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This research proposes developing the new hybrid optimization techniques for getting optimized wire EDM machining
parameters and analysing the performance and microstructure of hybrid treatment alloy 20 material (high-velocity oxygen fuel
spraying and plasma nitriding on iron-nickel-chromium alloy) after machining in wire EDM. The devising optimization is
carried out using back-propagation neural networks (BPNN) integrated with fuzzy logic techniques. Taguchi L27 method uses
optimized parameters in 3 factors and 3 level methods to BPNN wire EDM processing parameters. Those processing parameter
errors are controlled by applying fuzzy logic system in hybrid optimization techniques. The hybrid optimization provides best
results (±5% error) while comparing other techniques. This proposal was started with research review of defined factors and
BPNN parameters level for hidden layer number, learning algorithm, neurons numbers, and so on. The analysis of variance
(ANOVA), analysis of means (ANOM) and signal to noise (S/N) ratio have been used to identify Taguchi results. The BPNN
techniques have been employed significantly to tackle hidden layer’s uncertain parameter structures. The fuzzy logic controllers
in general have been designed engaging the relations between system performance and factor through error method calculation.
The microstructure analysis showed that the no evidence was found of recast layer formation on hybrid treated material after
machining in wire EDM due to compressive stress and compound layer on material surface.
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1. Introduction
Wire EDM is an unconventional machining pro-

cess. The machine has been used for machining a
heavy hardened material with complicated shape in
best surface quality. It is used for cutting the ma-
terial by means of electro-thermal energy to pro-
duced spark in every few microseconds. The spark
is produced between the tool (wire electrode) and
work piece. Here, the tool acts as moving through
the stationary work piece. By this process, the
tool almost enclosed by spark with the temperature
around 12,000 °C. In this environment, the great
amount of heat is produced, and also the material
has been removed by melting and evaporation [1].
Due to the high temperature environmental pro-
cess, the tool and workpiece both are submerged in
deionized water. The material surface and structure
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has been changed due to the rapidly changing ther-
mal environment during machining operation. That
was affecting the surface characterizes, which con-
sist of all the aspects of surface finish, surface met-
allurgy and surface topography. The machined sur-
face consists of two criteria. First is the top surface
of workpiece, which is covered surface texture. It
is one of the reasons affecting surface roughness.
Another one is surface metallurgy, which produces
recast layer when machining the work piece [2].
At that time, the recast layer forms due to solidi-
fication by rapid cooling. This surface is called as
white layer because it appears white in colour when
observed in electron microscope images.

This layer was formed by thermal, chemi-
cal and mechanical effects on the material sur-
face to remove material. It is also controlled by
some phenomenon such as machining parameters
(pulse on/off time, wire feed/speed, coolant pres-
sure, etc.) and work piece [3, 4]. Literally, when
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the machining the surface was subjected to local
thermal stress, the period of pulse on time, and
the spark intensity with the coolant increases the
temperature. From that, the current intensity and
pulse on time affect the machined material sur-
face roughness and hardness [5, 6]. Most of re-
searchers are focusing on the optimized parame-
ters with the surface integrity of material [7, 8].
Dhobe et al. [7] found that the heat treatment is
also one of the affecting parameter. And Konda-
palli Siva Prasad et al. [17] has been found that
the effect of grain size in WEDM process. Simi-
larly, R. K. Garg et. al [9] studied that the relation
between heat treatment and white layer on mate-
rial during wire EDM process. The hardness and
heat treatment of work piece has been affecting
the machinability [12]. The EDM achieved highest
MRR, SR, TWR and dimensional accuracy when
workpiece and tool (electrode) done by cryogenic
treatment [11]. Similarly, when wire EDM was ma-
chining the work piece after plasma nitriding, there
were no significant changes of formation of white
layer on surface [10]. The hardening with double
tempering gives better surface roughness compared
to single tempering [13]. Mehmet Altug et. al [14]
observed that the material treatment also affected
the wire EDM machinability.

In recent years, most of the researchers have
been developing various techniques to investigate
the wire EDM performance on various materi-
als using various modelling and new optimization
techniques. The performance and surface charac-
teristic of wire EDM has been investigated [15].
Artificial intelligence techniques, such as fuzzy
logic and ANN, were successfully applied to var-
ious machining processes [16]. It has been ex-
amined and provided optimized result for ma-
terial removal rate and surface roughness. The
SA and F-ANN approach has been used to wire
EDM process to correlate the input parameters
with output performance. It was observed that the
wire EDM performance can be improved by us-
ing new technique approach [17]. The wire EDM
neural network modelling has been analysing for-
mation of residual stress during machining in
metal matrix composite. It has been noted that
pulse off time has significant characteristics on

Fig. 1. Cause and effect diagram for performance char-
acteristics in WEDM

the formation of residual stress [18]. The PCA in-
tegrated with Taguchi approach was recommended
to investigate the pulse on/off time, particle size,
wire tension volume fraction, wire wear rate, sur-
face roughness and recast layer thickness during
machining in wire EDM [19]. In this way, ad-
vanced modelling techniques like support vector
machine, PSO, RSM, regression and analysis have
been employed in research area [20–23]. In the lit-
erature survey based has been to investigate wire
EDM performance and analysis material surface of
iron-nickel-chromium alloy through the hybrid op-
timization techniques (Taguchi and ANFIS).

2. Experimental details
In the present study, alloy 20 material and 2 mm

thickness plate were discussed. The chemical com-
position of alloy 20 material is shown in Table 1.
The alloy 20 material was applied HVOF molyb-
denum coating with the process temperature of
450 °C and then, plasma nitriding carried out main-
taining the temperature of 500 °C in 12 hours [25].
Material specimen prepared as the dimensions of
150 mm × 150 mm × 2 mm was matched in mate-
rial in the wire EDM.
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2.1. Experimental producer using hybrid
optimization techniques

The experiment performance has been con-
ducted on wire EDM as shown in Figure 1. It has
brass wire with the diameter of 0.25 mm as cut-
ting tool, deionized water consider to dielectric
medium at constant atmospheric temperature. The
flow chart diagram of the optimization techniques
is shown in Figure 2. Three input variables as pulse
on time (Ton), pulse off time (Toff) and wire feed
(WT) has been used for machining on iron-nickel-
chromium alloy and measured output performance
as surface roughness (SR) and material removal
rate (MRR). The experimental work has been opti-
mized L27 orthogonal array by Mintab software to
get error less input and output as shown in Table 2.
The Table 3 shows three levels of input parameters.
The L27 orthogonal array has been conducted in
3 × 3 level. The below equation shows S/N ratio
(single to noise) input parameter.

Fig. 2. Flow chart diagram of optimization techniques

The optimized output parameter founded in
S/N ratio has been employed to conduct the input

variables. The surface roughness and material re-
moval rate has been predicted by Taguchi method
to get minimum error and more accuracy.

2.2. Taguchi method

Taguchi Method has been applied to experimen-
tal design through method employed orthogonal ar-
ray to manage the process affecting parameters and
their levels. It probably has to conduct all possi-
ble combination such as factorial design, Taguchi
method combination test pair. These allow for col-
lecting the data to find factors affecting the most
output with least possible experimentations, which
has been saving resource and time. ANOVA (ana-
lysis of variables) on the data collected to be used
choosing new parameters for performance charac-
terizes optimized. In order to find the study param-
eters, cause and effect diagram to determine poten-
tial parameters that affect machining characteristics
(SR and MRR) was constructed. From the cause
and effect diagram and literature review of wire
EDM, we were choosing three input parameter for
this investigation. In this investigation, L27 orthog-
onal array was with three control factors, that is,
pulse on time, pulse off time and wire feed. Signal
to noise ratio was obtained by using Minitab soft-
ware. SR considered as lower is better (LB) and
MRR considered as higher is better (HB) for deter-
mining optimized machining parameters. The loss
function logarithmic transformation can be used to
calculate S/N ratio.

2.3. Back propagation neural network

Back propagation is a special type of neural net-
work and it is also named as back propagation error
method. It is mostly used for multi layered neural
networks. In artificial neural network, one of the
methods is back propagation neural network used
to calculate gradient descent that is needed to cal-
culate the weight of the network. This method uses
a derivative of the squared error function with re-
spect to the weights of the network. The back prop-
agation neural network, otherwise backward propa-
gation error method, mainly look for error function,
even then having the minimum value of weight
space is known as rule or gradient descent. The
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Table 1. Chemical composition of alloy 20 (in wt%)

Si S P Mn C Nb Mo Cu Cr Fe Ni

1 0.035 0.045 2 0.07 1 3 4 21 29.85 38

Table 2. Process parameters employed for EDM

Parameter Unit Factor Level
1 2 3

Pulse on time (µ sec) A 106 116 126

Pulse off time (µ sec) B 40 50 60

Wire feed (m/min) C 4 8 12

Table 3. EDM process parameter of Taguchi L27 or-
thogonal array

Experimental trials Factor
A B C

1 1 1 1
2 1 1 2
3 1 1 3
4 1 2 1
5 1 2 2
6 1 2 3
7 1 3 1
8 1 3 2
9 1 3 3

10 2 1 1
11 2 1 2
12 2 1 3
13 2 2 1
14 2 2 2
15 2 2 3
16 2 3 1
17 2 3 2
18 2 3 3
19 3 1 1
20 3 1 2
21 3 1 3
22 3 2 1
23 3 2 2
24 3 2 3
25 3 3 1
26 3 3 2
27 3 3 3

weights that can minimize the error function are
then considered to be a solution.

Fig. 3. BPNN model used for process parameter ana-
lysis and optimization techniques

BPNN is a feed forward neural network. Back-
propagation, an abbreviation for “backward propa-
gation of errors” is a common method of training
ANN. In 1986, Rumelhart et al. had described a
new supervised learning procedure known as back
propagation neural network (BPNN), which is used
for linear as well as non-linear classification. From
a desired output, the network learns from many in-
puts. In BPNN, the errors are back propagated to
the input layer. BPNN is a supervised algorithm
in which error difference between the desired out-
put and calculated output is back propagated. The
procedure is repeated during learning to minimize
the error by adjusting the weights through the back
propagation of error. As a result of weight adjust-
ments, hidden units set their weights to represent
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Table 4. Cumulative experimental data of EDM process.

SI.NO
Pulse on time
T ON (µ sec)

Pulse off time
T OFF (µ sec)

Wire feed
WF (m/min)

Material removal rate
MRR (mm/min)

Surface roughness
SR (µm)

1 106 40 4 0.68 1.385
2 106 40 8 0.71 1.255
3 106 40 12 0.505 1.175
4 106 50 8 0.48 1.35
5 106 50 12 0.405 1.265
6 106 50 4 0.2 1.105
7 106 60 12 0.315 1.35
8 106 60 4 0.165 1.14
9 106 60 8 0.165 1.08

10 116 40 12 2.405 2.57
11 116 40 4 2.205 2.39
12 116 40 8 0.75 1.435
13 116 50 4 1.54 2.525
14 116 50 8 0.58 1.38
15 116 50 12 0.66 1.72
16 116 60 8 0.47 1.63
17 116 60 12 0.625 1.85
18 116 60 4 0.5 1.625
19 126 40 8 3.4 2.9
20 126 40 12 1.26 1.85
21 126 40 4 2.2 2.66
22 126 50 12 0.91 2.08
23 126 50 4 1.66 2.635
24 126 50 8 1.54 2.445
25 126 60 4 1.34 2.855
26 126 60 8 1.345 2.56
27 126 60 12 0.29 1.295

important features of the task domain. It has the ca-
pability to establish the connection between HVS
parameter values and FIS output values by adjust-
ing the neural network weights and bias before and
after embedding watermark. Owning to use of neu-
ral network, watermark can be extracted without
the host signal, and therefore, reduce the boundary
in practical applications.

BPNN consists of three layers: 1) input layer,
2) hidden layer, and 3) output layer. The number
of hidden layers, and the number of hidden units in

each hidden layer depends upon the complexity of
the problem as shown in Figure 3.

During this step, error is calculated by differ-
ence between the targeted output and actual out-
put of each output unit. This error is back prop-
agated to the previous layer, that is, hidden layer.
For each unit in the hidden layer N, error at that
node is calculated. In a similar way, error at each
node of previous hidden layer, that is, N-1 is calcu-
lated. These calculated errors are used to correct the
weights so that the error at each output unit is min-
imized. Forward and backward steps are repeated
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until the error is minimized up to the expected
level. The training algorithm of back propagation
includes four stages: 1. initialization of weights, 2.
feed forward, 3. back propagation of errors, 4. up-
dating the weights and biases. The bias acts like
weights on the connection from units whose output
is always 1. During initialization of weights, some
arbitrary values are given initially to give some out-
put by feed forwarding through the layers. So, the
difference between the obtained and actual values
is calculated as error and back propagated. High
initial weight will result in 90 a faster learning rate.
But weights may oscillate. If initial weights are too
small, then learning rate will be slow (Table 5). For
best results, initial weights may be considered be-
tween −0.5 to 0.5 or −1 to 1. In back propagation
method first, the output of hidden layer is calcu-
lated by the formula:

Hi = f (∑wi jXi−a j) j = 1,2..., l

where and f represent the output of hidden layer
and the incentive function of neurons, l is the neu-
ron number of hidden layer, n is the neuron num-
ber of the input layer, is the weight factor between
input-layer and hidden layer, is threshold value.
The next step is to predict the output values by us-
ing the formula:

ok = ∑Hiwik−bkk = 1,2, ...,m

where is threshold value, m is the neuron number
of the output layer. Then, according to the predic-
tion error calculated by the difference between the
predicted output and the expected output, weight
factor and threshold value can be updated as fol-
lows:

ωi j = ωi j +ηHi(1−Hi)X(i)∑ωikeik

i = 1,2, . . . ,n : j = 1,2, . . . , l

ωi j = ωik +ηHiek j = 1,2, . . . ,m

a1 = a j +ηHi(1−Hi)x(i)∑ωikek j = 1,2, . . . , l

bk = bk + ek k = 1,2, . . . ,m

One of the more popular activation functions
for backpropagation networks is the sigmoid, a real
function sc: IR→ (0, 1) defined by the expression.
The constant c can be selected arbitrarily and its
reciprocal 1/c is called the temperature parameter
in stochastic neural networks. An alternative to the
sigmoid is the symmetrical sigmoid S(x).

Generally, there are two types of learning meth-
ods as follows: 1. sequential learning or pre-pattern
method, 2. batch learning or pre-epoch method. In
sequential learning, a given input pattern is broad-
casted forward and then the error is calculated and
back propagated, the weights are reorganized until
we get the targeted output. In batch learning, the
weights are reorganized only after the entire set of
training network has been offered to the network.
Thus, the weights are updated after every epoch.

2.4. Adaptive neuro-fuzzy interference
system (ANFIS)

Due to changes in network environment, in a
dynamic environment in need of an optimization
algorithms, which learn from the experimental re-
sults and find the optimum solution to the end user.
So many soft computing techniques are evolved
such as artificial neural network, fuzzy logic sys-
tem, and genetic algorithms, as shown in Figure 4.

To minimize output errors in fuzzy modelling
system, it needs trial steps and auxiliary calcula-
tion for adjusting the fuzzy membership functions.
Because there are no proper methods to convert the
human idea into the knowledge part of the fuzzy
system, which leads the system output inadaptabil-
ity nature. In the case of artificial neural network,
it having good adaptability of output based on the
input parameters and it also support the non-linear
correlation between the input and output parame-
ters. To improve the performance combining the
advantages of both FIS and ANN, it is called as
ANFIS. This ANFIS supports the knowledge and
adaption features.

Jang combines the advantages of fuzzy in-
terference system (FIS) with artificial neural
network (ANN) and named as adaptive neuro
fuzzy interference system (ANFIS), which consists
of multi-layer approaches. ANFIS consists of
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Table 5. BPNN parameters and interlayer details

Name Number No. MRR SR
parameter. Show 50 1st 9 9

Maximum parameter. Epochs 1000
Number of input parameter 3 2nd 8 10

Number of output parameter 1

Fig. 4. Adaptive neuro-fuzzy interference system (AN-
FIS)

fuzzification, rule, normalization, defuzzification
and output layers, as shown in the figure.

Jang developed network system (ANFIS) as a
rule based system and it learns/decides the rules
from the training data. Two different types of meth-
ods are used in FIS such as Mamdani and Takagi-
Sugeon-Kang (TSK). In our system, we use the
TSK approach to derive the optimized results. Here
rules are mainly focusing on the input output rela-
tionship such as if this is the input parameter then
what will be the output; simply if-then rules are
used for correlating the input and output values.

IF a is X1 and b is Y1 T HEN f1 = p1a+q1b+ r1

IF a is X2 and b is Y 2 T HEN f2 = p2a+q2b+ r2

. . . . . . ..

IF a is Xn and b is Yn T HEN f1 = pna+qnb+ rn

The values of p, q and r constant that can be
evaluated during the training process based on the
training data. Next step is to form fuzzy rules by
combining these functions by the ANFIS. In this
layer, it receives input from the external source and

it assigns the member function to all the input val-
ues based on the weights. This is an adaptive layer
so based on the input fuzzy set assign a member
function to each input values:

O1
1 = µXi(a) f ori = 1,2, . . .n

Layer 2 – rule layer
In this model, there are two type of rules can be

applied by the system such as AND and OR rule.
Our proposed work adopts the AND rule to provide
the relative strength information about input values,
considered as firepower of all the fuzzy rules. Prod-
uct of all the input membership value is considered
as output of this layer.

O2
i = wi = µXi(a)∗µyi(a)

Layer 3 – normalization layer
Third layer is a Normalized layer. This is to nor-

malize all the firing strength based on each rule’s
weight to all the rules’ weights.

It can be calculated as:

O3
i = wi

Layer 4 – defuzzification
Defuzzification is an adaptive layer, which uses

the first order function to form fi = pix + qiy + ki.
The derived output this layer is in the form of:

O4
i = wi fi = wi(pix+qiy+ ki.

Layer 5 – output layer
This is an output layer. From this layer, we get

the final output of this network by sum of all the
input layers by using the formula:

O5
i = f i = Σwi fi = Σ[wi(pix+qiy+ ki].

Finally, by having ANFIS, the input values are
mapped with output values to get the optimized
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results. This method follows the values that are
grouped into two set such as training data and
checking data. In ANFIS, a combination of the
back propagation and least square methods are used
to train the input values. The result of the training
data is prediction of error in a minimized manner.

3. Results and discussion
3.1. Hybrid optimization of process pa-
rameter studies

The Taguchi model was used for the optimiza-
tion of signal response. The performance output,
surface roughness (SR) was the type “lower the
better” and material removal rate was the type
“higher the better”. The S/N ratio was examined
by loss function logarithmic transformation, which
was given by Xiong [29] as shown in the following
equation:

S
N

ratio = |−10log10[
1
n

n

∑
i=1

y2
i ]

The ANOVA model was conducted using the
MINITAB-19 software in order to examine the sig-
nificant input parameters. The three types of pa-
rameters were the deciding factor of WDM: pulse
on time, pulse off time, wire feed as shown in
Figure 5(a) & 5(b). Higher F value and lower P
value mention the importance degree of every in-
put parameter on material removal rate and surface
roughness of hybrid treated iron-nickel-chromium
alloy at 95% confidence level as shown in Table 6
and 7.

The BPNN gives better performance. Hence,
we were required to develop confidence level and
overall best fit model performance, as shown in
Figure 6. For that, we had to input parameter
in ANFIS. The figure shows the ANFIS model
simulation results in the form of graphical rules.
It is noted that the performance output probability
was maximum by varying input parameters and
also by applying the if-then rules:
If (pulse on time is low) and (wire feed is low)
and (signal to noise ratio is high), then (surface
roughness is high).
If (pulse on time is moderate) and (wire feed is

(a)

(b)

Fig. 5. (a) Plot diagram of material removal rate; (b)
Plot diagram of surface roughness SR (µm)

moderate) and (signal to noise ratio is high), then
(surface roughness is high).
If (pulse on time is moderate) and (wire feed
is low) and (signal to noise ratio is high), then
(surface roughness is high).
If (pulse on time is moderate) and (wire feed is
low) and (signal to noise ratio is moderate) then
(surface roughness is high).
If (pulse on time is high) and (wire feed is moder-
ate) and (signal to noise ratio is high), then (surface
roughness is high).
If (pulse on time is high) and (wire feed is low)
and (signal to noise ratio is high), then (surface
roughness is high).

The Figure 7 shows that the correlation of the
input parameters to output performance of wire
EDM. From this, we can clearly concluded that
the output performance as material removal rate
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Table 6. Regression ratio of material removal rate

Source DF Adj SS Adj MS F-Value P-Value

Regression 3 13.1260 4.3753 21.32 0.000
Pulse on time
t on (µ sec) 1 7.8095 7.8095 38.06 0.450
Pulse off time
t on (µ sec) 1 5.0545 5.0545 24.63 0.300

Wire feed 1 0.2620 0.2620 1.28 0.250
Error 23 4.7195 0.2052
Total 26 17.8454

Table 7. Regression ratio of surface roughness SR (µm)

Source DF Adj SS Adj MS F-Value P-Value

Regression 3 1.96406 0.65469 16.14 0.000
Pulse on time
t on (µ sec) 1 1.76964 1.76964 43.62 0.420
Pulse off time
t on (µ sec) 1 0.08050 0.08050 1.98 0.470

Wire feed 1 0.11392 0.11392 2.81 0.210
Error 23 0.93314 0.04057
Total 26 2.89719

Fig. 6. The best fitness value estimated by BPNN model
of (a) Material removal rate (b) Surface rough-
ness SR (µm)

was high when the pulse on time and wire feed
became maximum and also surface roughness was
high while the pulse on time and wire feed became
minimum. Similarly, the pulse off time was mini-
mum the performance output as material removal

rate became high and surface roughness was less.
The BPNN error calculation methods were imple-
mented at the output parameters such as experi-
mentation output parameters value (EOP) and pre-
diction of back propagation neural network output
parameters (BPOP), as shown in Table 8 (a) and 8
(b).

The graph shows the details of the predicted
value obtained by Taguchi, back propagation neu-
ral network, fuzzy logic system modelling and hy-
brid ANFIS model. To investigate the scattering
about the agreement line (45 degrees line), one
line was plotted in the range within the 2% er-
ror and then two more lines, which was Taguchi,
BPNN and fuzzy logic, were over, then the range
of 4,6,12% error was conceived. It was calculated
that the predicted value accommodated by Taguchi,
BPNN model and fuzzy model generated over the
range 99% of accuracy, which obtained the reli-
ability of models as shown in Table 9. The hy-
brid ANFIS model dominated the Taguchi, BPNN
model and fuzzy logic model, and the reason of the
maximum of hybrid ANFIS model predicted values
were plotted on the agreement line.
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Table 8. (a) 1stEDM Process parameter of alloy 20 materials; (b) 2nd EDM Process parameter of alloy 20 materials

No
MRR

(mm/min) SR (µm)

EOP BPOP ERROR EOP BPOP ERROR

1 0.68 0.5643 11.57 1.385 1.3627 2.23
2 0.71 0.7451 −3.51 1.255 1.2712 −1.62
4 0.48 0.4921 −1.21 1.35 1.3215 2.85

10 2.405 2.4184 −1.34 2.57 2.3954 17.46
14 0.58 0.5683 1.17 1.38 1.4725 −9.25
17 0.625 1.0514 −42.64 1.85 2.3891 −53.91
22 0.91 0.9244 −1.44 2.08 2.0176 6.24
23 1.66 1.7587 −9.87 2.635 2.7871 −15.21
25 1.34 1.3572 −1.72 2.855 2.8142 4.08

No
MRR

(mm/min) SR (µm)

EOP BPOP ERROR EOP BPOP ERROR

3 0.505 0.6383 −13.33 1.175 1.1254 4.96
6 0.2 0.1662 3.38 1.105 1.1031 0.19
9 0.165 0.1675 −0.25 1.08 1.1182 −3.82

12 0.75 0.7593 −0.93 1.435 1.4258 0.92
15 0.66 0.6247 3.53 1.72 1.7467 −2.67
18 0.5 0.7124 −21.24 1.625 1.6024 2.26
20 1.26 1.4972 −23.72 1.85 1.4358 41.42
24 1.54 1.5524 −1.24 2.445 2.5123 −6.73
26 1.345 1.3571 −1.21 2.56 2.5917 −3.17

Table 9. Results of BPNN-ANFIS optimization

Sl. No. Input parameters Output parameters
Pulse on

time
(µ sec)

Pulse off time
(µ sec)

Wire feed
(m/min)

Optimal
value (mm)

Machining
performance

1. 110 80 10 0.184 Material removal rate
2. 106 60 10 1.95 Surface roughness

While in case of Taguchi, BPNN and fuzzy
modelling, some more predicted values were cross-
ing the 2% of error, as shown in Figure 8. Con-
sequently, the Taguchi, BPNN and fuzzy mod-
els were dominated by the hybrid ANFIS model.
The Taguchi gives the largest mean error predicted
value, which was 4.56% followed by fuzzy logic
within the mean error 2.78%; BPNN model gave

1.52% mean error and hybrid ANFIS employed
mean error of 0.5%. ANFIS Taguchi hybrid algo-
rithm is made to be optimized and develop advan-
tages, while it can solve nonlinear functions and
approximation problems. In addition, the hybrid
algorithm is a flexible and robust tool that can en-
gage predictive and confidence interval prediction
99.79% in hybrid ANFIS model. It is very close to
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Fig. 7. Plot diagram of material removal rate of ANFIS model

Fig. 8. Plot diagram of surface roughness of ANFIS model

the actual value (Table 10).

3.2. Metallurgical and mechanical proper-
ties

The analysis of metallurgical and mechani-
cal properties of iron-nickel-chromium alloy and
hybrid treated iron-nickel-chromium alloy was
carried out after machining in wire EDM. Gana-
pathy Srinivasan et.al [24] investigated the hybrid
treated iron-nickel-chromium alloy before machin-

ing; it had deposition compound layer form as pres-
ence of MoxN, FexN, CrN, NiXN, and thin FCC
M phase. That layer produced compressive resid-
ual stress on the material surface. The Figure 9
(a) and (b) shows the SEM analysis of iron-nickel-
chromium alloy before and after machining in wire
EDM. Figure 9(a) clearly shows the formation of
recast layer on the surface of the material. The re-
cast layer was formed as shrinkage of melted ma-
terial and rapid solidification that induced tensile
residual and high thermal stress, which produced
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Fig. 9. SEM analysis a) Alloy 20 materials b) Coating
materials c) Hybrid treated alloy 20 microstruc-
ture after machining

micro cracks on surface [25]. Y.S Tarng et. al [26]
observed that the recast layer lead to changes of
microstructure as an austenite (

√
/- Fe). This phase

was not observed in the material before machining.
The tensile residual stress of recast layer increased
the effect of maximum shear stress, which lead
to indentation depth and plastic deformation [27].
These affect the mechanical properties of material
after machining. Figure 9 (c) shows that the SEM
analysis of hybrid treated iron-nickel-chromium al-
loy after machining in wire EDM same machining
parameters. It clearly shows that no evidence was
found regarding the formation of recast layer on the
surface after machining. This effect is believed to
be due to the fact that the tensile and thermal stress
effect was balanced by the presence of compressive
residual stress in hybrid treated material [28]. And
also the crack propagation and micro holes were
not noted in the machined surface. Due to this rea-
son, there were no significant changes in the me-
chanical properties.

4. Conclusion

By the experimental investigation and optimiza-
tion of wire EDM process parameters for hybrid
coating on iron-nickel-chromium, we conclude:

• The hybrid optimization techniques gives
better optimized result when compared to
Taguchi, BPNN and fuzzy logic.

• The error was calculated. The BPNN
method was used in material removal rate
and surface roughness. BPNN appears to ac-
quiesce an error percentage of 4, 8 and 12,
respectively, indicating its high degree of
consistency.

• In the confirmation test, the errors of−16.29
and 12.58 % were noticed between the ex-
periment result and the predicted result by
BPNN-GA model for material removal rate
and surface roughness, respectively.

• The hybrid surface treated specimen after
wire EDM machining observed that the for-
mation of recast layer on machining surface
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Table 10. EDM process parameters and error of confirmation experiment

Input parameters Output parameters
Pulse on

time
(µ sec)

Pulse off time
(µ sec)

Wire feed
(m/min)

Material removal
rate

(mm/min)

Surface
roughness

(µm)
Experiment 106 60 8 0.155 1.08
predicted by

BPNN-ANFIS
model

105.7 59 8 0.1675 1.1182

Error % −1.5 −3.5

was minimum as compared to the without
treated material.

• Formation of pore and cracks were less in
the hybrid treated machining specimen due
to the presence of twin boundaries and grain
boundary thickness.
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