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Small area estimation is receiving considerable attention due to the high demand for small area
statistics. Small area estimators of means and totals have been widely studied in the literature.
Moreover, in the last years also small area estimators of quantiles and poverty indicators have
been studied. In contrast, small area estimators of inequality indicators, which are often used
in socio-economic studies, have received less attention. In this article, we propose a robust
method based on the M-quantile regression model for small area estimation of the Theil index
and the Gini coefficient, two popular inequality measures. To estimate the mean squared error
a non-parametric bootstrap is adopted. A robust approach is used because often inequality is
measured using income or consumption data, which are often non-normal and affected by
outliers. The proposed methodology is applied to income data to estimate the Theil index and
the Gini coefficient for small domains in Tuscany (provinces by age groups), using survey and
Census micro-data as auxiliary variables. In addition, a design-based simulation is carried out
to study the behaviour of the proposed robust estimators. The performance of the bootstrap
mean squared error estimator is also investigated in the simulation study.
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1. Introduction

Formulating and implementing policies, and allocating funds requires timely, reliable and

disaggregated estimates of a large set of parameters, such as means, quantiles, poverty and

inequality indicators. Sample surveys provide an effective way of obtaining estimates for

such population characteristics. Estimation, however, can become difficult when the focus

is on domains (areas) with small sample sizes. The term “small areas” is typically used to

describe domains whose sample sizes are not large enough to allow for reliable direct

estimation, that is, estimation based only on the sample data from the domain (Rao and

Molina 2015). When direct estimation leads to unreliable estimates, one has to rely upon

alternative model-based methods for producing small area estimates. Two approaches for

model-based small area estimation are based on the mixed effect models (Rao and Molina

2015) and the M-quantile models (Chambers and Tzavidis 2006).

Despite the fact that poverty indicators have been studied extensively under both

approaches (Molina and Rao 2010; Marchetti et al. 2012), small area estimation of
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inequality indicators using the M-quantile approach has not been studied extensively. In

this article, we study M-quantile small area estimators of the Theil index and the Gini

coefficient. These are the two inequality indicators most commonly used by practitioners.

The popularity of the Gini coefficient is mainly due to its simplicity, while the appeal of

the Theil index lies in its decomposability into “between” and “within” domains. The

estimation of these inequality measures is challenging because of their non-linear form.

Model assumptions become even more important and departure from these assumptions

may have a more noticeable effect on the estimates.

Often, inequality indicators are estimated from variables that are skewed and affected

by outliers, such as consumption and income. Chambers and Tzavidis (2006) and Sinha

and Rao (2009) proposed model-based outlier robust methods for small area estimation.

Chambers and Tzavidis (2006) addressed the issue of outliers robustness in small area

estimation using an approach based on fitting M-quantile models (Breckling and

Chambers 1988) to the survey data, while Sinha and Rao (2009) addressed this issue from

the perspective of linear mixed models. Chambers et al. (2014) defined such methods as

robust projective, since they project the behavior of the robust working model of the

sample onto the non-sampled part of the population. Tzavidis et al. (2010) and Chambers

et al. (2014) proposed methods that allow for contributions from representative sample

outliers. These methods are defined as robust predictive method, since they attempt to

predict the contribution of the population outliers to target parameters. Other alternatives

are possible, for example Gershunskaya and Lahiri (2010) include a modification of a

classical linear mixed model assuming that the underlying distribution is a scale mixture of

two normal distributions, where outliers are assumed to have a larger variance than regular

observations. The proposed estimators can be classified as robust predictive. The ELL (or

World Bank) proposed by Elbers et al. (2003) and the Empirical Best Predictor (EBP)

proposed by Molina and Rao (2010) are among widely used methods for poverty mapping.

These methods are based on linear mixed models, and assume normally distributed errors.

When data are skewed, the log transformation is commonly used to obtain approximately

normally distributed model residuals. However, in some cases a log transformation may

not be appropriate. Recently, Tzavidis et al. (2018) and Rojas-Perilla et al. (2020)

proposed the use of data-driven power transformations in small area estimation. An

alternative is to specify a model with alternative distributional assumptions to deal with

skew-data.

For instance Graf et al. (2019) discuss an EBP approach under a generalized beta

distribution of the second kind for the errors terms and Elbers and Van der Weide (2014)

propose a method for estimating distribution functions using a mixture of normal

distributions for the model errors. Diallo and Rao (2018) derive an EB estimator by

relaxing the normality assumptions, assuming skew-normal errors. The approach we

propose in this article is based on the M-quantile model and is an alternative to estimators

under the linear mixed model.

The remainder of the article is organized as follows. Section 2 introduces the quantities

of interest, which are the Theil index and the Gini coefficient, Section 3 summarizes the

M-quantile approach to small area estimation, Section 4 introduces the small area

estimators of Theil index and Gini coefficient based on M-quantile models, using a Monte

Carlo approximation and a bias correction technique, that is, the Chambers and Dunstan
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(1986) correction. Moreover, we discuss mean squared error estimation. Section 5 is

devoted to evaluating the performance of the proposed estimators by means of Monte Carl

o design-based simulations. In Section 6 we present results on Gini and Theil estimates at

provincial level in the Tuscany region in Italy. Section 7 summarizes the main results of

the article and puts forward ideas for further research.

2. Direct Estimation of the Theil Index and the Gini Coefficient

Inequality measures are mainly based on non-linear statistics. The most popular of these is

the Gini coefficient (Gini 1914). It has been shown to be inferior to more recently measures,

such as the Zenga index (Zenga 2007), nevertheless, it has a number of advantages over

other measures, such as its simplicity, and it is still widely proposed in empirical studies.

Let i be the index for domains (or areas), i ¼ 1; : : :;m where m is the number of

domains, and let j be the index for units within the domain. We denote the population size,

sample size, sampled part of the population and non-sampled part of the population in area

i respectively by Ni, ni, si and ri, We assume that the sum over the areas of Ni and ni is equal

to N and n respectively.

The Gini coefficient can be defined in many ways. Usually, it is defined by means of the

Lorenz curve. A popular alternative is based on the absolute value of the difference

between all pairs of the target variable:

Gi ¼
Di

2mi

; ð1Þ

where mi ¼
R

ydFi( y), Di ¼
R R
jy1 2 y2j dFi( y1) dFi( y2), y $ 0 and y1, y2 are random

variables with a common distribution, that is Fi( y1) ¼ Fi( y2) ¼ Fi( y). Usually y represent

a measure of the income or consumption. In the rest of the article y is a continuous variable

with support (0, þ 1) and distributionfunction Fi( y), where the subscript i indicates the

domain.

The statistic G is equal to 1 when inequality is at its maximum and it is zero at its

minimum (equal distribution).

Another popular inequality statistics is the Theil index (Theil 1967), which belong to the

family of generalized entropy measures. It can be defined as (Bourguignon 1979;

Shorrocks 1980; Cowell and Kuga 1981; Foster 1983; Maasoumi 1986)

Ti ¼
vi

mi

2 log ðmiÞ; ð2Þ

where mi ¼
R

y dFi( y), ni ¼
R

y log( y) dFi( y) and y . 0.

The statistic T is equal 0 when all the population units share the same amount of the total

of y, that is, equal distribution, and it is equal log(N) (where N is the population size) under

maximum inequality, that is, one unit holds the total amount of y and the other units hold 0.

Its popularity is mainly due to its decomposability into “between” and “within” domains.

Assuming T is the Theil index for the entire population that is divided into m domains, then

T ¼
Xm

i¼1

f iTi þ
Xn

i¼1

f i log
mi

m
;
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where fi ¼
Nimi

Nm
is the share of y in domain i, m is the population mean of y and Ti is the

Theil index in domain i. The first sum is the part that is due to inequality within domains,

the second is the part that is due to differences between domains.

We now discuss direct estimation of inequality indicators for small areas (domains).

Direct estimation for the Gini coefficient is not straightforward. Some popular direct

estimators in the literature are known to be negatively biased in small samples (Deltas

2003; Alfons and Templ 2013), such as

~G
Dir

i ¼
2
Xni

j¼1
wij

Xj

h¼1
wih

� �
2
Xni

j¼1
yijw

2
ijXni

j¼1
wij

Xni

j¼1
yijwij

2 1;

where the values yij; j ¼ 1; : : :; ni are assumed to be sorted in ascending order and wij;

j ¼ 1; : : :; ni is the survey weight associated to yij.

Davidson(2009) notes that the main term in the bias of ~G
Dir

i can be removed by a

ni(ni 21)21 multiplication, under simple random sampling design. However, as noted by

Langel and Tillè (2013) under complex sample designs the correction of Davidson (2009)

is not trivial. We decide to use the following direct estimator (Langel and Tillè 2013):

Ĝ
Dir

i ¼
D̂

Dir

i

2m̂Dir
i

¼

Xni

j¼1

Xni

k¼1
wijwikjyij 2 yikj

N2
i

1

2N21
i

Xni

j¼1
wijyij

; ð3Þ

where Ni is the populationsize in area i (assumed known).

For direct estimation of the Theil index we use the estimator proposed in Davidson and

Flachaire (2007), here adapted to account for the use of a complex sampling design:

T̂
Dir

i ¼
n̂Dir

i

m̂Dir
i

2 log m̂Dir
i

� �
; ð4Þ

where m̂Dir
i ¼ N21

i

Pni

j¼1yijwij, n̂
Dir
i ¼ N21

i

Pni

j¼1yij log yij

� �
wij: The direct estimator we use

is biased for small samples because n̂Dir
i /m̂Dir

i is a biased ratio estimator of ni/mi, though it

should be consistent for large samples. Nevertheless, we decided to use estimators (3) and

(4) because their forms are suitable for applying the Chambers and Dunstan (1986)

correction.

Although variance estimation of direct estimates is not of interest in this articles, it can

be shown that an asymptotic variance estimator of T̂
Dir

i (under simple random sampling)

can be derived using the Delta method. However, Davidson and Flachaire (2007) notes

that this variance estimator leads to inference that is not accurate even in a large sample.

The same result applies to standard bootstrap variance estimation. Variance estimation of

the Theil index is also discussed, among others, in Mills and Zandvakili (1997).

Variance estimation of Equation (3) is not straightforward, even under assumption of

log-normality of the target. Asymptotic estimators of the variance have been proposed by

for example Battacharya (2007), while bootstrap techniques are discussed for example in

Mills and Zandvakili (1997); Alfons and Templ (2013). A literature review about the

variance estimation of the Gini coefficient can be found in Langel and Tillè (2013).
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3. Outlier Robust Small Area Estimation Using M-Quantiles

3.1. M-Quantile Approach to Small Area Estimation

A robust approach to small area estimation is based on the use of the quantile/M-quantile

regression model (Chambers and Tzavidis 2006).

In what follows, we assume that a vector of p auxiliary variable xij is known for each

population unit j in small area i ¼ 1; : : :;m and that values of the variable of interest y are

available from a sample that includes units from all the small areas of interest. We further

assume that the sampling design is ignorable conditional on the covariate information, for

example conditional on the design variables.

The M-quantile of the order q [ (0, 1) of the conditional density of y given the set of

covariates x, f ( yjx), is defined as the solution Qy(qjx,c) of an estimating equation
R
cq{y 2 Qy(qjx, c)}f( yjx)dy ¼ 0, where cq denotes an asymmetric influence function,

which is the derivative of an asymmetric loss function rq. In particular, a linear M-quantile

regression model for yij given xij is one where we assume that

Qy qjxij;c
� �

¼ xT
ijbcðqÞ: ð5Þ

That is, we allow a different set of p regression parameters for each value of q [ (0, 1).

The estimator of bc (q) can be obtained by solving

Xm

i¼1 j[si

X
cq yij 2 xT

ijbc q
� �� �

xij ¼ 0

with respect to bc (q), assuming that

cq yij 2 xT
ijbc q

� �� �
¼ 2c S21 yij 2 xT

ijbc q
� �� �n o

£ qI yij 2 xT
ijbc q

� �
. 0

� �
þ 1 2 q
� �

I yij 2 xT
ijbc q

� �
# 0

� �n o
;

where s is a suitable robust estimate of scale, for example, the MAD estimate s ¼ median

jyij 2 xT
ijbc q

� �
j=0:6745. A popular choice for the influence function is the Huber,

c(u) ¼ uI(juj # c) þc sgn(u)I(juj . c) (Chambers and Tzavidis 2006). However,

alternative influence functions are also possible. Provided that the tuning constant c is

strictly greater than zero, estimates of bc (q) are obtained using iterative weighted least

squares (IWLS).

Chambers and Tzavidis (2006) extended the use of M-quantile regression models to

small area estimation. They characterized the conditional variability across the population

of interest by the M-quantile coefficients of the populationunits. For unit j in area i this

coefficient is the value qij such that Qyðqijjxij;cÞ ¼ yij: The M-quantile coefficients are

determined at the population level. Consequently, if a hierarchical (grouping/clustering)

structure does explain part of the variability in the population data, then we expect units

within clusters to have similar M-quantile coefficients.

When the conditional M-quantiles are assumed to follow the linear model (5), with bc

(q) a sufficiently smooth function of q, Chambers and Tzavidis (2006) define a naive
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estimator of the mean, that is, m̂naive
i ¼ N21

i

P
jesi

yij þ
P

jeri
xT

ij b̂c ûi

� �n o
, where ûi is an

estimate of the average value of theM-quantile coefficients of the units in area i. See

Chambers and Tzavidis (2006) for further details on the estimation of the M-quantile

coefficients at unit level and for the computation of the small area M-quantile coefficients.

Bianchi et al. (2018) proposed a test statistic for testing how close the domain-specific

quantile coefficients are to 0.5, which is used in the application.

The M-quantile small area model can be more formally defined as follows:

yij ¼ xT
ijbc u2ð Þ þ eij; ð6Þ

where bc (ui) is the unknown vector of M-quantile regression parameters for the unknown

area-specific M-quantile co-efficient ui, and eij is the unit level random error term with

distribution function for which no explicit parametric assumptions are being made. The

unknown parameters bc(ui) and ui are estimated as mentioned from sample data, the

model residuals are then eij ¼ yij 2 xT
ij b̂c ûi

� �
:

3.2. Bias Correction

A robust projective estimator (naive estimator, e.g., m̂naive
i ) assumes that all the non-

sampled units follow the (robustly fitted) working model. However, in practice we should

expect that there will be outliers not only in the sample, but also among the non-sampled

units. Hence, using the M-quantile predictions for the out-of-sample units directly leads to

a biased estimator of the small area target parameter. This is linked to the idea of

representative and non-representative outliers described in Chambers (1986) and

Chambers et al. (2014). Using the ideas in Chambers (1986), Tzavidis et al. (2010)

substitute a consistent estimator of the distribution function, using the approach of

Chambers and Dunstan (1986), to derive a version of the M-quantile estimator adjusted for

bias also referred to as a robust-predictive estimator. In particular, Tzavidis et al. (2010)

define the Chambers-Dunstan (CD) estimator of the small area distribution function as

F̂
CD

i ðtÞ ¼ N21
i

j[si

X
Ið yij # tÞ þ n21

i
k[ri

X

j[si

X
IðxT

ikb̂cðûiÞ þ eij # tÞ

2

4

3

5: ð7Þ

Estimates of ui and bc(ui) are obtained following Chambers and Tzavidis (2006).

By using the Chambers-Dunstan estimator of the small area distribution function, one can

define a general framework for small area estimation that allows for the estimation of small area

averages, quantiles, non-linear indicators for example, the Gini coefficient and the Theil index.

For example the M-quantile CD-based estimator of the average of y in small area i is defined as

m̂CD
i ¼

Z þ1

21

y dF̂
CD

i ð yÞ ¼ N21
i

j[si

X
yijþ

2

4
j[ri

X
ŷijþð1 2 f iÞ

j2si

X
eij

3

5: ð8Þ

where f i ¼ niN
21
i is the sampling fraction in area i and ŷij ¼ xT

ij b̂cðûiÞ; j [ ri (Tzavidis et al.

2010). The bias correction is the third addend in Equation (8), and means that this estimator has

higher variability than the naive M-quantile estimator. Nevertheless, because of its bias robust

properties, Equation (8) is usually preferred, over the naive M-quantile estimator in practice.
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Similarly, Tzavidis et al. (2010) use the CD estimator of the small area distribution

function to propose an estimator of the small area quantiles, and Marchetti et al. (2012)

discuss estimation of the Foster et al. (1984) poverty measures.

4. M-Quantile Model-Based Estimation of the Theil Index and the Gini Coefficient

In this section, we describe the methodology for estimating the Theil index and the Gini

coefficient for small areas using the M-quantile approach. We derive these estimators

using the bias correction introduced by Chambers and Dunstan (1986) and extended to the

small area framework by Tzavidis et al. (2010). We start by describing the small area

estimator of the Theil index and then the Gini coefficient. The Monte-Carlo version of

these estimators is also considered at the end of the section.

4.1. Small Area Estimation for the Theil Index

To estimate T at the small area level we plug-in the CD estimator of the distribution function

(7) in Equation (2). Therefore, the small area estimator of the Theil index can be written as

T̂
CD

i ¼
v̂CD

i

m̂CD
i

2 log ðm̂CD
i Þ ð9Þ

where m̂CD
i ¼

R
ydF̂

CD

i ð yÞ;v̂
CD
i ¼

R
y log ð yÞdF̂

CD

i ð yÞ: As an alternative, vCD
i can also be

estimated using a transformed variable z ¼ y log( y), therefore v̂CD
i ¼

R
z dF̂

CD

i ðzÞ: Using

first order Taylor expansion we can show that Equation (9) is unbiased, assuming model-

unbiasedness of m̂CD
i and v̂CD

i (see Equations (17) and (18) in the Appendix, Section 7). The

estimators m̂CD
i and v̂CD

i can be assumed model-unbiased because F̂
CD

i (t) is model-unbiased

for Fi(t) under some reasonable conditions specified in Chambers and Dunstan (1986), and

Wu and Sitter (2001).

We already introduced the CD-based estimator of the small area mean m̂CD
i in Equation

(8). Noting thatZ þ1

21

gðtÞdF̂
CD

i ðtÞ ¼ N21
i

n

j[si

X
gð yijÞ þ n21

i
j[si

X

k[ri

X
gðŷik þ eijÞ

o
;

we can obtain the CD-based estimator of n ¼ g( y) ¼ y log( y) as follows,

v̂CD
i ¼ N21

i

n

j[si

X
yij log ð yijÞ þ n21

i
j[si

X

k[ri

X
ðŷik þ eijÞ log ðŷik þ eijÞ

o
; ð10Þ

where ŷik is the predicted value of yik for the out of sample unit k [ ri using model in

Equation (6) and eij; j ¼ 1; : : :; ni are the model residuals in area i. Alternatively, ni can

also be estimated as

v̂CD
i ¼ N21

i

n

j[si

X
zij þ

k[ri

X
ẑik þ ðNi þ ni 2 1Þ

j[si

X
ez

ij

o
; ð11Þ

where zij ¼ yij log( yij ), ẑik ¼ ŷik log(ŷik) and ez
ijs are residuals obtained from the M-

quantile small area model in Equations (6) where yij is replaced by zij; see Equations (15)

and (16) in the Appendix for further details. Empirically, Equations (10) and (11) are

equivalent and give the same results, however, it is difficult to show this algebraically.
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However, Equation (11) is computationally faster because it doesn’t involve the double

summation present in Equation (10).

4.2. Small Area Estimation for the Gini Coecient

To estimate the Gini coefficient we adopt the same strategy used before for the Theil

index. Therefore, we plug-in the distribution function estimator (7) in Equation (1) leading

to the following small area estimator

Ĝ
CD

i ¼
D̂

CD

i

2m̂CD
i

; ð12Þ

where D̂
CD

i ¼
R R

y1 2 y2j jdF̂
CD

i ð y1ÞdF̂
CD

i ð y2Þ. Assuming F̂
CD

i is model-unbiased for Fi

then using first-order Taylor expansion we can show that the estimator (12) is

approximately model-unbiased (Equations (20) and (21) in the Appendix).

Estimator m̂CD
i is that of Equation (8). Estimator D̂

CD

i is obtained as follows (see

Equation (19) in the Appendix)

D̂
CD

i ¼
R R

t1 2 t2j jdF̂
CD

i ðt1ÞdF̂
CD

i ðt2Þ

¼ N22
i

n

j[si

X

l[si

X
yij 2 yil

�� ��þ n22
i

j[si

X

k[ri

X

l[si

X

h[ri

X
ŷik þ eij 2 ðŷih þ eilÞ

o���
���: ð13Þ

Computing the quadruple summation in Equation (13) is computationally intensive when

the population area size is large (for example greater than 5000 units). In the R language (R

Development Core Team 2013) the use of arrays to speed up the computation is possible. As

an alternative, we wrote a C function that can be called in R through a dynamic library,

which uses a nested “for” to compute the quadruple summation in reasonable time also for

large population domain sizes. The R-code is available in the supplementary materials. The

required computational time is discussed in Section 6.

4.3. Small Area Estimation Based on Monte Carlo Approximation

It is important to mention that small area target parameters can alternatively be estimated

by approximating the distribution of the unknown quantity yik, k [ r by means of Monte-

Carlo simulations. Let di be a parameter of interest in area i that depends from a vector of

known constants c ¼ {c1; c2; : : :}:

di ¼ diðcÞ ¼ hðyij < yik;cÞ j [ si; k [ ri;

where h is a function of the target variable y and the vector of known constants c. Let

ys ¼ {yj, j [ s} be the vector of sample observations, which obey a superpopulation

model, and let t be the vector of unknown parameters of the superpopulationmodel. A

predictor of di can be obtained by preserving the values corresponding to the sample units

and predicting those corresponding to non sampled units:

d̂i ¼ hðyij < E½yikjys; t̂�; cÞ;

where t̂ is a consistent estimator of t and E[yik jys; t̂] ¼ ŷik an unknown quantity that can be

approximated by using the Monte Carlo simulation. It is important to note that if E½yikjys; t̂�
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depends on xij then the covariate values need to be known for all the units in the

population. This is comparable to other methodologies that use unit-level models to

estimate domain-specific non-linear indicators, for example the EBP and ELL methods.

When we use the M-quantile model to estimate di the Monte Carlo approximation can

be obtained asfollows:

1. Fit the M-quantile small area model using the sample values ys and obtain estimates

t̂ ¼ ûi;bcðûiÞ
� �

,

2. Generate an out of sample vector of size Ni 2 ni using

y*
ik ¼ xT

ikb̂c ûi

� �
þ e*

ik; k [ ri; i ¼ 1; : : :;m;

where e*
ik, k [ ri; i ¼ 1; : : :;m is drawn from the empirical distribution function of

the M-quantile model residuals (residuals can be drawn either from the domain (area)

i residuals or from all the residuals).

3. Repeat the process L times. Each time, combine the sample data yij, j [ si and out of

sample data y*
ik, k [ ri for computing d̂

ðl Þ

i .

4. Average the results over L simulations to obtain an estimate of di, d̂i ¼ L 21PL
l¼1d̂

ðl Þ

i .

Further discussion on this Monte Carlo approach can be found in Marchetti et al. (2012).

Usually, in real applications linkage between sampled units and population units is

not possible, that is the set r is unknown. In this case, the prediction is carried out for all

the units in the population Ui ¼ {si, ri}, then d̂i ¼ hðE½yikjys; t̂�; cÞ; k [ Ui: When the

sampling fraction is very small hðE½yikjys; t̂�; cÞ; k [ Ui and hðyij < E½yikjys; t̂�; cÞ; k [ ri

are very similar.

Setting

h y1: : :yni

� �
¼

n21
i ni 2 1ð Þ21

Xni

j¼1

Xni

l¼1
yij 2 yil

�� ��

n21
i

Xni

j¼1
yij

we obtain the Gini coefficient MC estimator, and setting

h y1: : :yni

� �
¼

n21
i

Xni

j¼1
yij log yij

n21
i

Xni

j¼1
yij

2 log n21
i

Xni

j¼1

yij

we obtain the Theil index MC estimator.

The M-quantile MC estimators mimic the Elbers et al. (2003) approach. However, it is

challenging to theoretically justify this method, therefore, statistical properties are shown

via simulations. In contrast, for the M-quantile CD estimators the theoretical background

is better understood (Tzavidis et al. 2010).

4.4. MSE Estimation

MSE estimation for M-quantile small area estimators is widely discussed for linear

statistics, such as means and totals (Chambers et al. 2014). Less research is available for

non-linear statistics. An MSE estimator based on a non-parametric bootstrap scheme for

small area estimators under the M-quantile model that can be used also with non-linear
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statistics is extensively discussed in Marchetti et al. (2012). More details on the non-

parametric bootstrap approach for finite population can also be found, among others, in

Lombardı́a et al. (2003).

Starting from a random sample s selected from a finite population U without

replacement, we fit the M-quantile small area model (6), and we obtain estimates t̂ ¼ {û,

b̂c (ûi)} and residuals eij; i ¼ 1; : : :;m; j [ si: The bootstrap MSE estimates can be

obtained as follows:

1. Given an estimator ĜðuÞ of the distribution of the residuals GðuÞ ¼ Pðe # uÞ; a

bootstrap population, consistent with the M-quantile small area model can be

generated by sampling from ĜðuÞ to obtain e*
ij:

y*
ij ¼ xT

ij b̂c ûi

� �
þ e*

ij:

For defining Ĝ(u) we consider two approaches: (a) sampling from the empirical

distribution function of the model residuals or (b) sampling from a smoothed

distribution function of the model residuals. For each of the two above mentioned

approaches, sampling can be done in two ways: (1) by sampling from the distribution

of all residuals without conditioning on the small area (unconditional approach) or

(2) by sampling from the distribution of the residuals within small area i (conditional

approach). These methods are described in detail in Tzavidis et al. (2010).

2. According to point 1, choose one approach from (a) or (b) and one from (1) or (2), and

generate B bootstrap populations.

3. From each of the B bootstrap population draw L samples using simple random

sample– of size ni– within areas.

4. Using the L samples, compute the estimates of the Theil index and the Gini coefficient

according to the methods proposed in Section 4.

5. Let t̂i be the the estimated small area parameter (from the original sample), t*b

i value)

of the bth bootstrap population, t̂*bl

i be the small area parameter estimated by using

the l sample from the b bootstrap population. The bootstrap estimator of the bias and

the variance of t̂i are defined respectively by

B̂ t̂ið Þ ¼ B21L21
XB

b¼1

XL

l¼1

t̂*bl
i 2 t*b

i

� �
;

V̂ t̂ið Þ ¼ B21L21
XB

b¼1

XL

l¼1

t̂*bl
i 2 t̂

*b

i

� �2

;

where t̂
*b

i ¼ L21
PL

l¼1t̂
*bl
i : The bootstrap MSE estimator of the estimated small area

parameter is finally defined as

dMSEMSEðt̂iÞ ¼ V̂ðt̂iÞ þ B̂ðt̂iÞ
2: ð14Þ

Bootstrapping in the presence of outlier contamination is a challenging problem. The

properties of the proposed bootstrap MSE are examined in Subsection 5.2. The issue of

bootstrapping in the presence of outlier contamination is discussed in Schmid et al. (2016),

but further research on bootstrap MSE estimation in the presence of contamination is
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needed. A promising approach to tackling this problem is offered by the more recent work

in Dongomo-Jiongo and Nguimkeu (2018). The authors propose to generate bootstrap

populations by using the non-robust mixed model fit. Although this idea can be applied to

the M-quantile predictors, this extension is not immediately applicable and will be

considered in future work.

To estimate MSE of Equations (9) and (12) one can also attempt to use a Taylor

linearization. However, using simulations, which are not reported here, we have noted that

this approximation is not accurate to the desired order, and hence not reliable. The reason

is that Taylor expansions are asymptotic results and depend on having a sufficient sample

size to work well, while in the small area estimation framework a number of areas are

expected to have small sample sizes. Moreover, the Taylor-linearized MSE for the Theil

index is the same as the one obtained by the delta method in Davidson and Flachaire

(2007), which they prove not to be accurate even for a large sample. It is worth noting that

MSE estimation for such indicators is very difficult, in particular for small samples.

Therefore, it may be reasonable to expect poor performance of MSE estimators. Future

work will consider a bootstrap bias correction for the linearized MSE estimator.

5. Design-Based Evaluation of the Proposed Estimators

In this section we use design-based Monte-Carlo simulations to study the performance of

the proposed small area robust estimators of the Theil index and the Gini coefficient.

Moreover, we also evaluate the performance of the bootstrap MSE estimator of these.

The population underpinning the design-based simulation is based on the data used in

the application in Section 6. Our target domains are the same as those used in the

application. The population for the design-based simulation has been obtained by fitting a

mixed effects model to the EU-SILC data, and then predicting the target using the Census

data.

We fit a linear mixed model (random intercept) on the EU-SILC data using the

household equivalized income as target variable and as auxiliary variables owners

(proportion of households who hold their house), work status (a binary variable indicating

if the head of the household works), sex (a binary variable indicating the sex of the head of

the household), education (number of year of education of the head of the household),

household size (number of household members), which are common between Census and

EU-SILC.

Then, we generate the target value for all the population units using the Census auxiliary

variables and the model estimates, adding variability by sampling from model-level one

and two residuals. The resulting synthetic target value has a distribution similar to that

observed in the EU-SILC data, as shown in Figure 1. We refer to the generated synthetic

equivalized household income and the auxiliary variables as synthetic population.

From the synthetic population we draw 1,000 samples with a design similar to that of

the EU-SILC survey in Italy in 2008. The survey design of the EU-SILC in Italy is a two-

stage stratified sample with a rotating panel (for details see Istat Siqual). Applying this

design to each sample leads to a different sample size, which varies between 1,277 to

1,704 households, with an average of 1,472 (the actual EU-SILC 2008 sample size is
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1,495). The average sample size across the domains varies from a minimum of 4.9 to a

maximum of 204.4, with a mean of 49.1 and a median of 40.

For each sample we estimate the Theil index and the Gini coefficient at the domain level

(province by age class) using the M-quantile CD and MC estimators. To compare the results of

the proposed estimators we use as a benchmark the Empirical Best Predictor (EBP) proposed

by Molina and Rao (2010). This method is based on a linear mixed model and requires a

transformation of the response variable to obtain an approximate normal distribution of the

model error terms. We first tried to use the log scale, but the results were unsatisfactory.

Therefore, we decided to use a data-driven Box-Cox transformation (Box and Cox 1964;

Rojas-Perilla et al. 2020). We apply this data-driven transformation in each Monte Carlo

replication using the R package emdi (Kreutzmann et al. 2019). For comparing the EBP and

M-quantile estimators we also fit the M-quantile model using the same Box-Cox

transformation as in the case of the EBP, even though we acknowledge that the best

transformation for the EBP it is not necessarily the best transformation for the MQ model.

Usually, in applications to real cases it is not possible to link the sampled units with the

population units, and then obtain the set r of the non sampled units. We replicate this

situation in this design-based simulation. Estimators are then modified accordingly (see

Equations (22), (23) and (24) in the Appendix.

5.1. Discussion about Point Estimation

In Table 1, we present results for comparing the M-quantile MC estimator and the EBP

estimator. For the M-quantile MC estimator we produce results by using a model that is

estimated both with the untransformed income data and the transformed income data. The

EBP estimates are produced by using a mixed model fitted to the transformed income

following the methodology described in Rojas-Perilla et al. (2020). At this point it is

important to clarify the following points.

Although the EBP results on the untransformed scale have been produced, we have decided

not to report these because the mixed model assumptions are not satisfied on this scale.
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Fig. 1. Density estimates of the household equivalized income from the EU-SILC (solid line) and the synthetic

population (dashed line).
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The results are available from the authors. Overall, the results from using the EBP on the

untransformed scale show that estimates of the Theil index and the Gini coefficient have

very large relative bias compared to M-quantile MC estimates on the same scale. This

provides evidence for the robustness properties of the M-quantile estimators.

The results in Table 1 also show that the M-quantile MC estimator on the transformed

scale (using the same transformation parameter as the one for the EBP) competes very well

with the EBP on the same scale. Here, we acknowledge that using a transformation in

conjunction with the M-quantile estimator is not done in an optimal way – as in the case with

EBP – and should be used only for initial comparisons of the results on the transformed

scale. More research is needed for developing data-driven transformations for the M-

quantile methods.

Generally speaking, these results show that the M-quantile-based methods perform well

both on the untransformed and transformed scales. Using a transformation appears to

improve the results of the M-quantile MC further but as we mentioned above this requires

additional research. The EBP method is only considered on the transformed scale for the

reasons we described above. These results illustrate the robustness properties of the M-

quantile-based methods.

Finally, the M-quantile CD (the results are available from the authors) estimator

performs similarly in terms of relative bias to the M-quantile MC on the raw scale (6.2%

average relative bias for the Theil index and 2.4% for the Gini coefficient). In terms of

relative root MSE, the M-quantile CD shows more variability than the M-quantile MC

for the Theil index (average relative MSE of 50.2%) and competes well with the M-

quantile MC for the Gini coefficient (average relative root MSE of 22.1%). Moreover,

further improvement of the M-quantile CD estimators could be obtained using an

influence function for the residuals in Equations (9) and (7) as suggested in Chambers

et al. (2014).

The M-quantile MC and CD both provide an alternative to the EBP in those cases where

the mixed model assumptions are not met. Although the theory of the M-quantile CD is

better understood, the M-quantile MC is computationally simpler and faster to implement.

For these reasons practitioners may prefer this approach.

Table 1. Design-based simulation results. Average and median of the relative bias (%) and relative empirical

root MSE.

Transform Theil Gini

Relative bias %
Median Average Median Average

M-quantile MC No -1.8 8.4 -1.9 1.7
M-quantile MC Box-Cox 9.4 9.8 5.3 6.2
EBP Box-Cox 3.9 5.2 7.0 6.4

Relative root mean squared error %
M-quantile MC No 25.1 31.6 20.8 21.2
M-quantile MC Box-Cox 20.8 20.7 10.7 13.2
EBP Box-Cox 22.4 23.0 11.7 12.8
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5.2. Empirical Evaluation of the Mean Squared Error Estimator

As concerns the estimation of the MSE, we evaluate the bootstrap estimator (14) using the

same data as in the design-based simulation, but limited number of runs, equal to 250,

given the high computational time required. We use 1 bootstrap population (B ¼ 1) from

which we draw 100 bootstrap samples. We draw residuals from the smooth error

distribution function unconditionally to the areas (for further details on this technique see

Marchetti et al. (2012)).

Due to the long computational time required, we select a sub-set of the population, namely,

the provinces of Pisa, Lucca and Massa, which correspond to the North-West of Tuscany.

Therefore, there are a total of nine domains, three age groups by three provinces. We study the

performance of the bootstrap estimator (14) by computing the relative bias (RB)

RBðdMSEMSEðt̂iÞÞ ¼ H 21
XH

h¼1

dMSEMSEðt̂i;hÞ2 MSEðt̂iÞ

MSEðt̂iÞ
;

where dMSEMSEðt̂i;hÞ is the MSE bootstrap estimate of the target parameter t̂i,h in area i and

simulation h and MSE(t̂i;h) s the empirical MSE of estimator t̂i (which we consider as

the“true” MSE) computed over 1000 Monte Carlo simulations. We also show a summary of

empirical MSEs and estimated MSEs for checking if the bootstrap estimator tracks well the

empirical (true) MSE over domains.

The results are summarized in Table 2 and Figure 2. Table 2 shows the average and

median across the nine small domains of the relative bias (RB) of the bootstrap MSE

Table 2. Design-based simulation bootstrap MSE estimator results. Average and

median across domains of relative bias (%) of the bootstrap MSE estimator.

Theil Gini

Median Average Median Average

M-quantile CD -24.3 6.7 -19.0 -15.4
M-quantile MC -22.3 7.6 -0.6 35.2
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Fig. 2. Design-basedsimulation bootstrap MSE estimator results. Empirical (true) root MSE and estimated root MSE.
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estimator for the Theil index and Gini coefficient M-quantile CD and MC estimators. The

average RB is around 7% for the Theil index, while for the Gini coefficient M-quantile CD

estimator is 215:4%: The average RB of the Gini coefficient M-quantile MC estimator is

about 35%. This high value is mainly due to a high bias in three areas (indeed, the median

RB is about 0%), where the presence of big outliers affects the MC method. Looking at

both the median and the average of the relative bias (RB) of the M-quantile MC, we can

see that the distribution of the RBs is skewed both for the Theil index and the Gini

coefficient. The RB related to the M-quantile CD of the Theil index is also skewed, while it

seems not to be skewed for the Gini coefficient. However, given the small number of areas

used in the simulation due to computational time, it is hard to properly assess the quality of

the proposed bootstrap MSE estimators. Considering the limited number of bootstrap

populations generated the performance of the MSE estimator is judged to be acceptable for

practical purposes. Moreover, since the values of the root MSE are small, a small

difference has a big impact in relative terms. We also studied the convergence of the

bootstrap MSE estimator for the M-quantile MC. More specifically, we computed the

median of the difference between the estimated MSE and the “true” (empirical) MSE

while increasing the number of bootstrap replications. The results seem to indicate a small

negative biased value for the Theil index, which remains constant after 50 bootstrap

replications and a bias that tends to zero for the Gini coefficient as the number of boostrap

iterations increase. The results reported here are from a design-based simulation that uses

real data. Model-based simulations assessing the properties of the bootstrap MSE

estimator (not reported here but available upon request to the authors) show markedly

better results.

From the results in Figure 2 we can see that the estimated root MSE tracks reasonably

the empirical MSE both for the M-quantile CD and MC estimators of Theil index and Gini

coefficient.

6. Estimating the Gini Coefficient and the Theil Index for Small Domains in

Tuscany

In this section, we present an application of the proposed methodology, to EU-SILC

(Statistics on Income and Living Conditions) data from Italy. A short description of the

design was given in Section 5.

The aim is to study the differences in the inequality, if any, among age groups within

provinces and provinces within age groups. The domains are defined by the cross-

classification of provinces in Tuscany by the age class of the head of the household,

leading to a total of 30 domains (ten provinces £ three age categories). The age of the

head of the household has been divided into three categories, “up to 34”, “35–64”, “65 and

above”. This classification comes from the age classes used by the Italian National

Institute of Statistics (Istat) in some labor force statistics reports, for example Istat (2017).

To evaluate inequality, we estimate both the Gini coefficient (1) and the Theil index (2) to

see whether or not they result in estimates of inequality that point in the same direction.

Throughout the article, we refer to the age class “up to 34” as Young, “35–64” as Worker

and “65 and above” as Aged. The domain-specific sample size varies between four

households (Young in Grosseto) and 207 households (Worker in Firenze) with an average
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sample size across domains of 46.9. The population size is about 1.39 million households, it

varies between 7,329 (Young in Massa) and 201,019 (Worker in Firenze) with an average of

46,280 households per domain. The sampling fraction across domains is between 0.05%

(Young in Grosseto) and 0.22% (Young in Pistoia), with an average of about 0.11%, which

approximately correspond to the overall sampling fraction in the EU-SILC in Italy.

The outcome we model is the household equivalized disposable income which is

available for each sampled household from the EU-SILC survey 2008. The household

equivalized disposable income corresponds to the total household net income (the sum of

households’ member income after tax payments and social transfers, including pensions)

divided by the equivalized household size, which gives a weight of 1.0 to the first adult, 0.5

to other persons aged 14 or over who are living in the household and 0.3 to each child aged

less than 14. The explanatory variables are the marital status of the head of the household

(four categories, single, married, divorced and widow), the employment status of the head of

the household (working/not working), the years of education of the head of the household,

the mean house surface (in square meters) at municipality level (LAU 2 level) and the

number of household members. These covariates are available both from the EU-SILC and

from the Population Census of Italy in 2001. Although the 2008 EU-SILC data were

collected seven years after the Census, the 2001–2007 period (2008 EU-SILC data refers to

2007 income) was one of relatively slow growth and low inflation in Italy, Therefore, it is

reasonable to assume that there was relatively little change in the considered period. It is also

important to mention that EU-SILC and Census datasets are confidential. The datasets were

provided by Istat to the researchers of the SAMPLE project and were analyzed by respecting

the confidentiality restrictions.

Figure 3 shows box-plots of the household equivalized income in each of the 30

domains. The box-plots highlight the asymmetry of the income distribution. The box-plots

are ordered (ascending) according to the estimated average of the equivalized household

income. We can see that, in general and as expected, Young and Aged groups have a lower

income than the Worker group, with some exceptions like the Young group in Lucca

which has a rather high income while the Worker group in Massa has a low income.
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Fig. 3. Box-plots of equivalized income by province and age class. Domains are ordered by average income.
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Figure 4 shows normal probability plots of level one and level two residuals obtained by

fitting a two-level random effects model to the EU-SILC data both on the original scale

outcomes (top) and log scale outcomes (bottom). Households are the level one units and

the 30 domains define the level two units. Figure 4 suggests departures from the normality

assumptions of level one errors, also for the log scale model. The use of the Shapiro and

Wilk (1965) test statistic confirms that the hypothesis of normally distributed level one

residuals, both when using the original and log-transformed income variable, is rejected. It

may be appropriate in this case to use a small area estimation approach that imposes less

strict parametric assumptions and it is robust to outliers.

Using the test statistic proposed by Bianchi et al. (2018), we test how close the domain-

specific quantile coefficients are to 0.5. This test statistic is trying to emulate the test for the

statistical significance of the random effects variance under the nested regression model. If the

test statistic indicates statistically significant differences in the domain M-quantile coefficients,

then the model that allows for domain-specific M-quantile coefficients should be preferred to a

model that assumes a common M-quantile coefficient leading to a synthetic estimator. The

Bianchi et al. (2018) test statistic has been applied to our data. The value of the test statistic is

equal to 62.146 and the p-value is equal to 0.000331. The results show that for this application

the domain M-quantile coefficients are statistically different from 0.5 and, as a result, using an

M-quantile model with domain-specific M-quantile coefficients should be preferred in this case.

We estimate the Theil index and the Gini coefficient using direct, M-quantile CD and

MC estimators (for M-quantile CD estimators we use Equations (22), (23) and (24) in the

Appendix because it is not possible to link the sampled units with the population units).

Comparing these three different point estimates within each domain, we observe that the

M-quantile CD and MC estimates follow the same trend as the direct ones. The point

estimates are shown in Figure 5.

Small area estimates of the Theil index and the Gini coefficient obtained by the M-

quantile MC approach are summarized in Table 3. Both indices vary between provinces

within each age group, and also vary between age groups within each province. In particular,

the between province variation of the point estimates of the Theil index within the age

groups is lower for the Aged group compared to the Young and Worker groups. The between

province variation of the point estimates of the Gini coefficients is lower for the Aged group
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Fig. 4. Q-Q plots of level one and two residuals, row scale (top) and log scale (bottom).
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Fig. 5. Point estimates of the Gini coefficient estimates (upper plot) and Theil index estimates (lower plot).

Table 3. Small area estimates of Theil index and Gini coefficient (M-quantile MC

approach) by provinces and age groups.

Theil MC Gini MC

Young Work Aged Young Work Aged
MS 0.156 0.112 0.162 0.305 0.259 0.304
LU 0.076 0.181 0.146 0.205 0.308 0.286
PT 0.098 0.168 0.194 0.239 0.311 0.334
FI 0.102 0.156 0.138 0.249 0.298 0.279
LI 0.062 0.101 0.155 0.190 0.248 0.294
PI 0.098 0.139 0.132 0.229 0.277 0.274
AR 0.077 0.168 0.153 0.215 0.305 0.297
SI 0.151 0.139 0.103 0.306 0.273 0.254
GR 0.120 0.202 0.148 0.269 0.326 0.275
PO 0.116 0.117 0.129 0.257 0.264 0.266
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compared to the Worker group, which is lower than the Young group. Moreover, according

to both inequality indicators the Young group shows a lower inequality compared to Worker

and Aged groups. The same conclusions are reached by looking at the M-quantile CD

estimates. Finally, even though the two indices are not directly comparable, we can say that

both the Gini coefficient and the Theil index show similar levels of inequality.

The results of Table 3 seem reasonable in the level and in the direction among the age

groups. One result that can be highlighted is the remarkable difference of the level of

inequality between the Work and the Aged group in the province of Grosseto (GR) and

Livorno (LI). Somehow, these two results are unexpected. Indeed, we can accept a small

reduction or increase of the inequality between Worker and Aged group, but not as big as

for the Grosseto and Livorno cases.

Moreover, Grosseto and Livorno are quite similar provinces in terms of many aspects;

from an economic point of view Grosseto and Livorno are among the medium-income

provinces in Italy. Nevertheless, we observed an increase in the inequality of about 20

percentage points of the Gini coefficient and of about 50 percentage points of the Theil

index in Livorno and a decrease of about 15 percentage points of the Gini coefficient and

about 27 percentage points of the Theil index in Grosseto. We consider that these figures

need to be further investigated, making use of other indicators – such as poverty indexes,

income/consumption distributions, and GDP level. These estimates should help socio-

economic analysts to better describe local phenomena.

Estimates of the MSE for the M-quantile CD and MC estimates have been obtained using

B ¼ 50 bootstrap populations and L ¼ 100 bootstrap samples (from each population, for a

total of 5000 samples). The residuals to generate the populations have been drawn from a

smooth distribution unconditional to the areas both for the CD and MC estimators. The

choice of the number of bootstrap populations and bootstrap samples has been discussed in

Marchetti et al. (2012). The bootstrap resampling scheme we propose is time consuming,

however, non-optimized R code run on 2.6GHz quad-core Intel Core i7 took about 260

minutes for the Gini M-quantile CD, 280 minutes for the Theil M-quantile CD and 1100

minutes for the Gini and Theil M-quantile MC. Therefore, we judge the method to be

feasible for many applications. Estimates of the standard error of the direct estimates of the

Gini coefficient and the Theil index have been obtained by bootstrap techniques. In

particular, we obtained the standard error estimates of the Gini coefficient direct estimates

using the bootstrap method proposed by Alfons and Templ (2013), available in the R

package “laeken” (R Development Core Team, 2013; Alfons and Templ, 2013), and the

standard error estimates of the Theil index direct estimates using the semiparametric

bootstrap method proposed by Davidson and Flachaire (2007). The estimated variability of

direct, M-quantile CD and MC estimates are summarized in Table 4. Both the proposed

small area estimators show a gain in efficiency compared to the direct estimators.

7. Conclusions

In this article we presented robust small area estimators based on the M-quantile regression

model for the Theil index and the Gini coefficient, two popular inequality measures.

M-quantile based estimators are robust versus outliers, which occur frequently on income

and consumption data that are often used in socio-economic studies to compute inequality
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measures. For both the measures of interest we presented two estimating approaches: one

based on the Monte Carlo approach and one based on the Chambers and Dunstan (1986)

distribution function estimator extended for M-quantile models. The proposed estimators

have been applied to EU-SILC data from Tuscany (an Italian region) combined with

population Census micro data. The aim of the application was to compare the two inequality

measures for provinces by age groups (30 domains in total). Results show that the two

inequality indicators go to the same direction, pointing out different levels of inequality

among provinces within age groups and vice versa. Moreover, we showed that the proposed

methods succeed in improving the estimation efficiency compared to direct estimation.

Finally, we evaluated the statistical properties of the proposed estimators as well as their

bootstrap mean squared error estimators by means of a design-based Monte Carlo

simulation. The proposed methodologies to estimate the Theil index and the Gini coefficient

for small domains under a robust framework can be applied widely. The possibility to obtain

sound estimates of inequality at a low aggregation level, breaking down domains and

geographical areas, provides a valuable tool for socio-economic studies.

Future works may focus on analytic mean squared error estimation of the proposed

estimators, and bootstrap based confidence intervals.

7. Appendix

7.1. Theil Index

The M-quantile CD estimator of the Theil index in area i is defined as T̂i ¼
n̂CD

i

m̂CD
i

2 log m̂CD
i ; m̂CD

i is derived in Equation (8). In what follows we show how to obtain

n̂CD
i . First, an estimator of E[g( y)] using the CD approach is:

E g y
� �	 


¼

Z þ1

21

gðtÞdF̂
CD

i ðtÞ

¼ N21
i

Z þ1

21

gðtÞd
n

j[si

X
Ið yij # tÞ þ n21

i
j[si

X

k[ri

X
Iðŷki þ eij # tÞ

o

¼ N21
i

n

j[si

XZ þ1

21

gðtÞdIð yij # tÞ þ n21
i

j[si

X

k[ri

XZ þ1

21

gðtÞdIðŷki þ eij # tÞ
o

¼ N21
i

n

j[si

X
gð yijÞ þ n21

i
j[si

X

k[ri

X
gðŷki þ eijÞ

o
: ð15Þ

Table 4. Estimated MSE summarized across domains.

Min 1st qu. Median Mean 3rd qu. Max.

TCD 0.008 0.016 0.024 0.027 0.034 0.072
TMC 0.006 0.012 0.018 0.020 0.024 0.055
TDir 0.043 0.080 0.099 0.097 0.109 0.146

GCD 0.010 0.017 0.022 0.027 0.032 0.069
GMC 0.008 0.015 0.020 0.024 0.028 0.065
GDir 0.017 0.031 0.035 0.040 0.044 0.093
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Then, the CD estimator of vi ¼ E½y logðyÞ� follows directly

v̂CD
i ¼

Z þ1

21

t log ðtÞ dF̂
CD

i ðtÞ

¼ N21
i

Z þ1

21

t log ðtÞ d
n

j[si

X
Ið yij # tÞ þ n21

i
j[si

X

k[ri

X
Iðŷki þ eij # tÞ

o

¼ N21
i

n

j[si

XZ þ1

21

t log ðtÞ dIð yij # tÞ

þ n21
i

j[si

X

k[ri

XZ þ1

21

t log tðtÞdIðŷki þ eij # tÞ
o

¼ N21
i

n

j[si

X
yij log ð yijÞ þ n21

i
j[si

X

k[ri

X
ðŷik þ eijÞ log ðŷik þ eijÞ

o
: ð16Þ

Let us show that Equation (9) is unbiased by using a first order Taylor expansion.

Consider that T̂
CD

i is a function of the random variables (estimators) m̂CD
i and v̂CD

i , and let

us write T̂
CD

i ¼ g(v̂CD
i , m̂CD

i ). Now let us expand function g using a first order Taylor series

around point(ni, mi)

gðv̂CD
i ;mCD

i Þ ¼
vi

mi

2 log ðmiÞ þ
1

mi

ðv̂CD
ii

2 viÞ2
vi

m2
i

ðm̂CD
i 2 miÞ2

1

mi

ðm̂CD
i 2 miÞ þ O n21

� �
:

ð17Þ

If v̂CD
i and m̂CD

i are model-unbiased estimators of the parameters ni and mi the

expectation of g(v̂CD
i , m̂CD

i ) is

E½T̂
CD

i � ¼ E g v̂CD
i ; m̂CD

i

� �	 


< E
vi

mi

2 log mi

� �
þ

1

mi
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vi

m2
i
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i 2 mi

� �
2

1

mi

ðm̂CD
i 2 miÞ

� �

¼
vi

mi

2 log mi

� �
¼ Ti: ð18Þ

7.2. Gini Coefficient

The estimator D̂
CD

i used in Equation (12) is derived as follows

D̂
CD

i ¼

Z Z
t1 2 t2j j dF̂

CD

i ðt1Þ dF̂
CD

i ðt2Þ

¼

Z
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i
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þ n21
i

j[si

X
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X
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o
dF̂
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Let us show that Equation (12) is unbiased by using a first order Taylor expansion.

Consider that Ĝ
CD

i is a function of the random variables (estimators) m̂CD
i and D̂

CD

i , and let

us write Ĝ
CD

i ¼ g(D̂
CD

i , m̂CD
i ). Now let us expand function g using a first order Taylor series

around point(Di, mi):

gðD̂i; m̂iÞ ¼
Di

2mi

þ
1

2mi

D̂i 2 Di

� �
2

Di

2m2
i

ðm̂i 2 miÞ þ o21
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then let compute the expectation of Ĝ
CD

i ¼ gðD̂i; m̂iÞ under the assumptions that D̂i and m̂i

are model-unbiased

E½Ĝ
CD

i � ¼ E½gðD̂i; m̂iÞ� < E
Di

2mi

þ
1

2mi

D̂i 2 Di

� �
2
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2mi
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7.3. Estimator when Linkage Between Sampled Units and Population Units is Not

Possible

When linkage between sampled units and population units is not possible, that is the set r is

unidentifiable, then the prediction is carried out for all the units in the population Ui ¼

{si <ri }: Then the estimators of mi, ni and Di are as follows

m̂CD
i ¼ N21

i
j[Ui

X
ŷij þ ð1 2 f iÞ

j[si

X
eij

2

4

3
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