 𝑘(𝑥௧, 𝑥)ሾ𝑘(𝑥, 𝑥) + 𝜎ேଶ𝐼ேሿିଵ𝑘(𝑥௧, 𝑥)் (25) 

 
In the present study, squared exponential kernels were used 

that can be expressed as: 
 𝑘൫𝑥௜, 𝑥௝൯ = 𝜎௙ଶ𝑒𝑥𝑝 ൬− ଵଶ ห௫೔ି௫ೕหమఊమ ൰               (26) 

 
where 𝜎௙ is the signal standard deviation and 𝛾 is the length scale 
for predictors. The values of 𝜂 = ൛𝑙, 𝜎௙ଶ, 𝜎௟ଶൟ (hyper-parameters) 
are calculated by maximizing the log-likelihood function as fol-
lows (Momeni et al., 2020; Schulz et al., 2018). 
 𝐿(𝜂) = log 𝑃(𝑦|𝑥, 𝜂) = 
 

= − ଵଶ 𝑦்(𝑘(𝑥, 𝑥)ିଵ𝑦) − ଵଶ 𝑙𝑜𝑔|𝑘(𝑥, 𝑥)| − ௡ଶ log 2𝜋          (27) 
 
When the specified conditions are satisfied, the training pro-

cess will be terminated. 
 

Existing equations 
 
A combination of Fr, p/y1, L/b, and L/y1 parameters was con-

sidered as input parameters to model Cd according to Emiroglu 
et al. (2011) (Eq. 28). Eqs. (29–30) show the models proposed 
by Subramanya and Awasthy (1972), and Cheong (1991) used 
only the Froude number (Fr) parameter to predict Cd. 

 cୢ = ቈ0.836 + ൬−0.035 + 0.39 ቀ ௣௬భቁଵଶ.଺ଽ + 0.158 ቀ௅௕ቁ଴.ହଽ +
0.049 ቀ ௅௬భቁ଴.ସଶ + 0.244𝐹𝑟ଵଶ.ଵଶହ൰ଷ.଴ଵ଼቉ହ.ଷ଺

      (28) 
 cୢ = 0.611ට1 − ቀ ଷி௥భమி௥భమାଶቁ               (29) 
 cୢ = 0.45 − 0.221𝐹𝑟ଵଶ                (30) 

 
Model performance evaluation  

 
A comparison of the proposed methods for predicting the Cd 

of side weirs is presented in this study using the coefficient of 
determination (R2), Root Mean Squared Error (RMSE), and 
Relative Absolute Error (RAE) (Eqs. (31) to (33)). The RMSE 
shows the standard deviation of the difference between the  
predicted samples and the experimental ones. The major 

advantage of the RMSE and RAE is that they represent the error 
on the same scale as the output variable. These indices can be 
determined by: 

 

R2=1–
∑ ൫஼೏೚೔–஼೏೛೔൯2n

i=1∑ (஼೏೚೔ି஼೏೚തതതതത)2n
i=1

  (31) 
 

RMSE=ට∑ (஼೏೛೔-஼೏೚೔)2n
i=1

n
   (32) 

 𝑅𝐴𝐸 = ∑ ห஼೏೛೔ି஼೏೚೔ห೙೔సభ∑ |஼೏೚೔ି஼೏೚തതതതത|೙೔సభ                   (33) 
 
The measured values are represented by O, 𝑃 is the predicted 

value obtained by the machine learning models used, Oഥ  is the 
average of observation values, and n is the number of data 
samples. The closer the values of RMSE and RAE to 0 and R2 to 
1, the higher the performance of the machine learning models. 

 
Containing ratio  

 
Containing Ratio (CR) is the ratio of observation data that lies 

within the prediction bounds to total observation data (Xiong et 
al., 2009). It is clear that having a higher CR for the estimated 
prediction bounds is preferable as it indicates more observation 
data contained within the prediction bounds. The CR range is 
between zero and one, and CR = 1 expresses perfect simulation. 
 
Average relative bandwidth 

 
To facilitate prediction bounds, a dimensionless index is rep-

resented by Average Relative Bandwidth (RB). RB range is be-
tween 0 and ∞. The lower the value, the more ideal it would be. 

 𝑅𝐵 = ଵ௡ ∑ ቀ஼ௗ೔ೠି஼ௗ೔೗ቁ஼ௗ೔௡௜ୀଵ                     (34) 
 
where Cdi (i = 1,2, …, n) represents the number of observed Cd 
and 𝐶𝑑௜௨ and 𝐶𝑑௜௟ show the upper bounds and lower bounds of 
the Cd, respectively. 
 
Mean prediction bandwidth  

 
Mean Prediction Bandwidth (MPB) is another index that 

shows bandwidth. 
 𝑀𝑃𝐵 = ଵ௡ ∑ (𝑠௜௨ − 𝑠௜௟)௡௜ୀଵ                         (35) 
 
The range of MPB is between zero and ∞. The closer to zero, 

the better. 
Figure 4 depicts the flowchart for prediction and uncertainty 

analysis using machine learning models. 
 

RESULTS AND DISCUSSION  
Effect of the dimensionless parameters on Cd  
 

To predict the side weir discharge coefficient, this section 
evaluates three machine learning models (LSSVR, QRF, and 
GPR). As mentioned in the data collection section, 216 data 
points were used in this research. Some fundamental strategies 
are used to evaluate these models, such as the sensitivity test, 
input structure, uncertainty analysis, and comparison with em-
pirical equations. The quantitative statistical outcomes of the 
LSSVR, QRF, and GPR models are presented in Figure 5 for the 
training and test phases. 
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Moreover, Figure 6 depicts the Taylor diagram of the 
observed and predicted Cd for the GPR, LSSVR, and QRF. The 
Taylor diagram gives information about the correlation,  
root-mean-square-difference (RMSD), and standard deviation 
on a single plot (Taylor, 2001).  

The RMSD measures the disagreement between two datasets, 
whereas the correlation coefficient determines the extent of the 
linear relationship between them (Taylor, 2001). The predicted 
values obtained by the M1 scenario are closer to the target point 
(observed), demonstrating accurate efficiency. 

 
 
 
 

 
Fig. 4. The flowchart for the prediction and uncertainty analysis of Cd. 
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Fig. 5. The comparison of the models’ results: a) training and b) testing. 

 
There is a superior capability associated with the M1 input for 

all models. For example, in the LSSVR, QRF, and GPR, the 
model with M1 input leads to (R2 = 0.848, RMSE = 0.118, RAE 
= 0.253), (R2 = 0.849, RMSE = 0.098, RAE = 0.349), and (R2 = 
0.883, RMSE = 0.095, RAE = 0.242), respectively. All criteria 
show that the GPR has superior prediction accuracy.  

Based on the comparison of the LSSVR, QRF, and GPR re-
sults based on Figure 5, M1 and M2 have no significant differ-
ences in prediction accuracy. In particular, compared to the 
LSSVR model, the GPR seems to perform slightly better in terms 
of efficiency. The GPR has lower prediction error values and a 
higher level of agreement in M2 input (R2 = 0.875, RMSE = 
0.094, RAE = 0.262). A desirable prediction was made by the 
LSSVR and QRF models, although slightly lower than the GPR, 
the results still yield acceptable statistical metrics of (R2 = 0.870, 
RMSE = 0.105, RAE = 0.262) and (R2 = 0.830, RMSE = 0.108, 
RAE = 0.376), respectively. 

Overall, for the 3-input structure (M2-M5), as compared with 
the LSSVR model, these models had a better correlation. These 
results confirm the superior estimation capability of the GPR and 
QRF models compared to the LSSVR models in point prediction. 
In the 2-input structure, M9 and M10 achieved a better result in 
test phase using the LSSVR with average (R2 = 0.887, RMSE = 

0.095, RAE = 0.303), QRF with average (R2 = 0.798, RMSE = 
0.124, RAE = 0.436), and GPR with average (R2 = 0.873, RMSE 
= 0.095, RAE = 0.303). The accuracy is relatively acceptable 
even with two and three input variables.  

Among the single inputs (M12-M15), the Fr and y1/L have the 
highest accuracy, but the combinations of these two variables 
(M8) have poorer results in the 2-input structure. The combina-
tion of Fr and y1/L input parameters provides poorer accuracy 
than the 1-input structure. 

In some machine learning models, adding more input param-
eters increases complexity, which may reduce the model perfor-
mance (Bonakdari et al., 2015; Cartwright, 2015), but in this re-
search, all models provided accurate results with 3 and 4-input 
parameters. 

To select the most efficient models, visual assessment is very 
important. In the testing phase, a scatterplot was used to compare 
the predicted and measured Cd (Figure 7) in M1. The 
performance of prediction models is mostly evaluated with a 
scatterplot. A notable feature is that it offers details about the 
diversion of the data points from their original observation. 

Figure 7 illustrates that all models with the M1 scenario are 
capable of producing a suitable result. A good correlation was 
found between the model and the observed data, as shown in  
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Fig. 6. The Taylor diagram for (a) LSSVR, (b) QRF, and (c) GPR. 
 
Figure 7. It is visible from the scatterplots that almost all data 
points of the models fall within ±25% relative error bands.  
 
Discrepancy ratio 

 
Figure 8 depicts the Discrepancy Ratio (DR) of the LSSVR, 

QRF, and GPR for the M1 input structure in the test phase. The 
DR is obtained by dividing the predicted discharge coefficient 
with the observed discharge coefficient (DR = CdPredicted/CdObserved). 
This diagram is shown to visually evaluate the efficiency of 
model. Model performance improves as more data are closer to 
the 1 range. Obviously, DR of 84%, 87%, and 76% of the data 
predicted by the LSSVR, GPR, and QRF, respectively are in the 
range of 1 ± 0.1. For the LSSVR, QRF, and GPR, the mean of 
DR is 1.02, 1.03, and 1.00, respectively. In all models, only 4% 
of the data (two data points) is less than 0.9, while for the 
LSSVR, QRF, and GPR models, 14%, 20%, and 9% of the data 
are greater than 1.1, respectively. Therefore, it is clear that the 
QRF tends to slightly overestimate Cd. Consequently, the GPR 
exhibits no significant bias and performs well in estimating the 
coefficient of discharge.  

 
Violin plot 

 
Graphical analysis techniques are key to selecting the best 

model for the prediction of Cd. For this purpose, violin plots are 
used as an advanced graphical tool to explain the similarity be-
tween predicted and observed Cd values. Statistically, a violin 
plot shows the distribution shape of data by integrating a kernel 
density plot with a box plot. Similar information can be obtained 

by five number summary (maximum (Q4), third quartile (Q3), 
median (Q2), first quartile (Q1), and minimum (Q0)). In this sec-
tion, the violin plot was employed to evaluate the model perfor-
mance in predicting Cd (Figure 9). 

The medians of the observed data, LSSVR, QRF, and GPR 
are 0.46, 0.46, 0.48, and 0.47, respectively. In addition, the inter-
quartile range (IQR) is an important element that can be found in 
the violin plot. IQR = Q3 – Q1 is the distance between the upper 
and lower quartiles. The IQR of the observed data, LSSVR, 
QRF, and GPR is 0.20, 0.19, 0.28, and 0.22, respectively. 

Figure 9 clearly shows that the Cd predicted using GPR re-
sembles the observed Cd.  The results of the GPR model are in 
better agreement with the observed values than those of the 
LSSVR and QRF models. In addition, there is an acceptable sim-
ilarity between the distributions of the observed and predicted 
Cd by GPR. It is noticeable that the GPR can accurately predict 
the higher values of the Cd. In general, all three models showed 
suitable prediction performance. The best agreement was ob-
served between the GPR and the observed data, so it was recog-
nized as the superior model. 

 
Sensitivity analysis  

 
Several hydraulic and physical variables have considerable  
effects on Cd. A sensitivity analysis is performed to determine 
how dimensionless parameters affect model performance. To 
conduct an accurate simulation, identifying the parameters that 
have an impact on the Cd is extremely important.it is crucial to 
identify the parameters that influence the value of Cd (Tao et al., 
2022). 

a b

c 



Uncertainty analysis of discharge coefficient predicted for rectangular side weir using machine learning methods 

123 

 
 
 
 
 

 
 
 
 
 

  

  

 

 
Fig. 7. The scatterplots of LSSVR, QRF and GPR in M1 scenario. 
 

All the input parameters from M1 were sequentially removed 
and the statistical effects of removing them were evaluated. The 
M2, M3, M4, and M5 inputs were created by the elimination of 
y1/L, L/b, p/y1, and Fr, respectively (Figure 3). Using this proce-
dure, each scenario (M2–M5) was compared with its original  
situation (M1) to demonstrate the impact of each parameter. The 
results are depicted in Figure 5 for the LSSVR, QFR, and GPR. 

In the LSSVR and QRF, the elimination of p/y1 and Fr shows 
significant influences on Cd. Also, in the GPR, the elimination 
of p/y1 and L/b exerts a significant effect. Borghei et al. (1999); 
Jalili and Borghei (1996) considered the effect of L/b and p/y1 
on Cd. Additionally, Agaccioglu and Yüksel (1998), Emiroglu 
et al. (2011), Hussain et al. (2021), and Kaya et al. (2011) found 
that Cd values tend to increase with increasing L/b values.   
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Fig. 8. The discharge coefficient discrepancy ratios (DR) in testing data. 
 

 
Fig. 9. The violin plot for a comparison between observed and predicted test data for the M1 input structure. 
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Ebtehaj (2015) showed that Fr and p/y1 parameters had similar 
effects on Cd. For instance, if Fr is omitted in the LSSVR and 
QRF, RAE ascends from 0.253 to 0.459 and 0.349 to 0.404 and 
R2 descends from 0.848 to 0.760 and 0.849 to 0.807, 
respectively. It is therefore concluded that the Fr of a sharp-
crested rectangular weir is highly influential on the Cd, as shown 
in previous studies (Azamathulla et al., 2016; Borghei et al., 
1999; Ranga Raju Kittur et al., 1979). The exclusion of y1/L in 
the LSSVR and GPR and the exclusion of y1/L and L/b in the 
QRF seem to have little effect. 

In another scenario, two important parameters (M6: Fr and 
p/y1 for the LSSVR and QRF, and M9: P/y1 and L/b for the 
GPR) were used to predict discharge coefficients. For three 
models, this idea has been tested by modelling with these two 
effective parameters. The results are shown in Figure 5. The 
effective contour plot for each model was constructed by plotting 
the most influential input variables against the predicted  
 

discharge coefficients (Figure 10). It should be mentioned that 
the important parameters in each model considered included Fr 
and p/y1 for the LSSVR and QRF and L/b and p/y1 for the GPR. 
Figure 10 shows that the maximum Cd values were in ranges of 
Fr>0.75 and p/y1>0.65 in the LSSVR, in the ranges of Fr>0.75 
and p/y1>0.30 in the QRF, and in the ranges of 1.3<L/b<1.8 and 
0.3<p/y1<0.5, and 2.5<L/b and 0.85<p/y1<0.5 in the GPR. 

 
Comparison with classical equations 

 
Extensive literature is available for the prediction of Cd. The 

existing models were compared with classical equations to assess 
their precision (Eqs. 28–30). These models were selected for 
comparison in the present study. The comparison between the 
observed Cd of rectangular side weir and those predicted by the 
suggested classical equations are shown in Figure 10, and the 
statistical performance indices are presented in Table 2. 
 

  

 

Fig. 10. The variations of the most important parameters against predicted Cd. 
 
Table 2. A comparison of GPR with existing equations using statistical indices. 

 

Equation No.  
Train  Test 

R2 RMSE RAE  R2 RMSE RAE 

28 Emiroglu et al. 2011 0.70 0.14 0.46  0.54 0.18 0.51 
29 Subramanya et al. 0.38 0.30 1.16  0.57 0.32 1.24 
30 Cheong 0.38 0.30 1.05  0.57 0.32 1.06 

 GPR-M1 0.97 0.03 0.08  0.88 0.10 0.24 

 

LSSV

GPR 

QRF



Seyed Morteza Seyedian, Ozgur Kisi 

126 

 

Comparing Eqs. (29–30), which predict Cd based on Fr, the 
results are similar. The evaluation of Eq. (28), which considers 
L/b, L/y1, p/y1, and Froude number, shows that Eq. (28) provides 
the most accurate predictions for Cd as compared to Eqs. (29) 
and (30). Comparing the classical equations reveals that the L/b, 
L/y1, and p/y1 parameters (Eq. 22) reduce the error by nearly half 
the error reported by Cheong (1991); Subramanya and Awasthy 
(1972). According to Table 2, the GPR (R2 = 0.88, RMSE = 0.10, 
RAE = 0.24) significantly outperforms the empirical equations. 

Figure 11 shows that the results produced by Eq. (29) and Eq. 
(30) are less dispersed than those of Eq. (28). According to 
Figure 11, (Subramanya and Awasthy, 1972) and (Cheong, 
1991) equations yield similar results such that as Cd increases, 
the prediction accuracy decreases. However, Eqs. (29) and (30) 
fail to provide good predictions even for small Cd values. Figure 
11 also displays that the results of all classical equations have 
significant errors when Cd exceeds 0.6. 

In conclusion, according to the information presented in Ta-
ble 2, which displays the values of prediction errors using statis-
tical indices, and Figure 11, a significant improvement is shown 
over classical equations that present weak performance in Cd 
prediction. 
 
Uncertainty 

 
Model coverage probabilities are quantitatively evaluated by 

using uncertainty analysis. The uncertainty criteria for all models 
in testing data are presented in Table 3. 

Figure 12 illustrates 95% prediction intervals (PI) for the pre-
diction of Cd applying the LSSVR, QRF, and GPR models in the 
M1 input structures during the testing phase.  

To validate the uncertainty quantification provided by the PI, 
we computed the containing ratio (CR) of the observed data that 
fall within these intervals. An accurate uncertainty quantification 
should present that CRs are similar to the probability of the 95% 
PI. Across all draws of 55 observations, we would expect 5% of 
the data points, on average, to fall outside the PI (95% would be  
 

in the PI). In this case, we found a coverage ratio of 0.84, 0.98, 
and 0.93 for the LSSVR, QRF, and GPR in the M1 input struc-
ture, respectively, which meant that 46, 54, and 51 of 55 obser-
vation data fell within 95% PI. From Figure 12 and Table 3, we 
find that there is a good match between 95% confidence intervals 
and the results obtained by the QRF and GPR models, and most 
of the observed Cd data fall within the PI in M1 input. 95% PI of 
the LSSVR model is found to underestimate uncertainty (CR = 
0.84). It is also interesting to note that the width of the PI is larger 
in the high value of Cd in the QRF. However, a slight underesti-
mation of the uncertainty can be seen in the GPR (CR = 0.93) 
where the prediction intervals are narrower than those in the 
QRF. The values bracketed by PI, and the bandwidth values, in-
dicate that the GPR model can predict Cd in M1 input with 
smaller uncertainties. 

 

 
Fig. 11. A comparison of the classical equation with GPR-M1 in the 
test phase. 
 

 
Table 3. Uncertainty performance indices. 
 

Input 
structure 

LSSVR  QRF  GPR 
CR RB MPB  CR RB MPB  CR RB MPB 

M1 84 0.44 0.21  98 0.90 0.50  93 0.57 0.26 
M2 93 0.48 0.25  100 1.28 0.67  89 0.60 0.27 
M3 82 0.49 0.24  100 1.24 0.65  96 0.64 0.29 
M4 96 0.96 0.48  98 1.09 0.59  96 0.96 0.45 
M5 95 1.03 0.53  98 1.22 0.63  98 1.26 0.58 
M6 96 1.10 0.57  98 1.45 0.75  93 1.25 0.59 
M7 93 0.87 0.42  96 1.10 0.59  95 1.08 0.50 
M8 78 0.96 0.45  84 0.97 0.52  82 1.27 0.62 
M9 96 0.70 0.40  95 1.34 0.68  98 1.23 0.57 
M10 96 1.05 0.54  96 1.33 0.67  98 1.34 0.62 
M11 96 1.25 0.67  98 1.15 0.60  95 1.58 0.74 
M12 100 1.47 0.77  95 1.21 0.62  95 1.69 0.79 
M13 96 1.80 0.89  85 1.47 0.73  93 1.98 0.93 
M14 96 1.29 0.67  95 1.00 0.54  93 1.62 0.75 
M15 96 1.26 0.67  91 0.94 0.85  84 0.80 0.37 
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Fig. 12. The observed and predicted Cd in the M1 input for the testing data. The error bars indicate 95% PI. 

 
In 3-input structures (M2-M5), the width of PI is 

overestimated in some cases (e.g., the QRF in M2 and M3), 
while in other cases, it is underestimated (e.g., the LSSVR in M1 
and M3), leading to PIs that are either too wide or too narrow. 
As noted above, the expected proportion of true values in the 
95% PI is 0.95. It can be concluded that in the 3-input structures, 
the LSSVR and GPR models predict uncertainty more accurately 
than the QRF model. In terms of the point prediction in the  
3-input structure, all models predict Cd with high accuracy in the 
M2 input structure. Therefore, 95% PIs created by models in the 
M2 input structure are shown in Figure 12. In the M2 input 
structure, the LSSVR and GPR could create PI with a 
combination of parameters including Fr, p/y1, and L/b with 
smaller uncertainties compared to the QRF model. The QRF 
overestimates uncertainty (CR = 1, RB = 0.48, MPB = 0.67) 
whereas the LSSVR slightly underestimates it (CR = 0.93, RB = 
1.28, MPB = 0.25). 

The 95% PI obtained from models in the 2-input structures 
can be seen in Table 3. The results show that models 
underestimate uncertainty in some cases (e.g., the LSSVR, QRF, 
and GPR in M8) or overestimate in others (e.g., the QRF in M6 
and the GPR in M9). In general, poor results indicate that models 
could not predict the uncertainty with acceptable accuracy; more 
observed data are bracketed within the 95% PI. 

In the 1-input structures (M12–M15), it can be seen that the 
P/y1 parameter has higher uncertainty in all models than other 
parameters. The higher uncertainty of P/y1 is related to the high 
value of bandwidth (i.e., 0.89, 0.73, and 0.93 for the LSSVR, 
QRF, and GPR, respectively).  

By removing parameters in input structures (e.g., compare  
3-input with 2-input), the predicted bandwidth increases by the 
models. Compared to the other models, the GPR method with 4 
inputs is more suitable and reliable when estimating Cd based on 
all six prediction and uncertainty performance evaluation 
criteria. 

 

DISCUSSION 
 
In this study, we aimed to evaluate the precision of three 

machine learning models for predicting side weir Cd. Accurate 
prediction of Cd is crucial due to the complex nonlinear 
relationship between hydraulic and geometric parameters and 
Cd. We selected the QRF, LSSVR, and GPR based on their 
remarkable progression in previous studies (Francke et al., 2008; 
Hu et al., 2021; Tao et al., 2022). It is worth mentioning that the 
prediction interval for side weir Cd is novel since it has not been 
extensively studied in the literature. 

The results indicate that the GPR can predict Cd with the 
highest precision. Additionally, the impact of input parameters 
on prediction accuracy was explored by evaluating ML model 
precision using various combinations of input parameters. This 
research not only focused on prediction intervals but also 
examined the role of input variables in the prediction process. 

To verify the superiority of the GPR, the forecasting results 
were compared with some classical equations according to which 
the GPR exhibited lower bias than the classical equations.  

The predictions produced by the ML models are inadequate 
and do not allow decision-makers to gauge the accuracy of each 
prediction. A more viable option is interval prediction, which can 
measure the level of uncertainty in the Cd and is preferable over 
conventional point prediction. Therefore, the uncertainty of 
forecasting results was calculated and analysed for the ML 
models. By means of interval prediction, decision-makers can 
receive a quantitative assessment of the potential range of the Cd. 
The constructed prediction intervals (PIs) produced by various 
ML models differ in quality due to model parameters. In 
practical applications, decision-makers anticipate a PI with a 
coverage probability equivalent to or greater than the given 
confidence level and a narrow interval width. A PI that has a high 
coverage probability but an excessively wide width is useless. A 
comparative analysis reveals that the GPR is significantly more 
effective than the other compared methods in building high-

0.0

0.5

1.0

1.5

2.0

1 10 19 28 37 46 55

Cd

No. of data

Predicted
Observed

0.0

0.5

1.0

1.5

2.0

1 10 19 28 37 46 55

Cd

No. of data

Predicted
Observed

0.0

0.5

1.0

1.5

2.0

1 10 19 28 37 46 55

Cd

No. of data

Predicted
Observed

GPR

QRF LSSVR



Seyed Morteza Seyedian, Ozgur Kisi 

128 

quality PIs with both a high coverage probability and narrow 
width. The GPR can directly build PIs without making any 
erroneous assumptions, demonstrating high robustness and 
reliability. This makes it a promising tool for constructing PIs of 
Cd. On the other hand, the PIs constructed using the QRF model 
are unsatisfactory in terms of the confidence level and the 
interval width. We used these methods with no additional 
calibration procedure. Roy and Larocque (2019) showed that 
calibrating the QRF would certainly improve its performance, 
and this is certainly an avenue for future research. 

As mentioned in the “Input structure” section, the applied 
models were constructed using a total of 15 dimensionless 
parameters (see Figure 3). Figure 5 shows that there are 
significant differences in the importance of the dimensionless 
parameters. While p/y1 was found to be the most influential 
parameter in the models, the order and significance of the 
remaining variables differed. The following considerations are 
presented when analysing these results: 

a) The parameters of each model influence the results. 
b) The nature of each model for computing the importance of 

the dimensionless parameters is different. 
The calculation results show that the point prediction and 

prediction interval of the GPR are higher than those of the other 
models. One of the reasons for the superiority of this model is its 
generalization properties. By choosing various kernel functions, 
users have the ability to incorporate prior knowledge and 
specifications regarding the model's shape. Also, usability and 
flexibility in implementation can be another advantage of this 
model. It is worth noting that the outcomes support the aim of 
preparing a robust ML model and greatly help the application of 
side weir. 

 
CONCLUSION 

 
In the present study, three machine learning models, the 

LSSVR and two non-parametric models, the QRF and the GPR, 
were used to predict side weir Cd. Moreover, the uncertainty and 
reliability of the models were investigated for Cd prediction. 
Four hydraulic and geometrical parameters, i.e., Froude number 
(Fr), ratios of upstream flow depth to length of weir (y1/L), height 
of weir to upstream flow depth (p/y1), and dimensionless length 
of a weir (L/b), were used as inputs, and the coefficient of 
discharge (Cd) was defined as model output. The scenarios to 
develop the models included 15 input structures (M1-M15). 
According to the statistical indices of the test data, all three ML 
models performed well in predicting the side weir Cd, and the 
RMSE-value was equal to 0.118, 0.098, and 0.095 for the 
LSSVR, QRF, and GPR, respectively. The comparison between 
ML models and classical equations (regression-based) 
demonstrated that ML models outperformed in their ability to 
predict Cd. With negligible difference, the result showed that the 
GPR (R2=0.883, RMSE = 0.095, RAE = 0.242) in the test phase 
of M1 input outperformed both the LSSVR (R2 = 0.848, RMSE 
= 0.118, RAE = 0.253) and the QRF (R2 = 0.849, RMSE = 0.098, 
RAE = 0.349). Overall, the superiority of the GPR in point 
prediction over other investigated models was found in all input 
structures (M1–M15). The outcomes indicated that all 
implemented machine learning models were statistically valid. 
Additionally, sensitivity analysis provided insight into the 
importance of input parameters, and thus p/y1 and Fr in the 
LSSVR and QRF, whereas p/y1 and L/b in the GRP were the 
most effective parameters in the model’s efficiency. A 
comparison of different developed input structures showed that 
the models with effective parameters could predict the Cd, but 
the prediction accuracy was significantly lower than the best 

structure (M1) in the LSSVR and QRF. Although the use of two 
parameters reduced the complexity of the simulation, the results 
were inadequate. 

Uncertainty remains an important issue in Cd prediction, but 
tools used to determine uncertainty must follow the application 
and development of the latest modelling methods. Owing to the 
increasing use of non-parametric and efficient methods for 
modelling, this research compared the performance of two non-
parametric models with the LSSVR in predicting uncertainty 
according to the input parameters. Compared to the other 
methods, the GPR (CR = 93, RB = 0.57, MPB = 0.26) provided 
reasonable results in the best input structure (M1) compared to 
the LSSVR (CR = 84, RB = 0.44, MPB = 0.21) and QRF (CR = 
98, RB = 0.90, MPB = 0.50). Overall, the PI estimated using the 
QRF was generally wider than the PI estimated using the LSSVR 
and GPR in most input structures. In terms of prediction 
performance, the GPR method outperformed the other models. 
Additionally, for uncertainty estimation, the GPR method 
provided results that were similar in quality to those obtained 
from the LSSVR method in all input structures. The results 
showed that the GPR could gain high accuracy in Cd prediction 
and high-performance PI. 

The primary shortcoming of the ML models in this study was 
their reliance on a black-box approach to predict Cd, which 
limited their transparency. Additionally, the applied ML models 
demonstrated certain limitations such as the need for determining 
internal parameters, ensuring model stability, and other 
drawbacks that require user expertise. Furthermore, these ML 
models were limited in their capability of forecasting Cd beyond 
the training data since they could not well extrapolate the data. 

ML is concerned with the amount of data used for training. 
To identify the optimal train-test ratio, future investigations 
could explore various data portions, such as 80–20 (80% train 
and 20% test), 70–30, 65–35, 60–40, and 50–50. There is no 
established method for determining the best model parameters, 
which largely relies on user knowledge. Hence, optimization 
algorithms to select the best parameters could be another area of 
focus for future studies. Additionally, coupling ML models with 
pre-processing data techniques may enhance Cd prediction 
accuracy. 
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