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p(x)-Kirchhoff bi-nonlocal elliptic problem driven by both
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Abstract. We investigate the existence of non-trivial weak solutions for the following p(x)-Kirchhoff bi-
nonlocal elliptic problem driven by both p(x)-Laplacian and p(x)-Biharmonic operatorsM(σ)

(
∆2

p(x)u− ∆p(x)u
)
= λϑ(x)|u|q(x)−2u

( ∫
Ω

ϑ(x)
q(x) |u|

q(x)dx
)r

in Ω,

u ∈W2,p(.)(Ω) ∩W1,p(.)
0 (Ω),

under some suitable conditions on the continuous functions p, q, the non-negative function ϑ and M(σ),
where

σ :=
∫

Ω

|∆u|p(x)

p(x)
+
|∇u|p(x)

p(x)
dx.

Our main results is obtained by employing variational techniques and the well-known symmetric mountain
pass lemma.
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1. Introduction

Intense research has been put into the study of variational problems with operators that have
variable exponents over the past ten years. These problems, which are frequently referred to
as nonhomogeneous eigenvalue problems, have a characteristic that makes it more difficult to
use many of the methods employed if the exponent is a positive constant. In many fields, such
as image processing [14], heat transfer problems [4], fluid flow problems [19], and structural
mechanics problems [18], these nonhomogeneous eigenvalue problems have wide and useful
applications.

The main objective of this work is to look into the existence of weak solutions for a p(x)-
Kirchhoff bi-nonlocal elliptic problem in a bounded domain Ω of RN with smooth boundary.

(Pλ) :

M(σ)

(
∆2

p(x)u− ∆p(x)u
)
= λϑ(x)|u|q(x)−2u

( ∫
Ω

ϑ(x)
q(x) |u|

q(x)dx
)r

in Ω,

u ∈W2,p(.)(Ω) ∩W1,p(.)
0 (Ω),

where p and q are continuous functions on Ω, λ and r are a positive reals, M(σ) is a continuous
function with

σ :=
∫

Ω

|∆u|p(x)

p(x)
+
|∇u|p(x)

p(x)
dx.

∆p(x) = div(|∇u|p(x)−2∇u) and ∆2
p(x)u = ∆(|∆u|p(x)−2∆u) are respectively the p(x)-Laplacian

operator and the p(x)-biharmonic, and ϑ ∈ Lm(x) is a nonnegative function with m ∈ C+(Ω).
The terminology ”bi-nonlocal” originates from the fact that the equation in (Pλ) contains the
following two integral over Ω∫

Ω

|∆u|p(x)

p(x)
+
|∇u|p(x)

p(x)
dx and

∫
Ω

ϑ(x)
q(x)
|u|q(x)dx,

with u depicts a process that focuses on the average of itself like the population density, and
which no longer exist as pointwise expressions when modeling biological systems. Addition-
ally, they depict several pertinent physical and engineering conditions (such as image process-
ing, describing the theorem of beam vibration, etc) and requires a nontrivial apparatus to solve
them. We point out that the research has been active in studying the problems that contain
nonlocal terms since the appearance of the work of Kirchhoff [15], in 1883, in which was stud-
ied the following hyperbolic problem that expands the traditional D’Alambert’s wave equation
by taking into account the impact of variations in string length throughout vibrations

ρ
∂2u
∂t2 −

(
ρ0

h
+

E
L

∫ L

0
|∂u
∂x
|2dx

)
∂2u
∂x2 = 0,

such that ρ, ρ0, h, E, L are constants. During the last decade, there were many works concerning
similar problems by involving the variable exponent theory. In 2014, Corrła and ACDR Costa
[5] have showed several results concerning the existence of positive solutions of the problem
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defined by−M
( ∫

Ω
1

p(x) |∇u|p(x)dx
)

∆p(x)u = λ|u|β(x)−2u
( ∫

Ω
1

β(x) |u|
β(x)dx

)r

in Ω,

u = 0 on ∂Ω.
(1.1)

In 2017, Allaoui and Darhouche [1] are focused in the existence of solutions to the problem that
contains a (p1(x), p2(x))−Kirchhoff-type equations with Dirichlet boundary condition, which
is presented as follow−M1

( ∫
Ω

1
p1(x) |∇u|p(x)dx

)
∆p1(x)u−M2

( ∫
Ω

1
p2(x) |∇u|p(x)dx

)
∆p2(x)u = f (x, u) in Ω,

u = 0 on ∂Ω,

and established several conditions on the existence of solutions using variational methods
and the theory of the variable exponent Sobolev spaces. Recently, Lee et all [17] studied the
following elliptic equation:

−M
( ∫

RN

1
p(x)
|∇u|p(x)dx

)
∆p(x)u + ϑ(x)|u|p(x)−2u = λ f (x, u) in RN,

and used abstract critical point results for an energy functional fulfilling the Cerami condi-
tion to calculate the precise positive interval of λ where the problem permits at least two
nontrivial solutions. Very recently, Jaafri et all [12] established the existence of a sequence of
weak solutions of a similar problem with Navier boundary condition where the expression

”M
( ∫

Ω
1

p(x) |∆u|p(x)dx
)

∆2
p(x)u” is used in place of the expression on the left side of (1.1).

Motivated by the works in [5] and [12] we prove the existence of a sequence of weak solutions
of (Pλ), and this is according to the conditions from which we proceed. To the best of our
knowledge, this work is the first involving both p(x)-Laplacian and p(x)-Biharmonic operators
on one side and nonlocal terms and weight on the other, which could open up new research
directions, at both the theoretical and applied levels.

The article is arranged as follows: We first review several fundamental concepts and prop-
erties. The existence of non-trivial weak solutions to the problem (Pλ) is the focus of Section
3. Finally, we will compare our results with existing ones.

2. Definitions and fundamental properties

The problem (Pλ) requires the introduction of some fundamental properties of Lebesgue-
Sobolev spaces with variable exponent (to learn more, see [16, 11, 10]) and some properties
of the operators existing in (Pλ), which permiting our functionals to fulfill the hypotheses, in
order to guarantees the mains results.
First let p be a Lipschitz continuous function on Ω, verifying

1 < p− := min
x∈Ω

p(x) ≤ p+ = max
x∈Ω

p(x) < ∞.
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Set
C+(Ω) := { f : f ∈ C(Ω), f (x) > 1, for each x ∈ Ω},

and define
Lp(x)(Ω) = {v : Ω→ R measurable : $p(x)(|v(x)|p(x)) < ∞},

where $p(.) is the modular functional defined on Lp(x)(Ω) as follows∫
Ω
|v(x)|p(x) dx.

The norm which is described as follow

|v|p(.) = inf{ν > 0 : $p(x)

(v
ν

)
≤ 1},

is endowed in the space Lp(x)(Ω).
Notice that if p(x) is equal to a p ∈ R+, then Lp(x)(Ω) is the classical Lebesgue space Lp(Ω)

and the norm |v|p(x) is the standard one ‖v‖Lp =

( ∫
Ω |v|

pdx
) 1

p

in Lp(Ω).

Similar to the constant exponent case, we consider for each positive integer k

Wk,p(x)(Ω) = {v ∈ Lp(x)(Ω) : Dγv ∈ Lp(x)(Ω), |γ| ≤ k},

such that γ = (γ1, ..., γN) is a multi-index, |γ| = ∑N
i=1 γi and Dγv = ∂|γ|v

∂γ1 x1...∂γN xN
. The space

Wk,p(x)(Ω) is equipped with the norm

‖v‖k,p(x) = ∑
|γ|≤k

|Dγv|p(x),

is a reflexive and separable Banach space. Wk,p(x)
0 (Ω) is the closure of C∞

0 (Ω) in Wk,p(x)(Ω).

In what follows, we set X := W2,p(.)(Ω)∩W1,p(.)
0 (Ω) and see that weak solutions of problem

(Pλ) are taken in X, with the following norm

‖v‖p(.) = |∆v|p(.) + |∇v|p(.).
According to [20], let us notice that the norms ‖v‖p(.) and |∆v|p(.) are equivalent. They are also
equivalent to the norm defined by

‖v‖ = in f
{

κ > 0 :
∫

Ω

(∣∣∣∣∆v(x)
κ

∣∣∣∣p(x)

+

∣∣∣∣∇v(x)
κ

∣∣∣∣p(x))
dx ≤ 1

}
.

Proposition 1. Assume that for each v ∈ X

Λp(v) =
∫

Ω

(
|∆v(x)|p(x) + |∇v(x)|p(x))dx.

Then
• ‖v‖ < 1(= 1,> 1)⇔ Λp(v) < 1(= 1,> 1),

• ‖v‖ < 1⇒ ‖v‖p+

p(x) ≤ Λp(v) ≤ ‖v‖p−

p(x),

• ‖v‖ > 1⇒ ‖v‖p−

p(x) ≤ Λp(v) ≤ ‖v‖p+

p(x),
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• ‖vn‖ → 0⇔ Λp(vn)→ 0,
• ‖vn‖ → ∞⇔ Λp(vn)→ ∞.

The above statements can be proven in the same way as in [8, Theorem 1.3].

Proposition 2. [6] Let p and q be two measurable functions verifying p ∈ L∞(Ω) and for all x ∈ Ω
one has 1 < p(x)q(x) ≤ ∞. Then we have for each v ∈ Lq(x)(Ω), v 6= 0

|v|p(x) ≤ 1⇒ |v|p
+

p(x)q(x) ≤
∣∣∣|v|p(x)

∣∣∣
q(x)
≤ |v|p

−

p(x)q(x),

|v|p(x) ≥ 1⇒ |v|p
−

p(x)q(x) ≤
∣∣∣|v|p(x)

∣∣∣
q(x)
≤ |v|p

+

p(x)q(x).

Lemma 3. [7] ∆2
p(.) : W2,p(.)

0 (Ω) → W−2,p′(.)
0 (Ω) is belong to the class (S+); that is, if vn ⇀

v in W2,p(.)
0 (Ω) and limsup

n→∞
〈∆2

p(.)vn, vn − v〉 ≤ 0, therefore vn → v in W2,p(.)
0 (Ω).

Lemma 4. [9] −∆p(.) : W1,p(.)
0 (Ω)→W−1,p′(.)

0 (Ω) is belong to the class (S+).

Proposition 5. (Hölder inequality) Assume that p′ is the conjugate function of p. Then for each
u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) one has

∫
Ω
|uv|dx ≤

(
1

p−
+

1
p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x).

Furthermore, if p1, p2, p3 ∈ C+(Ω) such that 1
p1(x) +

1
p2(x) +

1
p3(x) = 1, then according to [9,

Proposition 2.5] we have for all u ∈ Lp1(x)(Ω), v ∈ Lp2(x)et w ∈ Lp3(x)

∫
Ω
|uvw|dx ≤

(
1

p−1
+

1
p−2

+
1

p−3

)
|u|p1(x)|v|p2(x)|w|p3(x).

Theorem 2.1. [3] Assume that p, q ∈ C+(Ω).
If q(x) < p∗(x) where

p∗(x) =

{
Np(x)

N−2p(x) , p(x) < N
2 ,

+∞, p(x) ≥ N
2 ,

then there exists a compact and continuous embedding X ↪→ Lq(x)(Ω).

In what follows, it is assumed that Φ ∈ C1(X, R) with X is a Banach space.

Definition 2.1. Let u0 ∈ X and k = Φ(u0). If Φ′(u0) = 0, then k and u0 are called respectively
a critical value of Φ and a critical point of Φ.

Definition 2.2. The Palais-Smale condition (PSC) is said to be satisfied by a functional Φ at the
level k (k ∈ R) if for all sequence {un}n∈N of X verifying Φ(un) → k in R and Φ′(un) → 0
in X∗ (the dual space of X) it is possible to extract a sub-sequence strongly converging to a
critical point of Φ in X.
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Lemma 2.1. If Φ satisfies the (PSC) at the k level (k ∈ R) and is bounded from below, then Φ reaches
its minimum k.

Theorem 2.2. [2](Mountain pass Theorem) Consider a real infinite dimensional Banach space
X. If Φ ∈ C1(X, R) checks the following conditions

(1) Φ′ is Lipschitz continuous on bounded subsets of X,
(2) Φ(u) verifies the (PSC),
(3) Φ(0) = 0,
(4) there are positive constants R and C that satisfy Φ(u) ≥ C if ‖u‖ = R, and there exists

w ∈ X with ‖w‖ > R such that Φ(w) ≤ 0.
Then

c = inf
τ∈Γ

sup
t∈[0,1]

Φ
(
τ(t)

)
,

is a critical value of Φ, where

Γ = {τ ∈ C([0, 1], X) : τ(0) = 0, τ(1) = w}.
Theorem 2.3. [13](Symmetrical mountain pass lemma) Let Γn be the family of closed symmet-
ric subsets H of X with 0 /∈ H and γ(H) ≥ n where γ(H) is the genus of H, i.e.,

γ(H) = in f {n ∈N : ∃ g : H → Rn \ {0} such that g is an odd continuous mapping }.
If Φ checks the following conditions

(1) Φ(u) is even,
(2) Φ(u) is bounded from below,
(3) Φ(0) = 0,
(4) Φ(u) verifies the (PSC),
(5) ∀n ∈N, ∃Hn ∈ Γn : sup

u∈Hn

Φ(u) < 0.

Then, each cn := inf
H∈Γn

sup
u∈H

Φ(u) is a critical value of Φ. Furthermore, Φ admits a sequence of

non-trivial critical points {un} verifying

Φ′(un) = 0, Φ(un) ≤ 0 and lim
n

un = 0.

3. Main results

In this section, using mountain pass theorem and under some conditions we show in the first
result that the problem (Pλ) has a non-trivial weak solution, and using symmetrical mountain
pass lemma and other conditions we prove in second result that there is existence of a sequence
of non-trivial weak solutions of (Pλ), and this for each strictly positive λ and subject to the
following conditions

(A1) 1 < q(x) < p(x) < N
2 < m(x) with q(x) < p∗(x) f or each x ∈ Ω.

(A2) ϑ ∈ Lm(x)(Ω) such that there is a measurable set Ω0 ⊂ Ω verifying
ϑ(x) > 0, f or each x ∈ Ω0.

(A3) There exist θ1 ≥ θ0 > 0 such that θ0 ≤ M(t) ≤ θ1 f or each t ∈ R+.

(3.1)
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Let m′(x) be the conjugate exponent of m(x) and consider η(x) := m(x)q(x)
m(x)−q(x) . By (A1) one get

for all x ∈ Ω, η(x) < p∗(x) and m′(x)q(x) < p∗(x). Hence, according to Theorem 2.1, the
embeddings X ↪→ Lm′(x)q(x)(Ω) and X ↪→ Lη(x)(Ω) are compact and continuous.

Definition 3.1. A fixed point u ∈ X is called a weak solution of (Pλ) if for each v ∈ X one has

M(σ)

( ∫
Ω
(|∆u|p(x)−2∆u∆v+ |∇u|p(x)−2∇u∇v) dx

)
= λ

∫
Ω
|u|q(x)−2uv dx

( ∫
Ω

ϑ(x)
q(x)
|u|q(x) dx

)r

.

In the case where u 6= 0, it is said that λ is the eigenvalue of (Pλ).

The energy functional Φλ : X → R associated to (Pλ) is set as follows

Φλ(u) = M̃
( ∫

Ω

|∆u|p(x)

p(x)
+
|∇u|p(x)

p(x)
dx
)
− λ

r + 1

( ∫
Ω

ϑ(x)
q(x)
|u|q(x)dx

)r+1

,

such that M̃(σ) =
∫ σ

0 M(s) ds.
It is easy to show that Φλ ∈ C1(X, R) and that for each u, v ∈ X one has

Φ′λ(u)(v) =M(σ)

( ∫
Ω
(|∆u|p(x)−2∆u∆v + |∇u|p(x)−2∇u∇v) dx

)
− λ

( ∫
Ω

ϑ(x)
q(x)
|u|q(x)dx

)r ∫
Ω

ϑ(x)|u|q(x)−2uvdx.

Consequently, the weak solution of problem (Pλ), coincides with the critical point of Φλ.
We consider the functionals ϕ, χ : X → X∗ defined as follows

ϕ(u) = M̃(u)F(x)(u),

and
χ(u) = B(u)E(u),

where for each u, v ∈ X

〈F(u), v〉 =
∫

Ω

(
|∆u|p(x)−2∆u∆v + |∇u|p(x)−2∇u∇v

)
dx,

B(u) =
( ∫

Ω

ϑ(x)
q(x)
|u|q(x)dx

)r

and 〈E(u), v〉 =
∫

Ω
ϑ(x)|u|q(x)−2uvdx.

We are able to write Φλ as follows:

Φλ(u) = ϕ(u)− λχ(u).

Now, we can introduce our first main result.

Theorem 3.1. Assume that
(i) conditions (A1), (A2) and (A3) stated in (3.1) holds,

(ii) p+ < q−(r + 1),

(iii) θ1 p+
θ0

< (q−)(r+1)(r+1)
(q+)r .

Then for each λ strictly positive, the problem (Pλ) admits a non-trivial weak solution.



414 M. JENNANE, M.D. MORCHID ALAOUI

Proof. The proof consists of three steps:
Step 1: There are two strictly positive reals R and C satisfying

Φλ(u) ≥ C for each u in X with ‖u‖ = R. (3.2)

Recalling that

Φλ(u) ≥
θ0

p+

∫
Ω
(|∆u|p(x) + |∇u|p(x)) dx− λ

r + 1

[ ∫
Ω

ϑ(x)
q(x)
|u|q(x)dx

]r+1

.

First, through the continuity of the embedding X ↪→ Lm′(x)q(x)(Ω) we get the existence of
C1 > 0 such that for all u ∈ X one has

|u|m′(x)q(x) ≤ C1‖u‖. (3.3)

Let us fix R ∈ (0, 1) with R < 1
C1

. Hence by (3.3) one has for any u ∈ X, |u|m′(x)q(x) < 1 with
‖u‖ = R. Then, one get∫

Ω
ϑ(x)|u|q(x)dx ≤ |ϑ|m(x)

∣∣|u|q(x)∣∣
m′(x) ≤ |ϑ|m(x)|u|

q−

m′(x)q(x), (3.4)

for any u ∈ X with ‖u‖ = R.
Using (3.3) and (3.4) together, we deduce that∫

Ω
ϑ(x)|u|q(x)dx ≤ Cq−

1 |ϑ|m(x)‖u‖q− ,

for any u ∈ X such that ‖u‖ = R.
It follows that,

Φλ(u) ≥
θ0

p+
Rp+ − λ

(r + 1)(q−)r+Cq−(r+1)
1 |ϑ|r+1

s(x)R
q−(r+1)

≥ Rp+
(

θ0

p+
− λ

(r + 1)(q−)r+Cq−(r+1)
1 |ϑ|r+1

m(x)R
q−(r+1)−p+

)
.

From (ii), we deduce that, in a neighborhood of 0, the function

R 7→ θ0

p+
− λ

(r + 1)(q−)r+Cq−(r+1)
1 |ϑ|r+1

s(x)R
q−(r+1)−p+

is strictly positive. This implies the existence of the positive numbers R, C satisfying (3.2).
Step 2: There is w ∈ X with ‖w‖ > R and Φλ(w) ≤ 0.
Let ψ ∈ C∞

0 with ψ 6= 0. For t > 1, one has

Φλ(tψ) ≤
θ1tp+

p−

∫
Ω
(|∆ψ|p(x) + |∇ψ|p(x)) dx− λ

r + 1
tq−(r+1)

(q+)r+1

( ∫
Ω

ϑ(x)|ψ|q(x)dx
)r+1

.

From (ii) one get Φλ(tψ) → −∞ as t → +∞. Consequently, there exists w = tψ which
verifies that ‖w‖ > R and Φλ(w) ≤ 0.

Step 3: The function Φλ satisfies the (PSC).



p(x)-KIRCHHOFF BI-NONLOCAL ELLIPTIC PROBLEM 415

Consider a sequence (un) ⊂ X verifying Φλ(un) → d and Φ′λ(un) → 0 in X′. Assume that
(un) is not bounded and ‖un‖ > 1, ∀n ∈N.

Hence, by choosing θ1 p+
θ0

< τ < (q−)r+1(r+1)
(q+)r , we obtain

d + 1 + ‖un‖ ≥ Φλ(un)−
1
τ

Φ′λ(un)un

≥
(

θ0

p+
− θ1

τ

)( ∫
Ω
(|∆un|p(x) + |∇un|p(x)) dx

)
,

+ λ

(
1

τ(q+)r −
1

(q−)r+1(r + 1)

)( ∫
Ω

ϑ(x)|un|q(x)dx
)r+1

,

≥
(

θ0

p+
− θ1

τ

)(
Λp(un)

)p−,

≥
(

θ0

p+
− θ1

τ

)(
‖un‖

)p−,

which contradicts that p− > 1. Thus, the sequence (un) is bounded in X, therefore as X is
reflexive, it follows that there is a subsequence still denoted (un), that satisfies un ⇀ u in X.
Since

Φ′λ(un)→ 0,

then
Φ′λ(un)(un − u)→ 0,

and so

M̃(un)

( ∫
Ω
|(∆un|p(x)−2∆un∆(un − u) + |∇un|p(x)−2∇un∇(un − u)) dx

)
−λB(un)

∫
Ω
|un|q(x)−2un(un − u)dx → 0.

From Proposition 5, one get∣∣∣ ∫
Ω
|un|q(x)−2un(un − u) dx

∣∣∣ ≤ ∫
Ω
|un|q(x)−1|(un − u) dx| ≤ C|un|q(x)−1

q(x)
q(x)−1

|(un − u)|q(x).

Hence X is compactly embedded in Lq(x) since for each x ∈ Ω : q(x) < p∗(x). Therefore (un)

converges strongly to u in Lq(x). Consequently∫
Ω
|un|q(x)−2un(un − u)dx → 0.

Because (un) is bounded, there is c1, c2 > 0 such that

c1 ≤ B(un) ≤ c2.

Hence G(un)(un − u)→ 0. We can suppose that, there is c3, c4 > 0 satisfying

c3 ≤ M̃(un) ≤ c4.
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In the other hand, one has

Lp(x)(un)(un − u) =
∫

Ω
|∆un|p(x)−2∆un∆(un − u)dx → 0,

and

Kp(x)(un)(un − u) =
∫

Ω
|∇un|p(x)−2∇un∇(un − u)dx → 0.

Since Lp(x) and Kp(x) is belong to the class (S+), one obtains un → u in X.
Now, by Step 1 and Step 2, we obtain

max(Φλ(0), Φλ(w)) = Φλ(0) < inf
‖u‖=R

Φλ(u) = β.

Thus, from Step 3 and the mountain pass theorem, we reach the conclusion that there exist a
non-trivial weak solution u of (Pλ) related to the critical value of Φλ provided by

c := inf
τ∈Γ

sup
t∈[0.1]

Φλ(τ(t)) ≥ β,

where
Γ = {τ ∈ C([0, 1], X) : τ(0) = 0, τ(1) = w}.

In the following, our second main result where we show that it exists of a sequence of
non-trivial weak solutions of (Pλ).

Theorem 3.2. Suppose that conditions (A1), (A2) and (A3) hold true. If p− < q+(r + 1), then
for each λ strictly positive there is a sequence (un) of non-trivial weak solutions of (Pλ) which
converges strongly to 0 in X.

Proof. Step 1: Φλ is even, Φλ(0) = 0, bounded from below and verifies the (PSC).
It is easy to show the first two assertions concerning the functional Φλ; for the third we get

from Proposition 5∫
Ω

ϑ(x)|u|q(x)dx ≤ |ϑ|m(x)

∣∣∣|u|q(x)
∣∣∣
m′(x)

≤ |ϑ|m(x)|u|
qj

m′(x)q(x), ∀u ∈ X, (3.5)

such that {
j = + , |u|m′(x)q(x) > 1,
j = − , |u|m′(x)q(x) < 1.

Taking into account that X is continuously embedded in Lm′(x)q(x)(Ω), it yields the existence
of C2 > 0 satisfying

|u|m′(x)q(x) ≤ C2|u|, ∀u ∈ X. (3.6)

Combining (3.5) and (3.6), we obtain∫
Ω

ϑ(x)|u|q(x)dx ≤ Cqj

2 |ω|m(x)‖u‖qj
. (3.7)
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Therefore, from (3.7), it follows that

Φλ(u) =M̃

(∫
Ω

|∆u|p(x)

p(x)
+
|∇u|p(x)

p(x)
dx

)
− λ

r + 1

[∫
Ω

ϑ(x)
q(x)
|u|q(x)dx

]r+1

,

≥ θ0

p+
Λp(u)−

λCqj

2
(r + 1)(q−)r+1 |ϑ|m(x)‖u‖qj

,

≥ θ0

p+
ξ(‖u‖)−

λCqj

2
(r + 1)(q−)r+1 |ϑ|m(x)‖u‖qj

,

where ξ : [0,+∞[→ R is given as

ξ(t) =

{
tp+ , if t ≤ 1,
tp− , if t > 1.

On one hand by qj < p−, we obtain that Φλ is bounded from below. On the other hand since
Φλ(u)→ ∞ when ‖u‖ → ∞, then Φλ is coercive.

It remains in this step to demonstrate that Φλ satisfies the (PSC). For this we consider a
sequence (un) ⊂ X verifying Φλ(un) → d with Φ′λ(un) → 0 in X∗. According to the coercivity
of Φλ, we deduce that (un) is bounded in X, and so we can finish this proof by employing
arguments that are identical to those that were used in Step 3 of the previous proof.

Step 2: For any n ∈N∗, there is Hn ∈ Γn satisfying

sup
u∈Hn

Φλ(u) < 0.

To show this we consider a1, a2, . . . , an ∈ C∞
0 (Ω) which verify for all i, j ∈ {1, 2, . . . , n}, i 6= j,

the condition supp(ai) ∩ supp(aj) = ∅ and the Lebesgue measure of supp(ai) and supp(aj) is
strictly positive.

Let us note by An the set span{a1, a2, . . . , an}. It is easy to show that dim An = n and for
each µ ∈ An \ {0} we obtain ∫

Ω
ϑ(x)|µ(x)|q(x)dx > 0.

Consider S = {µ ∈ X : ‖µ‖ = 1} and for all 0 < t ≤ 1 Hn(t) = t(S ∩ An).
Clearly, we show that for any t ∈]0, 1] we have γ(Hn(t)) = n and

sup
u∈Hn(t)

Φλ(u) ≤ sup
µ∈S∩An

Φλ(tµ)

= sup
µ∈S∩An

{
M̃
( ∫

Ω
tp(x)

(
|∆µ|p(x)

p(x)
+
|∇µ|p(x)

p(x)

)
dx
)
− λ

r + 1

( ∫
Ω

ϑ(x)
q(x)
|tµ|q(x)dx

)r+1}

≤ sup
µ∈S∩An

{
θ1tp−

p−
Λp(x)− λtq+(r+1)

(r + 1)(q+)r+1

( ∫
Ω

ϑ(x)|µ|q(x)dx
)r+1}
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≤ sup
µ∈S∩An

{
tp−
[

θ1

p−
− λ

(r + 1)(q+)r+1tp−−q+(r+1)

( ∫
Ω

ϑ(x)|µ|q(x) dx
)r+1]}

.

Since δ := min
µ∈S∩An

∫
Ω ϑ(x)|µ(x)|q(x) dx > 0, we can find a rather small value of t which verifies

θ1

p−
− λ

(r + 1)(q+)r+1tp−−q+(r+1)
δ < 0.

Consequently
sup

u∈Hn(tn)

Φλ(u) < 0.

Step 3: We conclude that Φλ(u) admits a sequence of non-trivial weak solutions (un)n because
all assumptions of the symmetric mountain pass lemma have been verified, and for all n, one
has

un 6= 0, Φ′λ(un) = 0, Φλ(un) ≤ 0, lim
n

un = 0.

4. Final comments

We need to make it clear that if ϑ(x) = 1, then (Pλ) reduces to the following bi-nonlocal
elliptic problemM(σ)

(
∆2

p(x)u− ∆p(x)u
)
= λ|u|q(x)−2u

( ∫
Ω

1
q(x) |u|

q(x)dx
)r

in Ω,

u ∈W2,p(.)(Ω) ∩W1,p(.)
0 (Ω),

(4.1)

then our theorems still valid in this case. If we replace in the equation’s left side of (4.1) the pos-

itive real σ by the expression ”−M
( ∫

Ω
1

p(x) |∇u|p(x)dx
)

∆p(x)u” we get the same equation in

problem presented in [5], and if we replace it with the expression ”M
( ∫

Ω
1

p(x) |∆u|p(x)dx
)

∆2
p(x)u”

we get the same that one studied in [12]. Hence, our results improve the corresponding results
obtained in [5, 12]. The findings presented in this study can serve as a theoretical foundation
for further exploration of similar problems.
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