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Many studies have shown the usefulness of remote sensing 
(RS) methods in various aspects of geological exploration 
and related research. These methods constitute an essential 
foundation for the initial recognition of many geological problems; 
they offer many characteristics and possibilities, and have 
the advantage of high data availability. Several studies have 
introduced effective remote sensing methods in geology (Sabins 
Jr 1986; Gupta 2017). 

Examples of research on the use of satellite imagery can 
be found in many publications, indicating the usefulness of 
RS in geological applications. A review of geological mapping 
with multi- and hyperspectral data was presented by Van de 
Meer (2012). Ruisi, Min & Jianping (2011) described remote sensing 
methods, such as the interpretation of satellite imagery, that 
can serve the purpose of understanding regional tectonics and 
be used more broadly for preliminary geological interpretation. 
Rockwell (2012 and 2013) presented excellent work on using 
Landsat 7 and Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) imagery for the automatic 
regional analysis of surface mineralogy. The outputs derived 
from the automated procedure exhibit favourable characteristics 
for effectively utilizing mineral resources. Satellite remote 
sensing methods in mineral prospecting were proven effective 

by Lupa et al. (2020), where the authors used Landsat 8 data to 
narrow down the possible areas of mineral occurrence. They 
combined Landsat 8 imagery with fieldwork, where samples 
were collected for remote sensing analyses. Yousefi et al. (2018) 
described a multidisciplinary approach, combining field samples 
with spectral analysis and satellite data mapping to recognize 
hydrothermally altered rocks. 

As technology progresses, more and more advanced 
methods are entering this area of research, providing access to 
newer and newer data with higher temporal, spectral, and spatial 
resolution; technologies such as machine learning (ML) are also 
being used in many areas. A broad review of the application of 
such methods that support remote sensing for geology problems 
was presented by Lary et al. (2016), who showed that identifying 
dust sources and combining ML with remote sensing analysis to 
map various geological aspects is justified. 

Improving the resolution of spectral images is a subject of 
extensive research, regardless of their intended applications. An 
example of the general utilization of ML for enhancing imagery can 
be found in work by Collins et al. (2017). The authors demonstrated 
that the application of Learning Convolutional Neural Networks to 
satellite data from ResourceSat-1 and -2 enables the generation 
of enhanced data in areas where high-resolution images are 
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Abstract
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a valuable support tool for preliminary geological assessment, and 
information relating to vast and challenging-to-access parts of prospective 
areas for further investigation. 
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unavailable. Another example can be found in the work of Zhong et 
al. (2016), which deals with the enhancement of QuickBird satellite 
imagery resolution using Convolutional Neural Network-based 
Super-Resolution (SRCNN) and Gram-Schmidt, transforming it 
through the use of a panchromatic image. A study by Zhang et al. 
(2019) focused on increasing the resolution of specific channels 
of Sentinel-2 data from 20 to 10 metres using the SupReME 
algorithm. The enhanced data is utilized for retrieving the 
chlorophyll content of summer corn.

Analysing the obtained results allows us to recognize the 
usefulness of these types of methods. In our study, we introduce 
and describe a comprehensive method, from the collection of 
field samples to the generation of maps of prospective areas. The 
following sections contain sequential descriptions of the research 
area, a description of the research methodology, including field 
sampling with samples characteristics, spectral measurements, 
a description of enhanced Sentinel-2 data, and a complete 
description of the algorithm to determine the areas containing rock 
outcrops with minerals of interest that are similar to our collected 
samples. Next, the results are shown and discussed in relation 
to geology. The last two sections comprise a discussion of the 
research carried out and a summary. The study objective is to 
present an attempt to identify minerals investigated in the field 
and tested in the laboratory from artificially enhanced resolution 
satellite images. The research aims to assess the feasibility of 
using enhanced satellite imagery to identify regions with spectral 
characteristics similar to specific rock samples. By focusing on the 
potential challenges posed by increased resolution, and analysing 
the spectral curve patterns of samples, the study seeks to 

validate this method as a valuable tool for preliminary geological 
assessments, especially in remote or inaccessible areas. This 
type of research is important for initial geological surveys and for 
areas that will be subjected to more detailed geological surveys.

Study area
The study area is located in the north-eastern part of 

Rwanda. Figure 1 shows the research area and sample locations 
presented in this paper.

The Bugarura–Kuluti (BK) area is located in north-eastern 
Rwanda, around 100 km to the NE of Kigali. The geology of BK 
comprises Mesoproterozoic phyllites, metapelites, and quartzites 
of the Pindura and Gikoro groups (Baudet et al. 1989) (Figure 2). 
At a regional scale, BK is situated on the flanks of the Karehe 
anticline (Hanon & Rusanganwa 1991). The core of the NW–SE 
trending anticline has been intruded by Muhazi granite. The 
Karehe anticline has numerous second-order folds following the 
same NW–SE trend. Two main discontinuous structures have 
been mapped in the region: first, NW–SE bedding-parallel fault 
planes, related to a compressional regime with a shortening 
direction, oriented NE–SW (Hulsbosch et al. 2017); second, E–W and 
NE–SW-oriented faults, caused by regional post-compressional 
stress regimes.

Materials and Methods
The following section presents a description of the samples, 

their measurements, satellite imagery description, and conducted 
remote sensing analyses.

Figure 1. Study area
Source: own elaboration
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Materials
Samples collection, preparation, and measurements 

Sixteen samples from the research area were collected to 
analyse using remote sensing methods (Table 1). 

The first step in the analysis was to perform measurements 
with the Malvern Panalytical ASD FieldSpec 4 Standard Resolution 
(SR) hyperspectral spectroradiometer. The spectroradiometer 
parameters are: Spectral resolution: 3 nm @ 700 nm, 10 nm @ 
1400/2100 nm; EM Wavelengths: 350 nm–2500 nm.

Measurements were made using a contact probe with its 
source of radiation. They were performed while considering 
the characteristics of the minerals that made up a given rock 
sample by performing several measurements for each sample. 
The choice of measurement points on a particular sample were 
considered based on the minerals visible to the naked eye. 

Since the measurements were made in laboratory conditions 
(and not in situ), the determination of spectral characteristics 
had to be carried out for dry and wet samples, thus imitating the 
possible conditions that may have occurred during the satellite’s 
pass. 

Examples of the results from the measurements carried out 
are shown in Figure 3, for the dry sample (Figure 3A) and the wet 
sample (Figure 3B), successively. Measurements were made for 
the same area of the sample.

Satellite image and its enhancement
Images from Sentinel-2 were chosen; this is a suitable 

satellite for this analysis due to its spectral and spatial resolution, 
as well as the availability of its images of the research area. 
Sentinel-2 is a satellite of the European Space Agency ESA, 
operating since 2015 (Sentinel-2A), and is currently on a tandem 
mission (Sentinel-2B).

One of the basic (and crucial) criteria for selecting imagery 
analysis is the cloud coverage parameter that should be, in this 
case, as low as possible. In addition, it is important to minimize 
the impact of the season of the year or the growing season on 
the reliability of the measurement, in order to minimize the impact 
of the atmosphere and vegetation. For this reason, the decision 
regarding the choice of display should always be preceded by an 
analysis of the climate in the research area. Different dates will 
be appropriate for the analysis performed for different regions of 
the world. Based on this, the selected image was acquired by the 
Sentinel-2 satellite in August 2018 with the tile number T35MRU. 

The accuracy of the analysis depends on two resolutions – 
spectral and spatial. The 10x10-metre pixel size may cause the 
formation of mixed pixels because the research area is covered 
by vegetation, which may lead to a decrease in the quality of the 
analysis. Therefore, the available artificial intelligence methods 
were used to enhance the resolution of images in order to increase 
the accuracy of the analysis by reducing the pixel size from 10 

Figure 2. Geological setting of Bugarura and Kuluti with cassiterite Sn mineralization age (numbers on the map). Modified after 
Hanon & Rusanganwa (1991)
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to 2.5 metres. This procedure may increase the reliability of the 
analysis and reduce the number of mixed pixels. The image with 
the super-resolution (enhanced beyond its original resolution) 
resulted from an algorithm provided by the GEOMATIC company. 
Enhancement was provided for eight bands (B2, B3, B4, B5, B6, 
B7, B8, and B8a). B1, B9, and B10, called atmospheric bands, 
were removed from the datasets, and the eight remaining bands 
were finally used for analysis. 

The resolution enhancement was implemented initially 
by matching the spatial resolution of 20-metre bands to the 
base 10-metre bands using multi-criteria pansharpening. The 
matching of the spatial resolution is achieved by employing 
artificial intelligence and incorporating information obtained 
from the 10-metre bands. Subsequently, the image undergoes 
object reconstruction utilizing the RRDN (Residual-in-Residual 

Dense Network) technique and a model devised by GEOMATIC, 
constructed upon a dataset of 400,000 pairs of images. RRDN 
is a deep learning model often used for Single Image Super-
Resolution (SISR). The architecture of RRDN incorporates 
Residual-in-Residual (RIR) blocks with dense connections. 
The RIR blocks are designed to ease the flow of information 
and gradients through the network, facilitating the training of 
deep networks. The dense connections within these blocks also 
ensure that the network can learn a rich set of features from 
the input data. When applied to multispectral satellite imagery, 
super-resolution techniques such as RRDN can be extremely 
beneficial in increasing the spatial resolution of the images 
across different spectral bands (Zhang 2018). Lastly, the resulting 
image is subjected to a tonal alignment process to ensure optimal 
tonal consistency with the original/input images. The geometric 

Table 1. List of samples. Source: own elaboration

ID Host rock Mineral composition Number of measurements 
(dry sample)

1 Altered granite Quartz, feldspars, kaolinite, muscovite 2

2 Weathered granite Feldspars, muscovite, biotite 5

3 Muscovite schist with 
tourmaline Muscovite, tourmaline, clay minerals 6

4 Pegmatite Kaolinite, quartz, muscovite 3

5 Pegmatite Quartz, kaolinite, muscovite 2

6 Muscovite Muscovite 2

7 Pegmatite Mainly kaolinite + muscovite 2

8 Pegmatite Kaolinite, quartz + very fine muscovite 3

9 Pegmatite Kaolinite, quartz, muscovite 4

10 Greisen Quartz, muscovite 2

11 Pegmatite Kaolinite, quartz, muscovite 3

12 Tourmaline Tourmaline + muscovite 4

13 Pegmatite Kaolinite, muscovite, quartz 3

14 Tourmaline Tourmaline 2

15 Quartz with tourmaline Quartz, tourmaline 3

16 Pegmatite Kaolinite, quartz, muscovite 4

 

Figure 3. (A) Spectral curve measured from spectroradiometer for sample 1 in the dry case and (B) in the wet case
Source: own elaboration
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and radiometric characteristics of the resultant images are of high 
value. An example of the quality of the display being improved is 
shown in Figure 4.

Methods

Correlation of measurements and satellite data
The data, statistically tested by correlation, consisted of 

spectral measurements with multispectral images were used to 
determine the average reflectance values in the electromagnetic 
wave spectrum ranges corresponding to the spectral bands of 
the satellite (in this case Sentinel-2B). Correlation was performed 
in two steps.

The first stage was to determine the spectral mean for 
the measurements performed within a single field sample. 
The second step was to calculate the spectral average for the 
reflectance in the ranges corresponding to the spectral bands of 
the Sentinel-2B images. 

As mentioned earlier, measurements were also made in 
the wet variants of the samples. Therefore, the correlation was 
performed separately for dry and wet samples.

Similarity coefficient 
The similarity coefficient was implemented to find areas on 

satellite imagery with similar spectral characteristics to those 
presented by the collected samples. The similarity coefficient sim 
(k) is calculated for each pixel of the studied area. This makes 
it possible to compare the averaged reflectance in selected 
spectral bands to the reflectance of the spectrometer based on 
the angular distance between two n-dimensional vectors (in our 
case, n = 8): 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 cos

⎝

⎛ ∑ (ℎ𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖)8
𝑖𝑖𝑖𝑖=1

�∑ (ℎ𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)28
𝑖𝑖𝑖𝑖=1 �∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖)28

𝑖𝑖𝑖𝑖=1 ⎠

⎞ 

Where:  i – band number i = 1, …, 8; hipi – averaged reflectance 
measured for the rock sample in given band i; oli– reflectance for 
an analyzed pixel in given band i; k – number of samples.

The similarity coefficient sim(k) was calculated for each 
measured spectrum and the averaged spectra for a given 

sample. The highest values of the similarity coefficient indicate 
the greatest similarity of the reflectance of a given sample to the 
reflectance obtained from the Sentinel-2B image. 

Masking
Obtained images were masked in a few steps to exclude 

areas that could give false positives – such as vegetated areas, 
built-up areas, or water-covered areas.

Masking was carried out in several steps to exclude as many 
undesirable areas as possible:
- NDVI (Normalized Difference Vegetation Index) was 

calculated as 
 

(𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 8  −  𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 4)
(𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 8  +  𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 4)  (Bannari et al. 1995).

NDVI is used for the definition of pixels describing, for 
example, vegetation, soil, or water. In order to keep the pixels 
corresponding to the discovered rocks and remove those that 
probably represent water and vegetation, all of the NDVI indicator 
values other than 0.05 to 0.35 were marked as pixels to be 
excluded from the analysis. 
- OSM (OpenStreetMap) data was used to mask all classes 

describing either water or buildings. The selected classes 
were allotment, building, canal, cemetery, commercial 
property, drain, farm, farmland, forest, grass, hamlet, health, 
industrial, meadow, military, nature_reserve, orchard, park, 
reservoir, residential, river, riverbank, scrub, stream, suburb, 
town, water, wetland, and village. These were converted 
from polygons to raster, and marked for exclusion from 
further analysis. 

- Iso Cluster Unsupervised Classification from Esri ArcGIS 
Desktop was run on RGB composition, and the classes 
describing water and buildings were masked.

Selecting the highest values of the similarity coefficient 
The range of similarity values was divided into 10 classes, 

according to 10 quantiles, in order to select the most significant 
values. The pixels in the last of the 10 classes of the similarity 
coefficient were considered as the places where minerals were 
most likely to occur. Choosing the highest similarity coefficient 
makes it possible to map the location of each tested sample.

The analyses were conducted on the rocks in their dry state 
since the land was dry on the date of the image. The subsequent 
analysis should therefore include only the dry variant.

Figure 4. Comparison of image quality for Sentinel-2 original data (left) and enhanced data (right)
Source: own elaboration
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Results
Spectral curves, obtained with a spectroradiometer contact 

probe, are shown in Figure 5. Sample 1 (quartz, feldspars, 
kaolinite, muscovite) and sample 2 (feldspars, muscovite, biotite) 
have a similar initial course of the spectral curve (350–1750 nm), 
but for higher wavelengths, it differs due to a slightly different 
mineral composition of the sample. Sample 3 (muscovite, 
tourmaline, clay minerals) and sample 6 (muscovite) show a 
similar course of spectral curves, probably due to the presence 
of muscovite in both tested samples. Sample 4 (kaolinite, quartz, 
muscovite), sample 5 (quartz, kaolinite, muscovite), sample 7 
(mainly kaolinite + muscovite), sample 8 (kaolinite, quartz + very 
fine muscovite), sample 9 (kaolinite, quartz, muscovite), sample 
10 (quartz, muscovite), sample 11 (kaolinite, quartz, muscovite), 
sample 13 (kaolinite, muscovite, quartz), and sample 16 (kaolinite, 
quartz, muscovite) have similar spectral curves. This is most 
likely the result of a similar mineral composition, which consists of 
different proportions of kaolinite, quartz, and muscovite. The last 
group of similar spectral curves consists of sample 12 (tourmaline 
+ muscovite), sample 14 (tourmaline), and sample 15 (quartz, 
tourmaline), where the dominant minerals are tourmalines.

The curves presented in Figure 6 show averaged spectral 
curves for the Sentinel-2B satellite bands.

The curves for sample 1 (quartz, feldspars, kaolinite, 
muscovite) and sample 2 (feldspars, muscovite, biotite) differ in 
value but maintain a similar general trend. Both samples contain 
feldspar and muscovite, and they differ in that sample 1 contains 
quartz and kaolinite, while sample 2 contains biotite, which may 
be a sufficient reason for the difference in values. As observed 
in Figure 7, the indicated regions for sample 1 and sample 2 are 
similar; however, they differ slightly in terms of surface area and 

the locations of the tenth quantile pixels. This discrepancy arises 
from the similar progression of the initial spectral curves, which 
ultimately diverge in the second part of the curves. 

Sample 4 (kaolinite, quartz, muscovite) and sample 9 
(kaolinite, quartz, muscovite) are examples of two similar 
measurements. They exhibit a similar pattern in the curves 
(Figure 6). The similarity coefficient yields very close results for 
the tenth quantile, as depicted in Figure 8. The areas highlighted 
by the indicator for sample 4 and sample 9 are highly similar, 
indicating the successful functioning of the mechanism for 
identifying similar areas.

Samples 14 (tourmaline) and 15 (quartz, tourmaline) exhibit 
almost identical spectral curve patterns after averaging. The 
results for the similarity coefficient are shown in Figure 9. It can 
be observed that the indicated regions are highly similar – nearly 
the same.

Discussion
The application of remote sensing in geological mapping 

has been substantiated by numerous studies, such as Kruse et 
al. (1993), Van der Meer et al. (2012), and Bedini (2011). In the Kruse et 
al. (1993) study, the Spectral Image Processing System (SIPS) 
showed the importance of real-time visualization and analysis 
of imaging spectrometer data, even though advancements since 
its introduction may have superseded its capabilities. Bedini (2011) 
implemented the practical application of HyMap and ASTER 
satellite data for mineral mapping in Greenland, illustrating the 
power of combined satellite data in geological mapping, although 
its success may be region-specific. In essence, these studies 
highlight the significant potential of remote sensing in geological 
mapping.

Figure 5. Spectral curves obtained for all samples
Source: own elaboration
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Figure 6. Spectral curves obtained for all samples, averaged for Sentinel-2B bands
Source: own elaboration

Figure 7. Similarity coefficient for samples 1 and 2
Source: own elaboration
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Figure 9. Similarity coefficient for samples 14 and 15
Source: own elaboration

Figure 8. Similarity coefficient for samples 4 and 9
Source: own elaboration
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A more specific application of remote sensing, which has 
also been employed in this publication, involves the utilization 
of spectral curves, measured in the laboratory, from collected 
rock samples and satellite data. Several papers emphasize the 
importance of satellite data and spectral curves in identifying and 
mapping geological features and minerals in diverse regions. 
Mars & Rowan (2011) examine the application of ASTER data in 
the study of the Khanneshin carbonatite volcano in Afghanistan. 
The researchers successfully identify minerals and create 
lithologic maps by comparing satellite imagery with ground-
based spectral curves. This study underscores the efficacy of 
combining ASTER data with spectral analysis techniques in order 
to characterize geological features. In another study, Parashar et 
al. (2016) utilized Hyperion data to map minerals in the Aravalli 
fold belt, located in south-eastern Rajasthan. Rock samples from 
the region were analysed under laboratory conditions using a 
Spectroradiometer, and the resulting spectra were cross-verified 
with the USGS spectral library. The imagery underwent standard 
processing, including atmospheric correction, noise reduction, 
and visualization techniques, and the Spectral Angle Mapper 
technique was employed to identify minerals from the carbonate, 
clay, and silicate groups. 

These articles collectively underscore the significance of 
spectral analysis in geological investigations. They demonstrate 
the effectiveness of using satellite data, along with spectral curves, 
in mineral identification, geological mapping, and environmental 
monitoring. These studies demonstrate the validity of the 
research presented in this article. The novel aspect of the above 
is the utilization of Sentinel-2 data with enhanced resolution, 
which enables even more precise results to be attained.

Few studies compare field-collected rock samples with 
satellite imagery to identify areas of potential occurrence of 
specific rock types. Mars and Rowan (2011) compared a sand sample 
with ASTER data. The spectral curve was measured using an 
Analytical Spectral Device (ASD), which records electromagnetic 
waves in the range of 400–2500 nm, representing a slight 
difference compared to the ASD FieldSpec 4 spectrometer we 
employed, which has a range of 350–2500 nm. The obtained 
spectral curve was resampled to match the spectral channels 
of ASTER. However, in the conducted comparison, a geological 
map of the area was utilized, which was not the case in our study. 
The assumption of the research presented in this work is the 
absence of the need to rely on additional data such as geological 
maps.

Another similar example of utilizing rock samples was 
presented by Crowley, Hubbard & Mars (2003). They focused on 
the potential use of airborne and satellite data to determine 
the sources of debris flow, employing NASA’s Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS), Hyperion, and ASTER 
data. The spectral curves of the rock samples were not utilized, 
as in our study, to search for similar areas. Instead, they were 
compared with spectra obtained from AVIRIS for sample 
locations. This aspect of their work is undoubtedly intriguing and 
will be considered in future research on the algorithm. However, 
it is worth noting that our study utilizes publicly available data for 
the entire world, specifically Sentinel-2 data.

The pixels marked in Figures 7, 8, and 9 should be interpreted 
as spots with spectral characteristics registered on satellite 
imagery that are most similar to the spectral characteristics of the 
collected sample.

In the context of the presented results, samples 1 and 2 have 
successfully pinpointed potential sites of granite occurrence. 
Samples 9 and 4 were employed to demonstrate the similarity 
coefficient pertinent to granite. Meanwhile, samples 14 and 15 
represent the most probable locations for the occurrence of 
tourmaline/quartz and tourmaline, respectively. Cross-validation 

in each of these instances corroborates the accuracy of the 
results, with samples of analogous material producing highly 
consistent responses. For instance, the pegmatite collection site 
for sample 9 was also indicated by the similarity coefficient for 
sample 4, which was likewise extracted from pegmatite. The sole 
exception is presented by sample 15, for which the collection site 
was not indicated by the similarity coefficient due to the site being 
situated within a region densely covered with vegetation. It can 
be postulated that, in the absence of such flora, the similarity 
coefficient would likely have identified a response in that region.

 However, it is essential to consider that due to mixed pixels, 
pixels classified in the quantile class 10 may also include objects 
and areas adjacent to rock outcrops. Enhanced resolution 
improves the obtained results but still leaves room for further 
improvement. Moreover, the pixels showing the similarity of the 
rock sample to the area in the satellite image may have similar 
characteristics because the mineral composition of the building 
materials for houses, roads, or quays could be similar to the 
mineral composition of the samples. Land and dry vegetation 
may also show spectral similarity, which is abundant for a 
selected region of Africa.

After averaging, all the samples exhibit relatively similar 
spectral curve patterns, indicating similar (though not identical) 
regions by the tenth quantile of the similarity coefficient. Samples 
with a more diverse mineral composition would likely yield 
different responses. 

When analysing the obtained results, basic knowledge about 
the region under study is necessary to avoid making basic errors 
during interpretation. Research of this type should not be treated 
as geological mapping per se, but as support during preliminary 
geological works to provide information on prospective areas for 
further work and research. From this perspective, conducting 
such research is extremely important due to the possibility of 
quickly analysing vast areas, including those difficult to access. 

The primary objective of this study was to evaluate the 
potential of using satellite data, specifically from Sentinel-2B, in 
conjunction with spectral curves obtained from rock samples, to 
identify areas with similar geological properties. This objective 
was substantially achieved, as demonstrated by the alignment 
of spectral curves between the samples and the corresponding 
regions in satellite imagery. The discussed case study shows how 
optical imagery (Copernicus, Sentinel-2) can serve as a basis for 
developing automatic mineral prospecting maps. Furthermore, 
it has been demonstrated how the adaptation of deep learning 
methods allows the resolution of multispectral images to be 
enhanced, thereby partially mitigating the problems associated 
with mixed pixels, which are characteristic of areas covered with 
vegetation. A method of comparing spectral characteristics of in-
situ samples with satellite data has also been demonstrated, with 
the aim of identifying areas where a similar spectral response 
occurs, consequently indicating a high probability of the presence 
of rocks with a similar mineral composition.

Conclusion 
In conclusion, the marked pixels represent areas on 

satellite imagery that show spectral characteristics similar to 
the collected sample. Despite the increased resolution, which 
undoubtedly positively impacts the obtained results, it is still 
necessary to consider the possible presence of mixed pixels. 
Neighbouring objects and areas adjacent to rock outcrops may 
still be included. The samples exhibit relatively similar spectral 
curve patterns, indicating comparable regions based on the 
similarity coefficient. Diverse mineral compositions would likely 
yield different responses. This research serves as a valuable tool 
for preliminary geological assessment by identifying prospective 
areas for further investigation in remote or inaccessible regions.
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