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Abstract. In this paper, we propose to compare three a posteriori error estimators namely equilibrated,
star-based and residual based for the Poisson problem and the Stokes problem with lowest-order Crouzeix-
Raviart finite element discretization. The numerical results are presented to compare the performance of the
three estimators in an adaptive refinement strategy.
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1. Introduction

The finite element method [27] is one of the most well-known methods used for the numer-
ical approximation of partial differential equations, thanks to its theoretical richness and its
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wide field of applications. The non-conforming finite element methods [28] have received a lot
of attention recently, Due to the simplicity and small support sets of basis functions of these
elements. A posteriori error estimators are now essential tools for the accurate and effective
computation of partial differential equations. These estimators allow to estimate explicitly the
error of approximation and consequently ensure control of this error. A posteriori error anal-
ysis for nonconforming lowest-order Crouzeix-Raviart finite element methods can be found in
[7, 31, 9, 32, 8, 6, 2, 23, 5, 4, 45, 44]. In the literature, there are different types of a posteriori
error estimators to control the exact error. Then a natural question arises: what is the most
suitable estimator? In this sense, some work these last years has been achieved, which com-
pares estimators for some problems. In [13], Bank et al. compare certain estimates based on the
resolution of local Stokes systems versus estimates based on the residuals of discretized finite
element equations. Carstensen et al. in [25] present a unified a posteriori error analysis for a
wide range of discontinuous Galerkin finite element methods, applied to the Laplace, Stokes,
and Lamé equations. In [21] they compare some a posteriori error estimators for the Poisson
problem with lowest-order finite element discretization. Residual-based error estimators com-
pete with a wide range of averaging estimators and estimators based on local problems. In
[22] they present a survey and a computational comparison in the lowest-order case, and in
[26] they present a survey where they compare different strategies for guaranteed error con-
trol for the lowest-order nonconforming Crouzeix-Raviart finite element method for the Stokes
equations. In this paper, we compare three a posteriori error estimators for Poisson problem
and the Stokes problem with lowest-order Crouzeix-Raviart finite element discretization. The
first is the Equilibration estimator [35, 31, 41, 1, 5, 10], the second is the star-based estimator
[42, 4] and the third is the residual estimator [29, 30].
The remaining parts of this paper are outlined as follows, Section 2 introduces the setting for
the Poisson model problem. The three error indicators that we want to compare are introduced
and we conclude this section by presenting two numerical results. Section 3 deals with Stokes
model problem, after introducing the setting and notations, we present the three estimators
for this problem and compare them in two numerical examples.

2. Poisson problem

2.1. Problem setting, notations and discrete problem. Let Ω be a simply connected polygonal
domain of Rd, d = 2, with a lipschitzian boundary and f ∈ L2(Ω). we consider the simple
elliptic model problem : Find u such that{

−∆u = f in Ω,
u = 0 on ∂Ω. (2.1)

Let Th be a triangulation in the d-simplex of Ω that is regular and conforming in Ciarlet’s sense
[27, p. 38]. For every d-simplex T ∈ Th, we will denote by hT the diameter of T, measd(T) the
measure of T in Rd and ET the set of edges of T.
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We consider Vh be the Crouzeix-Raviart finite element space defined by :

Vh = {v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ P1(T), ∀E ∈ EI
h,
∫

E
[v]E ds = 0;

∀E ∈ EF
h ,
∫

E
v ds = 0},

(2.2)

where EI
h (resp. EF

h ) denotes the set of internal (resp. boundary) edges (faces) of Th and [·]E
denotes the jump through E. In Figure 1, This finite element is represented in Figure 1 for d =
2 and d = 3; in three dimensions, just the visible degrees of freedom are shown.

Figure 1. Crouzeix-Raviart finite element in two (left) and three (right) dimensions.

We choose an arbitrary normal direction n for an interior edge E, if n = (n1, n2)
t, we define

the tangent t = (−n2, n1)
t. n is the outward normal when E is a boundary edge.

We denote by {xi}i∈N the set of all nodes of the triangulation Th, where N the cardinal number
of this set. In the paper, by i ∈ N we will refer to the node xi and ϕi denotes the canonical
continuous piecewise linear basis function associated to xi. The star ωi is the interior relative
to Ω of the support of ϕi, and hi is the maximal size of the elements constituting ωi. Finally,
Γi denotes the union of the edges (faces) touching xi that are contained in Ω, and Γi the union
of the edges (faces) touching xi that are contained in Ω. hE denotes the size (diameter) of an
edge (face) E.
For each star ωi, i ∈ N , we introduce the space V(ωi) defined by

V(ωi) = {v ∈ H1
loc(ωi) |

∫
ωi

vϕi dx = 0}, if xi is an interior node,

and
V(ωi) = {v ∈ H1

loc(ωi) | v = 0 on ∂ωi ∩ Γ}, if xi is a boundary node.
The nonconforming finite element approximation of the problem (2.1) is as follows :

find uNC
h ∈ Vh such that

∑
T∈Th

∫
T
∇uNC

h · ∇vh dx = ∑
T∈Th

∫
T

f vh dx ∀vh ∈ Vh ∩ H1
0(Ω).

(2.3)

We refer the reader to [28] for convergence analysis of the approximate solution.
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2.2. Equilibration estimator. Thanks to the Prager-Synge equality [43] and the hypercircle
method, these estimators came to light through Ladevèze [41]. The construction of a flux
belonging to H(div) represents the major difficulty of this approach. This construction is
made by post-processing or the resolution of local problems. In the literature, this type of
estimator has been presented, for conforming finite elements, by Luce-Wohlmuth [41] and
Braess-Schoberl [18], one can also cite [34, 37, 50]. For nonconforming finite elements, we find
[31], Achchab [1, 6, 5], Ainsworth [9], Kim [40] and Braess [17].

In this subsection, we present an a posteriori error estimator developed by Achchab et al. in
[5] for the P1-nonconforming finite element approximation. We adopt the error using a flux
reconstruction approach.
Let ũh be an element of H1

0(Ω), a conforming post-processing of uNC
h computed by using the

Oswald interpolation operator [19, 33, 38], and we consider the vector function ph defined by

∀T ∈ Th, ph|T =
1

measd(T)

∫
T
∇uNC

h − ∑
E∈ET

(∫
T

f µE dx
)

ph
E, (2.4)

where

µE = 1 − d × λ in T, (2.5)

here λ is the unique function of P1(T) vanishing on E and whose value is 1 on the vertex of T
opposite to E and

ph
E
|T =

x − vE

d × measd(T)
, (2.6)

where vE is the vertex of T opposite to E. Note that ph in an element of H(div, Ω) satisfying
a local equilbrium equation.
Concerning the a posteriori error estimator for u − uNC

h , we have

Theorem 2.1. For ũh ∈ H1(Ω) and ph definid in (2.4), we have

∑
T∈Th

∥∇(u − uNC
h )∥2

0,T ≤ 4∥ ph −∇ũh∥2
0,Ω + 2 ∑

T∈Th

∥∇(uNC
h − ũh)∥2

0,T

16 ∑
T∈Th

µ2h2
T∥div ph + f ∥2

0,T,
(2.7)

and For all T ∈ Th we have

∥ ph −∇ũh∥0,T ≤ ∥ ph − p∥0,T + ∥∇u −∇ũh∥0,T, (2.8)

where

µ = inf
0≤ε<1/2

(∫ 1

0
(1 − t)2ε min(t−d, (1 − t)−d) dt

)1/2

(1 − 2ε)1/2 . (2.9)

For proof of theorem see [5].



NUMERICAL COMPARISON OF THREE A POSTERIORI ERROR ESTIMATORS 5

2.3. Star-based estimators. Introduced by Babuška [11], and Bernardi [15], then analyzed and
generalized by various authors including Bank [12, 13, 14], Verfürth [47, 48], and Hoppe [51].
These estimators are obtained by locally solving simpler problems than the initial problem. The
right-hand sides of these equations are the residuals of the main equation, and the indicators
are appropriate norms of these solutions. The global estimator is obtained by summing the
norms of each local indicator. For more details see references [18, 20]. Nochetto et al [42]
analyzed this type of estimator in the conforming finite elements case, based on solving local
problems on stars; a star is the support of a piecewise linear nodal basis function. In this
subsection, we introduce an a posteriori error estimator developed in [4, 16] for low-order
nonconforming approximation of scalar second-order elliptic problem, based on the resolution
of local problems on stars.

We define the finite dimensional local spaces P2
0 (ωi) as follows,

Definition 2.1. For i ∈ N , let P2(ωi) represent the space of continuous piecewise quadratic functions
on star ωi that vanish on ∂ωi. The spaces P2

0 (ωi) is defined by P2
0 (ωi) = P2(ωi) ∩ V(ωi).

Let us introduce the usual H1−norm on ωi,

||u||21,ωi
= ∥∇u∥2

0,ωi
+ ∥u∥2

0,ωi
.

For each i ∈ N , we take into account the local problems :

(Pi)

 Find ηi ∈ P2
0 (ωi) such that ∀µi ∈ P2

0 (ωi),∫
ωi

(∇ηi · ∇µi)ϕi dx =
∫

ωi

(∇uNC
h · ∇µi)ϕi dx −

∫
ωi

f µiϕi dx.

Using Lax-Milgram Theorem, we can prove that each discrete problem (Pi) admits a unique
solution ηi. Now we introduce the local error indicators,

∀i ∈ N , ∀uNC
h ∈ Vh, E2

1,i(u
NC
h ) =

∫
ωi

|∇ηi|2ϕi dx, (2.10)

∀i ∈ N , ∀uNC
h ∈ Vh, E2

2,i(u
NC
h ) = ∑

E∈ωi

h−1||[uNC
h ]E||0,E (2.11)

and set the problem data oscillation,

osc( f ) = ( ∑
i∈N

h2
i ∥( f − fi)ϕ

1
2
i ∥

2
0,ωi

)
1
2 . (2.12)

where fi =

∫
ωi

f ϕi dx∫
ωi

ϕi dx
for interior nodes, and fi = 0 otherwise.

The following theorem gives the upper bound of the error.

Theorem 2.2. Let uNC
h ∈ Vh be a solution of (2.3). We have(

∑
i∈N

∥u − uNC
h ∥2

1,ωi

) 1
2 ≤ C1

[(
∑

i∈N
E2

1,i(u
NC
h )

) 1
2
+
(

∑
i∈N

E2
2,i(u

NC
h )

) 1
2
+ osc( f )

]
, (2.13)

where C1 depends only on the minimum angle of Th.
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The following theorem provides the lower bound of the error without oscillation.

Theorem 2.3. Let uNC
h ∈ Vh, there exists a positive constant C2 , depending on the minimum angle of

the triangulation such that, for any i ∈ N ,

E1,i(uNC
h ) ≤ C2||u − uNC

h ||1,ωi , (2.14)

and

E2,i(uNC
h ) ≤ C2

(
∑

j∈N
∥u − uNC

h ∥2
1,ωj

) 1
2

. (2.15)

For proofs of two Theorems see [4].

2.4. Residual estimators. Initiated by Babuška and Rheinboldt [11] and detailed by Verfürth
[48], are probably the most popular. These are explicit error estimators involving residuals
from equilibrium equations and jumps from normal stresses to interfaces. They apply to
elliptical problems (Poisson, Stokes, or linear elasticity) in dimension 2 or 3. Upper bounds
are generally computable bounds multiplied by a constant independent of the exact solution
and the step of the mesh but whose value is difficult to calculate explicitly; However, let us
mention the works of Verfürth [49], Carstensen-Funken [24], and Veeser-Verfürth [46]. In this
subsection, we present residual-based error estimator developed by Dari et al. in [29] for the P1-
nonconforming finite element approximation of the Poisson problem and a general reliability
result.

For a side E define JE,n and JE,t by

JE,n =

 [∇uh · n]E if E ∈ EI
h

0 if E ∈ EF
h

(2.16)

and

JE,t =

 [∇uh · t]E if E ∈ EI
h

−2∇uh · t if E ∈ EF
h

(2.17)

with this notation we introduce the local error estimator ηT defined by.

η2
T = measd(T)∥ f ∥2

0,T +
1
2 ∑

E∈ET

h2
E(|JE,n|2 + |JE,t|2), (2.18)

and the global one is given by

η2 = ∑
T∈Th

η2
T.

We have the following result :
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Theorem 2.4. There exist positive constants C3 and C4 depending only on the domain Ω and the
minimum angle of Th such that

C3 η ≤
(

∑
T∈Th

∥∇(u − uNC
h )∥2

0,T

)1/2

≤ C4 η (2.19)

For proof of theorem see [29].

2.5. Numerical experiments. In this subsection, we compare the estimators presented for the
Poisson problem and that we will denote as follows

η1 :=

(
4∥ ph −∇ũh∥2

0,Ω + 2 ∑
T∈Th

∥∇(uNC
h − ũh)∥2

0,T + 16 ∑
T∈Th

µ2h2
T∥div ph + f ∥2

0,T

) 1
2

, (2.20)

η2 :=
(

∑
i∈N

E2
1,i(u

NC
h )

) 1
2
+
(

∑
i∈N

E2
2,i(u

NC
h )

) 1
2
+ osc( f ), (2.21)

η3 :=

(
∑

T∈Th

(measd(T)∥ f ∥2
0,T +

1
2 ∑

E∈ET

h2
E(|JE,n|2 + |JE,t|2))

) 1
2

. (2.22)

They are tested with the following iterative algorithm:

Algorithm 1

1: Generate a starting mesh, then calculate the solution.
2: Calculate local error indicators and their sum.
3: Refine the mesh in the areas where the indicators are bigger than their mean value and

compute solution.
4: if stopping criterium is satisfied, then STOP.
5: elseGo to 3
6: end if

We present here, for two kind of exact solutions, the meshes obtained for the different
estimators, with the same number of iterations.

2.5.1. Example with peak function. On the computational domain [0, 1]2, we consider a model
problem with homogeneous data. With the source term f given by the exact solution,

u = xy(x − 1)(y − 1)e−100(x−0.5)2−100(y−0.117)2

which presents sharp curvature in the vicinity of point (0.5, 0.117), and we perform a non-
conforming finite element discretization on it. We compare the results of adaptive refinement,
also compare the effectivity index of η1, η2 and η3. Successive iterations of adaptive mesh for
the three estimators are represented in Figures 2, 3 and 4. The refinement occurs in the point
(0.5, 0.117) as expected. It shows that the three estimators captures the local distribution of
the error similarly. The asymptotic decays of the three estimators are contrasted against the
number of degrees of freedom (ndof) in Figure 5.We observe that the three estimators for this
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example exhibit analogous behavior. Figure 6 compares the effectivity indices of all estimators.
We observe that the effectivity indices takes roughly constant values for the three estimators.

457 triangles 1684 triangles 12278 triangles
240 vertices 859 vertices 6176 vertices

Figure 2. Example 2.5.1. Adaptive mesh refinement using the error indicator for
equilibration estimator.

470 triangles 1607 triangles 11261 triangles
247 vertices 821 vertices 5662 vertices

Figure 3. Example 2.5.1. Adaptive mesh refinement using the error indicator for
star-based estimator.

2.5.2. Example with boundary layers. Let Ω be the unit square, Ω = [0, 1]2. We take the right-
hand side f such that the exact solution is

u(x, y) = xy(1 − e(x−1)/γ)(1 − e(y−1)/γ).

with boundary layer parameter γ = 0.05. Figures 7, 8 and 9 present successive iterations of
adaptive mesh for the three estimators, the refinement occurs at both boundary layers located
near the lines x = 1 and y = 1 as expected. We note that the star-based estimator capture
the local distribution of the error better than the two other estimators. The asymptotic decays
of the three estimators versus the ndof are compared in figure 10. For this example, the
three estimators show analogous behavior. . Figure 11 compares the effectivity indices of all
estimators. We observe that the effectivity indices takes roughly constant values for the three
estimators.
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707 triangles 2271 triangles 15527 triangles
368 vertices 1156 vertices 7804 vertices

Figure 4. Example 2.5.1. Adaptive mesh refinement using the error indicator for
residual estimator.
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Figure 5. Example 2.5.1. Experimental convergence rates for the three a posteri-
ori error estimators plotted against the number of degrees of freedom.

Figures 5 and 10 indicate quasi-optimality of the estimators, the dashed line of slope (−1/2)
showing a numerical (ndo f )−1/2 asymptotic decay of the three estimators.

3. Stokes problem

3.1. Problem setting, notations and discrete problem. Let Ω be an open bounded of Rd, d =
2, 3, with a polygonal (Polyhedral) Lipschitz boundary Γ. We consider the Stokes problem :
given f ∈ [L2(Ω)]d, find u, the ”velocity”, and p, the ”pressure”, such that

−∆u +∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on Γ.
(3.1)
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Figure 6. Example 2.5.1. Effectivity indices of the three a posteriori error estima-
tors plotted against the number of degrees of freedom.

730 triangles 2366 triangles 14590 triangles
428 vertices 1293 vertices 7504 vertices

Figure 7. Example 2.5.2. Adaptive mesh refinement using the error indicator for
equilibration estimator.

Throughout this section, we employ standard notation for the Lebesgue L2(Ω) and Sobolev
(H1

0(Ω))d spaces. The scalar product in L2(Ω) is denoted by (·, ·) and its norm by ∥ · ∥0,Ω. Let
u = [ui]i=1,d, v = [vi]i=1,d be two vectors, and A = [Aij]i,j=1,d, B = [Bij]i,j=1,d be two matrices,
define

∇u := [∂jui]i,j=1,d, ∇ · u := ∑d
i=1 ∂iui,

u ⊗ v := [uivj]i,j=1,d, div A := [∑d
j=1 ∂j Aij]i=1,d,

A : B = ∑d
i,j=1 AijBij.

To establish the weak form of the above system, we introduce the following spaces :

V = (H1
0(Ω))d, M = {q ∈ L2(Ω) |

∫
Ω

q dx = 0}.
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682 triangles 2077 triangles 12949 triangles
389 vertices 1119 vertices 6651 vertices

Figure 8. Example 2.5.2. Adaptive mesh refinement using the error indicator for
star-based estimator.

809 triangles 2199 triangles 13807 triangles
467 vertices 1208 vertices 7145 vertices

Figure 9. Example 2.5.2. Adaptive mesh refinement using the error indicator for
residual estimator.

Then the standard variational formulation of problem (3.1) is given by the following : find u ∈ V and p ∈ M such that

B((u, p); (v, q)) = ( f , v) ∀(v, q) ∈ V × M,
(3.2)

where
B((u, p); (v, q)) = a(u, v) + b(v, p) + b(u, q),

with the continuous bilinear forms

a(u, v) =
∫

Ω
∇u : ∇v dx, b(v, p) = −

∫
Ω

p∇ · v dx

It is well-known that the weak formulation of the Stokes problem is well-posed [36].
We define the spaces

Vd
h = (Vh)

d, Qh = {qh ∈ L2
0(Ω), qh|T ∈ P0(T), ∀T ∈ Th}. (3.3)
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Figure 10. Example 2.5.2. Experimental convergence rates for the three a poste-
riori error estimators plotted against the number of degrees of freedom.
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Figure 11. Example 2.5.2. Effectivity indices of the three a posteriori error esti-
mators plotted against the number of degrees of freedom.

The nonconforming finite element approximation of the problem (3.1) is as follows :

find uNC
h ∈ Vd

h and ph ∈ Qh such that

∀vh ∈ (Vh)
d, ∑

T∈Th

{ ∫
T
∇uNC

h : ∇vh dx −
∫

T
ph div vh dx

}
=
∫

Ω
f · vh dx,

∀qh ∈ Qh, ∑
T∈Th

∫
T

qh div uNC
h dx = 0.

(3.4)
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3.2. Equilibration estimator. In this subsection we present an a posteriori error estimator de-
veloped by Achchab et al. in [1] for the nonconforming approximation of the Stokes problem.
This estimator is based on the flux reconstruction approach described in (2.2), here the authors
extended this method to the Stokes problem.

For all T ∈ Th, we consider the field σh, defined locally as follows

σh = ∇uNC
h − 1

d
f h ⊗ (x − xG), (3.5)

where f h|T := f T =
1

measd(T)

∫
T

f dx, ∀T ∈ Th and xG is the barycenter of T. We introduce

the local indicator and the global estimator defined respectively by

η2
T = ∥∇ũh − σh∥2

0,T + ∥div ũh∥2
0,T and E2

h = ∑
T∈Th

η2
T. (3.6)

The data oscillation is defined by

osc1( f ) = ( ∑
T∈Th

h2
T∥ f h − f∥2

0,T)
1/2. (3.7)

We recall the following result from [1].

Theorem 3.1. Let (ũh, ph) ∈ (H1
0(Ω)d ∩ Vd

h )× Mh, where ũh is a conforming post-processing of uNC
h

obtained by using the Oswald interpolation operator. we suppose that

∥p − ph∥0,Ω ≤ C|u − ũh|1,Ω,

where C is a positive constant depends on the triangulation Th and the domain Ω. Then the next
estimate holds

|u − ũh|21,Ω + ∥∇u − σh∥2
0,Ω ≤C5

{
E2

h + osc1( f )2
}

(3.8)

and
ηT ≤ C6{|u − ũh|1,T + ∥∇u − σh∥0,T}, ∀T ∈ Th, (3.9)

where C5 and C6 are a positive constants independent of h.

3.3. Star-based estimator. In this subsection we present an extension of the ideas given in
subsection (2.3) to the Stokes equations by adapting introduced arguments.
We introduce the following local problems :

(SPi)



Find ϵi ∈ (P2
0 (ωi))

2 such that

∀µi ∈ (P2
0 (ωi))

2,
∫

ωi

(∇ϵi : ∇µi)ϕi dx =
∫

ωi

∇huNC
h : ∇(µiϕi) dx

−
∫

ωi

ph div(µiϕi) dx −
∫

ωi

( f · µi)ϕi dx.

It is evident that these local problems admit unique solutions.
We introduce the three indicators for all i ∈ N ,
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η1,i(uNC
h , ph) = ( ∑

T∈ωi

∥div uNC
h ϕ

1
2
i ∥

2
0,T)

1
2 , (3.10)

η2,i(uNC
h , ph) = (

∫
ωi

|∇ϵi|2ϕi dx)
1
2 , (3.11)

η2
3,i(u

NC
h , ph) = ∑

E∈ωi

h−1||[uNC
h ]E||0,E, (3.12)

and set the problem data oscillation,

osc2( f ) = ( ∑
i∈N

h2
i ∥( f − f i)ϕ

1
2
i ∥

2
0,ωi

)
1
2 , (3.13)

where f i =

∫
ωi

f ϕi dx∫
ωi

ϕi dx
for interior nodes, and f i = 0 otherwise.

The following theorem [4] provides the a posteriori error estimate for the nonconforming
finite element approximation of Stokes problem solution.

Theorem 3.2. There exists a positive constant C7 depending on the minimum angle of the triangulation
such that :(

∑
i∈N

∥u − uNC
h ∥2

1,ωi

) 1
2
+ ∥p − ph∥0,Ω ≤ C7

{[
∑

i∈N
(η2

1,i + η2
2,i + η2

3,i)
] 1

2
+ osc2( f )

}
, (3.14)

For the estimator efficiency, we give the following theorem [4].

Theorem 3.3. ∀ωi ∈ Th, there exist positive constants C8, C9 and C10 depending on the minimum
angle of the triangulation such that :

∥divh uNC
h ∥0,ωi ≤ C8∥u − uNC

h ∥1,ωi , (3.15)

η2,i ≤ C9

(
∥u − uNC

h ∥1,ωi + ∥p − ph∥0,ωi

)
, (3.16)

and
η3,i ≤ C10∥u − uNC

h ∥1,ωi . (3.17)

3.4. Residual estimator. In this subsection we present residual-based error estimator devel-
oped by Dari et al. in [30] for the nonconforming approximation of the Stokes problem. We
consider the same discrete problem as (3.4).

For a side E define JE,n and JE,t by

JE,n =

 [(∇uNC
h − ph I)n]E if E ∈ EI

h

0 if E ∈ EF
h

(3.18)

and

JE,t =

 [∇uNC
h t]E if E ∈ EI

h

2∇uNC
h t if E ∈ EF

h

(3.19)
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With this notation we introduce the local error estimator ηT defined by.

η2
T(u

NC
h , ph) = measd(T)∥ f∥2

0,T +
1
2 ∑

E∈ET

h2
E(|JE,n|2 + |JE,t|2), (3.20)

Finally, the global error estimator is given by

η2 = ∑
T∈Th

η2
T.

The data oscillation is defined by

osc3( f ) =
(

∑
T∈Th

measd(T)∥( f − f h)∥
2
0,T

) 1
2
, (3.21)

For a piecewise regular vector function vh we define the discrete gradient as the L2-matrix
defined by

∇hvh|T = ∇(vh|T).
The following theorem [30] provides The upper bound of the error.

Theorem 3.4. Let (u, p) be the solution of the Stokes problem (3.2), and let (uNC
h , ph) ∈ Vd

h × Qh be a
solution of the discrete problem (3.4). There exists a positive constant C11 such that

∥∇h(u − uNC
h )∥0,Ω + ∥p − ph∥0,Ω ≤ C11η. (3.22)

Next, we show a local lower bound on the estimator [30] :

Theorem 3.5. Let (u, p) be the solution of the Stokes problem (3.2), and let (uNC
h , ph) ∈ Vd

h × Qh be a
solution of the discrete problem (3.4). There exists a positive constant C12 such that

η ≤ C12(∥∇h(u − uNC
h )∥0,Ω + ∥p − ph∥0,Ω + osc3( f )). (3.23)

3.5. Numerical experiments. In this subsection, we compare all the estimators we have pre-
sented for the Stokes problem and that we will denote as follows

η1 :=
{
E2

h + osc1( f )2
} 1

2 (3.24)

η2 :=
[

∑
i∈N

(η2
1,i + η2

2) + η2
3

] 1
2
+ osc2( f ), (3.25)

η3 :=

(
∑

T∈Th

(measd(T)∥ f∥2
0,T +

1
2 ∑

E∈ET

h2
E(|JE,n|2 + |JE,t|2)

) 1
2

. (3.26)

They are tested with using the Algortithm 1. We present here, for two kind of exact solutions,
the meshes obtained for the different estimators, with the same number of iterations.
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3.5.1. L-shape domain problem. The first example is a flow problem in the L-shape domain Ω =
[−1, 1]2 − [0, 1]2. The right hand side f of the Stokes problem (3.1) is determined by exact
velocity u = (u1, u2) and pressure p :

u1(x, y) =
y − 0.1√

(x − 0.1)2 + (y − 0.1)2
,

u2(x, y) =
x − 0.1√

(x − 0.1)2 + (y − 0.1)2
,

p(x, y) =
1

y + 1.05
− log(2.05) + log(1.05)− 2 log(0.05)

3
.

We note that both the velocity u and the pressure p are smooth in the domain. However, it is
clear that u and p are singular at the point (0.1, 0.1) and along the line y = −1.05, respectively.
Figures 12, 13 and 14 present successive iterations of adaptive mesh for the three estimators,
we can see the refined meshes appear around the origin and along the line y = −1, which are
near the locations of singularity. It shows that the three estimators captures the local distribu-
tion of the error similarly. Figures 15 to 20 present adaptive computed velocity and adaptive
computed pressure respectively for the three error indicators. Figure 21 gives comparison of
asymptotic decays of the three estimators versus the ndof. We note analogous behavior of the
three estimators for this example. Figure 22 compares the effectivity indices of all estimators
where their asymptotic values are found to be fairly constant.

3.5.2. A singular problem. The second example is taken from [39]. The domain is the rectangle
Ω = [−1, 1]× [0, 1]. The exact solution is given by

ue =
3
√

r
2

(
cos

θ

2
− cos

3θ

2
, 3sin

θ

2
− sin

3θ

2

)
,

pe = − 6√
r

cos
θ

2
,

where (r, θ) are the polar coordinates in Ω. The solution has a singularity at the origin (0, 0).
Figures 23, 24 and 25 present successive iterations of adaptive mesh using η1, η2 and η3 as
local refinement indicators. It can be seen that all three estimators capture the singularity
at the origin as expected. Figures 26 to 31 present adaptive computed velocity and adaptive
computed pressure respectively for the three error indicators. Figure 32 gives comparison of
asymptotic decays of the three estimators versus the ndof. We note analogous behavior of the
three estimators for this example. Figure 33 compares the effectivity indices of all estimators,
We observe that the effectivity indices takes roughly constant values.
Figures 21 and 32 illustrates quasi-optimality of the three estimators, the dashed line of slope
(−1

2) showing a numerical (ndo f )−
1
2 asymptotic decay of the three estimators.
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570 triangles 1027 triangles 2119 triangles
344 vertices 625 vertices 1236 vertices

Figure 12. Example 3.5.1. Adaptive mesh refinement using the error indicator
for equilibration estimator.

488 triangles 1131 triangles 4807 triangles
293 vertices 638 vertices 2546 vertices

Figure 13. Example 3.5.1. Adaptive mesh refinement using the error indicator
for star-based estimator.

568 triangles 1266 triangles 5795 triangles
340 vertices 727 vertices 3088 vertices

Figure 14. Example 3.5.1. Adaptive mesh refinement using the error indicator
for residual estimator.
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Figure 15. Example 3.5.1. Adaptive computed velocity using the error indicator
for equilibration estimator.

Figure 16. Example 3.5.1. Adaptive computed velocity using the error indicator
for star-based estimator.

Figure 17. Example 3.5.1. Adaptive computed velocity using the error indicator
for residual estimator.
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Figure 18. Example 3.5.1. Adaptive computed pressure using the error indicator
for equilibration estimator.

Figure 19. Example 3.5.1. Adaptive computed pressure using the error indicator
for star-based estimator.

Figure 20. Example 3.5.1. Adaptive computed pressure using the error indicator
for residual estimator.
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Figure 21. Example 3.5.1. Experimental convergence rates for the three a poste-
riori error estimators plotted against the number of degrees of freedom.
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Figure 22. Example 3.5.1. Efficiency indices of the three a posteriori error esti-
mators plotted against the number of degrees of freedom.

4. Conclusion

We compared three types of a posteriori error estimators for the Poisson problem and the
Stokes problem. It may be noted that the behavior of these estimators differs between the two
problems. For the Poisson problem, the estimator based on the resolution of local problems
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305 triangles 842 triangles 4311 triangles
176 vertices 460 vertices 2242 vertices

Figure 23. Example 3.5.2. Adaptive mesh refinement using the error indicator
for equilibration estimator.

375 triangles 1054 triangles 5283 triangles
203 vertices 553 vertices 2702 vertices

Figure 24. Example 3.5.2. Adaptive mesh refinement using the error indicator
for star-based estimator.

281 triangles 711 triangles 3256 triangles
161 vertices 389 vertices 1699 vertices

Figure 25. Example 3.5.2. Adaptive mesh refinement using the error indicator
for residual estimator.

better detects the singularity than the other two estimators, even if it takes more time in the
calculation. On the other hand, the effectivity index of the estimator based on the equilibrated
flux is closer to 1 than the other two. For the Stokes problem, the estimator based on the
equilibrated flux better localizes the singularity than the other two estimators, we also note
that the estimator based on the resolution of local problems converges faster than the other
two.
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Figure 26. Example 3.5.2. Adaptive computed velocity using the error indicator
for equilibration estimator.

Figure 27. Example 3.5.2. Adaptive computed velocity using the error indicator
for star-based estimator.

Figure 28. Example 3.5.2. Adaptive computed velocity using the error indicator
for residual estimator.

Figure 29. Example 3.5.2. Adaptive computed pressure using the error indicator
for equilibration estimator.
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[11] I Babuška and C. Rheinboldt. Error estimates for adaptive finite element computations. SIAM Journal on
Numerical Analysis, 15(4):736–754, 1978.

[12] R.E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial differential equations. Mathe-
matics of Computation, 44(170):283–301, 1985.

[13] R. E Bank and B.D. Welfert. A posteriori error estimates for the Stokes equations: a comparison. Computer
Methods in Applied Mechanics and Engineering, 82(1-3):323–340, 1990.

[14] R.E. Bank and B.D. Welfert. A posteriori error estimates for the Stokes problem. SIAM Journal on Numerical
Analysis, 28(3):591–623, 1991.

[15] C. Bernardi, B. Métivet, and R; Verfürth. Analyse numérique d’indicateurs d’erreur. in Maillage et adaptation.
P.-L. George Ed., Hermès, pages 251–278, 2001.
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et Analyse Numérique, 7(R3):33–75, 1973.

[29] E. Dari, R. Duran, C. Padra, and V. Vampa. A posteriori error estimators for nonconforming finite element
methods. ESAIM: Mathematical Modelling and Numerical Analysis, 30(4):385–400, 1996.

[30] E. Dari, R. Durán, and C. Padra. Error estimators for nonconforming finite element approximations of the
Stokes problem. Mathematics of Computation, 64(211):1017–1033, 1995.

[31] P. Destuynder and B. Métivet. Explicit error bounds for a nonconforming finite element method. SIAM
Journal on Numerical Analysis, 35(5):2099–2115 (electronic), 1998.

[32] W. Dörfler and M. Ainsworth. Reliable a posteriori error control for nonconforming finite element approxi-
mation of Stokes flow. Mathematics of Computation, 74(252):1599–1619, 2005.

[33] A. Ern, A. F. Stephansen, and M. Vohralı́k. Guaranteed and robust discontinuous Galerkin a posteriori
error estimates for convection–diffusion–reaction problems. Journal of Computational and Applied Mathematics,
234(1):114–130, 2010.

[34] A. Ern and M. Vohralı́k. Flux reconstruction and a posteriori error estimation for discontinuous Galerkin
methods on general nonmatching grids. Comptes Rendus Mathematique, 347(7):441–444, 2009.

[35] A. Ern and M. Vohralı́k. Four closely related equilibrated flux reconstructions for nonconforming finite
elements. Comptes Rendus Mathematique, 351(1):77–80, 2013.

[36] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin,
1986.

[37] A. Hannukainen, R. Stenberg, and M. Vohralı́k. A unified framework for a posteriori error estimation for the
Stokes problem. Numerische Mathematik, 122(4):725–769, 2012.

[38] O. A Karakashian and F. Pascal. A posteriori error estimates for a discontinuous Galerkin approximation of
second-order elliptic problems. SIAM Journal on Numerical Analysis, 41(6):2374–2399, 2003.

[39] D. Kay and D. Silvester. A posteriori error estimation for stabilized mixed approximations of the Stokes
equations. SIAM Journal on Scientific Computing, 21(4):1321–1336, 1999.

[40] K. Kim. A posteriori error analysis for locally conservative mixed methods. Mathematics of Computation,
76(257):43–66, 2007.
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