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Abstract

Arithmetic billiards show a nice interplay between arithmetics and geometry.
The billiard table is a rectangle with integer side lengths. A pointwise ball moves
with constant speed along segments making a 45◦ angle with the sides and bounces
on these. In the classical setting, the ball is shooted from a corner and lands in a
corner. We allow the ball to start at any point with integer distances from the sides:
either the ball lands in a corner or the trajectory is periodic. The length of the path
and of certain segments in the path are precisely (up to the factor

√
2 or 2

√
2) the

least common multiple and the greatest common divisor of the side lengths.

1 Introduction

Arithmetic billiards, also known under the name Paper Pool, show a nice interplay
between arithmetics and geometry. They are a mathematical model for a billiard with
which one can visualize the greatest common divisor and the least common multiple of
two natural numbers (more general models for billiards exist in the branch of mathematics
called dynamical systems).

The billiard table is a rectangle with integer side lengths. The ball is a point that
bounces on the billiard sides and moves with constant speed on segments that make a
45◦ angle with the sides. We are interested in the geometric properties of the path that
the ball traces on the table, regardless of the actual movements of the ball.

In the classical setting, the ball is shooted from a corner of the billiard table, and the
ball necessarily lands in a different corner. We call the resulting path corner path: these
have been studied by various authors including Martin Gardner [Gar84, Ste99, Tan12,
Per18]. If a and b are the side lengths of the billiard table, then a corner path is the
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44 Arithmetic billiards

Figure 1: Example of corner path for the 21× 15 billiard table.

intersection of the billiard table with a grid of squares of side length gcd(a, b)
√
2 (the

grid is diagonally oriented, and the starting corner is a vertex for one of the squares),
and the length of a corner path is lcm(a, b)

√
2. In the next section we collect the results

about corner paths.

We also investigate the analogous paths that start at any point of the billiard table
with integer distances from the sides. If the starting point does not belong to a corner
path, then the ball does not land in a corner but it periodically bounces on the billiard
sides: we call such paths closed paths. In the last two sections we prove various results
about closed paths (to the best of our knowledge these are original, with the exception
of the formula for the length of the path, see [Wik]).

With a closed path, we can again visualize the greatest common divisor and the least
common multiple of the side lengths of the billiard table. Indeed, closed paths have the
following properties:

• The length of the path is lcm(a, b)2
√
2.

• The path is the intersection of the billiard table with two grids of diagonally
oriented squares of side length gcd(a, b)

√
2 which only differ by a shift parallel

to one of the billiard sides.

• The path is symmetric (point-symmetric w.r.t. the center of the billiard table or
symmetric with respect to the perpendicular bisector of two billiard sides).

• The path is periodic, with period 2 gcd(a, b) in both directions parallel to the
billiard sides. Usually this is the minimal period (only in a very special case the
minimal period is gcd(a, b)).
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Figure 2: Example of closed path for the 21× 15 billiard table.

Up to a symmetry of the billiard table, there is exactly one corner path in a given
billiard table. However there can be many non symmetric closed paths (and there are
no closed paths if a and b are coprime).

• The number of closed paths up to symmetry is the integer part of gcd(a, b)/2.

• For any integer r in the range from 1 to gcd(a, b) − 1 consider the point Pr on
a fixed billiard side at distance r from one fixed corner. Then any closed path
contains precisely one of the points Pr.

There are several quantities that are the same for all closed paths inside a given
billiard table. We have already mentioned the length of the path and the side length of
the squares in the two grids. But there is also — as we will see — the number of boundary
points, i.e. the points of the path which are on the billiard sides. And the number of
self-intersection points, i.e. the points where the path crosses itself. Moreover, the path
partitions the billiard table into rectangles and triangles: also the number of rectangles
and the number of triangles do not depend on the closed path.

Key to our investigation is the following: we can write a formula for the coordinates of
the boundary points. Notice that we prove or sketch the proof for the results concerning
closed paths, however one may opt to use the pictures as guidance because in most cases
they are sufficiently generic (and usually only a case distinction concerning the parity of
a/ gcd(a, b) and b/ gcd(a, b) is needed).

The exploration of arithmetic billiards is a source of activities for pupils [GF13,
Tho08, Zuc07, Lap04, Pap]. Indeed, the pupils are asked to find out by themselves some
of the known results. It is also possible to go one step further and investigate open
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46 Arithmetic billiards

questions: as a research direction we suggest considering other shapes for the billiard
table (for example, an L-shaped figure with an axial symmetry, or a square with a square
hole in the middle).

2 Preliminary remarks, Corner paths

Setting

We fix two positive integers a and b and call g their greatest common divisor. We
take as a billiard table a rectangle with side lengths a and b, and we choose coordinates
by placing the origin in a billiard corner and letting the opposite corner be the point
(a, b).

We consider the trajectory of one point (the ball) inside the billiard table such that
the path consists of segments that make a 45◦ angle with the sides. The speed does not
matter, so we may suppose that it is constant. The ball bounces on the billiard sides
(making either a left or a right 90◦ turn) and stops only if it lands in a corner. A step in
the path results when the ball moves from a point with integer coordinates to the next
one (each coordinate changes by 1).

There are corner paths, where the ball is shooted from a billiard corner and necessarily
lands in a different corner. If we start at a point with integer coordinates that is not on
a corner path, then we get a closed path, which corresponds to a periodic trajectory.

We call boundary points the points of the path which are on the rectangle sides. Most
paths have self-intersection points, where two path segments cross perpendicularly.

Corner paths

We now collect the known results about corner paths, see [Per18]. Some observation
may be new, but it is an easy exercise given the known results. The reader can also
get inspiration from the analogous statements for closed paths in the oncoming sections
(everything is simpler for corner paths).

A corner path starts in any billiard corner, and we can predict what the ending
corner will be: if a/g and b/g are odd, then the starting corner and the ending corner
are opposite; if a/g is even and b/g is odd, then the starting and the ending corner are
adjacent to one a-side; if a/g is odd and b/g is even, then the starting and the ending
corner are adjacent to one b-side.

Neglecting their orientation, there are two corner paths. Moreover, there is a symmetry
of the billiard table mapping one path to the other, namely the symmetry mapping the
starting and ending corner of one path to those of the other. The length of the path
is lcm(a, b)

√
2 (because there are lcm(a, b) steps) and the path crosses lcm(a, b) unit

squares.
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The path is symmetric: if the starting and the ending corner are opposite, then the
path is point symmetric w.r.t. the center of the rectangle, else it is symmetric with
respect to the perpendicular bisector of the side connecting the starting and the ending
corner.

There are a/g boundary points (including the corners) on the two a-sides, and b/g
on the two b-sides. Moreover, the boundary points are evenly distributed along the
rectangle perimeter: the distance along the perimeter (i.e. possibly going around the
corner) between two such neighbouring points equals 2g.

The corner path starting at the origin is the intersection of the billiard table with
the grid of squares whose corners are the points (xg, yg), where x, y are integers with the
same parity (the squares are oriented at 45◦ w.r.t. the billiard sides). The grid partitions
the billiard tables into squares, triangles at the boundary which are half of the squares,
and two triangles at the corners which are a quarter of the squares.

Since each of the large triangles occupies 2g of the billiard perimeter, we can see that
there are (a + b)/g − 2 such triangles. By noticing that the billiard area ab consists of
the area of the triangles and the area of the squares, we easily deduce that there are
(a− g)(b− g)/2g2 squares.

Unless a is a multiple or a divisor of b there are self-intersection points, and more
precisely there are (a − g)(b − g)/2g2 of them (to derive this formula consider that
every g steps there is a boundary point or a self-intersection point, and we find each
self-intersection point twice). Moreover, there are self-intersection points on the first
segment of the path, and the ball arrives at such a point after g steps: the least distance
between a corner and a self-intersection point is gcd(a, b)

√
2. Unless a = b, the integer

g is the least distance between a corner and a boundary point which is not a corner (if
a = b, then the path is just a diagonal of the billiard table).

If we would let the ball bounce at the corners, then a corner path would correspond to
a periodic trajectory: the ball would go twice through the path (forwards and backwards)
in every period.

3 Boundary points for closed paths

We now turn our attention to closed paths. These by definition do not contain corners,
and the ball never stops. The trajectory is periodic because the ball can only move on
the finitely many segments touching the billiard sides at points with integer coordinates.
We are going to study the path, concentrating on one period.

Notice that if g = 1, then all points in the billiard table with integer coordinates lie
on the corner paths and there is no closed path, so we will suppose that g > 1.
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Length of the path, number of boundary points

There are boundary points on each billiard side so we may suppose that the starting
point is on the bottom a-side and the starting direction is rightwards, i.e. both coordinates
are increasing.

• The length of a closed path is lcm(a, b)2
√
2. Indeed, we are back to the bottom

a-side after any number of steps which is a multiple of 2b. Moreover, since we start and
end the path by going rightwards, then we can be back to the starting point only after
a number of steps which is a multiple of 2a. So the total number of steps in a period is
2 lcm(a, b).

• There are a/g boundary points on each a-side and b/g boundary points on each
b-side. Indeed, we touch one same a-side every 2b steps, and 2 lcm(a, b)/2b = a/g. For
the b-sides, we reason analogously.

The boundary points

In what follows we determine the set of boundary points. The formulas for the
coordinates of these points will depend on a, b, and the smallest positive integer r such
that the point (r, 0) belongs to the path.

Let r be an integer in the range from 1 to g − 1. In particular, the path containing
the point (r, 0) is not a corner path. The boundary points of this path are as in the
following tables, where we specify the x-coordinate for the a-sides and the y-coordinate
for the b-sides. Keep in mind that a/g and b/g cannot be both even and that, up to
exchanging the role of a and b, we may suppose that a/g is odd.

bottom a-side r, 2g − r, . . . , n2g + r, (n+ 1)2g − r, . . . , a−g
2g 2g + r

right b-side g − r, g + r, . . . , n2g + g − r, n2g + g + r, . . . , b−g
2g 2g + g − r

upper a-side g − r, g + r, . . . , n2g + g − r, n2g + g + r, . . . , a−g
2g 2g + g − r

left b-side r, 2g − r, . . . , n2g + r, (n+ 1)2g − r, . . . , b−g
2g 2g + r

Figure 3: Boundary points if a/g and b/g are odd.

bottom a-side r, 2g − r, . . . , n2g + r, (n+ 1)2g − r, . . . , a−g
2g 2g + r

right b-side g − r, g + r, . . . , ( b
2g − 1)2g + g − r, ( b

2g − 1)2g + g + r

upper a-side r, 2g − r, . . . , n2g + r, (n+ 1)2g − r, . . . , a−g
2g 2g + r

left b-side r, 2g − r, . . . , ( b
2g − 1)2g + r, ( b

2g − 1)2g + 2g − r

Figure 4: Boundary points if a/g is odd and b/g is even.
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The boundary points are thus the points on the billiard sides whose side coordinate
leaves remainder r or 2g − r (respectively, g − r or g + r) after division by 2g, and r is
minimal such that the point (r, 0) belongs to the given path. By varying r from 1 to
g − 1 we obtain all points of the sides whose coordinate is not a multiple of g (those
other points lie on the corner paths). Also notice that the boundary points are evenly
distributed along the rectangle perimeter (i.e. possibly going around the corner) because
the distance between any two of them is alternatively 2r and 2g − 2r.

How can we prove that we have written down the correct set of boundary points?
Since in the tables we have the correct amount of boundary points, it suffices to show
that the “next” boundary point is again in the set. For example, suppose that a/g and
b/g are odd and consider the boundary point (p, 0), where p is any integer from 1 to
a− 1 whose remainder after division by 2g is r or 2g − r: the next boundary point can
only be one of (a, a− p), (p± b, b), (0, p) so it belongs to the given set.

Symmetry

From the distribution of the boundary points, we may deduce that a closed path is
symmetric. Indeed, if a/g and b/g are odd, then the path is point-symmetric w.r.t. the
center of the billiard table while if w.l.o.g. a/g is odd and b/g is even, then the path
is symmetric with respect to the perpendicular bisector of the b-sides. In any case, the
closed path through (r, 0) and the closed path through (g − r, 0) are symmetric because
the formulas for the boundary points imply that the path through (r, 0) also goes through
the point (a− (g − r), 0) or the point (0, b− (g − r)).

4 Shape of a closed path

Consider the closed path containing the point (r, 0), where r is an integer from 1 to
g − 1, and recall from the previous section that we know the set of boundary points.

The grid structure

The closed path is formed by segments with slope 1 or −1 connecting two boundary
points. By the formulas in Figures 3 and 4, the distances between parallel path segments
are alternatively r

√
2 and (g−r)

√
2. Then the path segments form a grid which partitions

the billiard table into squares having side lengths r
√
2 and (g−r)

√
2, rectangles with side

lengths r
√
2 and (g − r)

√
2 (which are squares if and only if r = g/2), triangles around

the border which are half of one of the squares, and triangles at the corners which are
a quarter of one of the squares. We call corner triangles the triangles containing the
corners and side triangles the further triangles along the boundary.

Notice that the path is also the intersection with the billiard table of two parallel
grids of diagonally oriented squares of side length g

√
2, one grid being the horizontal or
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vertical shift of the other by 2r (or, equivalently, by 2g − 2r). There is some freedom in
choosing the two grids, and according to this choice we will have a horizontal or vertical
shift, see Figure 2 (and Figure 5). A self-intersection point (respectively, a boundary
point) of the path is either the vertex of a square in one of the two grids or a point of
intersection between the two grids. In fact, if we fix one of these points, then we can
choose the two grids such that the point is a vertex. Finally notice that each grid of
diagonally oriented squares is invariant by the horizontal and vertical shift by 2g, so in
fact the pattern that we see inside the billiard table is periodic with period 2g (this is
clearly the minimal period unless r = g/2, the period being g in this case).

Figure 5: Example of closed path for the 35× 14 billiard table.

Self-intersection points

If a = b, then there are no self-intersection points because the path is the rectangle
with corners (r, 0), (a, a − r), (a − r, a), (0, r). On the other hand if a ̸= b, then there
are self-intersection points. Indeed, supposing w.l.o.g. that a > b, the path contains
the segment from (r, 0) to (r + b, b): this segment cuts the billiard table into two parts
and there are self-intersection points on it. Below we will prove that the number of
self-intersection points is

2ab/g2 − (a+ b)/g

The triangles

Using the formulas in Figures 3 and 4 for the boundary points we can study the
triangles.

In the special case where r = g/2, all four corner triangles have legs r. Moreover, all
side triangles have hypothenuse g: there are a/g− 1 side triangles along each a-side and
b/g − 1 side triangles along each b-side.

Now suppose that r ̸= g/2. Two corner triangles have legs r, the other two have legs
g − r, and we have: if a/g and b/g are odd, then the corner triangles at two opposite
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corners are congruent; if w.l.o.g. a/g is odd and b/g is even, then the corner triangles
adjacent to one same b-side are congruent.

Moreover, the side triangles have hypothenuse 2r and 2g − 2r. There are a/g − 1
side triangles along each a-side, and their size alternates. If a/g is odd, then there are
(a−g)/2g side triangles of each type on each a-side; if a/g is even, then there are a/g−1
side triangles of each type on the two a-sides (more precisely, there are a/2g − 1 large
side triangles on the side whose triangle corners are small, and a/2g on the other). The
analogous formulas hold for the b-sides.

The squares in the special case r = g/2

If r = g/2, then the intersection of the two grids of diagonally oriented squares gives
just one grid with smaller squares. So the path is the intersection of the billiard table
with the grid of squares of side length g/

√
2 having a vertex at the point (r, 0). In this

case the set of self-intersection points together with the boundary points is the union of
two sets that are easy to describe:

(r + ng,mg) with 0 ⩽ n ⩽ a/g − 1 0 ⩽ m ⩽ b/g
(ng, r +mg) with 0 ⩽ n ⩽ a/g 0 ⩽ m ⩽ b/g − 1

These are 2ab/g2 + (a + b)/g points, and hence (recalling that there are 2(a + b)/g
boundary points) the number of self-intersection points is 2ab/g2 − (a+ b)/g.

We now count the squares in the partition of the billiard table given by the path:
there are clearly b/g horizontal stripes of squares with a/g squares, and b/g−1 horizontal
stripes of squares with a/g − 1 squares, so the total number of squares is

2ab

g2
− a+ b

g
+ 1

The rectangles in the generic case

We suppose that r ̸= g/2 because this other case has been treated above. We can
choose the two grids of diagonally oriented squares to have vertices at the points (r, 0)
and (2g−r, 0) respectively. Then we can write down the self-intersection points together
with the boundary points: they are the points in the billiard table whose coordinates
are of the form (n2g,m2g) for some integers n,m plus any of the following eight points:

(±r, 0) (g ± r, g) (0,±r) (g, g ± r)

By writing the sets explicitly (this is a straightforward exercise) we may then count the
the self-intersection points together with the boundary points as done in the special case
r = g/2, and we obtain again that there are 2ab/g2 − (a+ b)/g self-intersection points.
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We now count the non-square rectangles in the partition of the billiard table given
by the path. To do this we exploit the periodicity of the pattern in the arithmetic
billiard. The centers of the non-square rectangles are the points in the billiard table whose
coordinates are of the form (ng,mg) for some integers n,m plus the point (g/2, g/2).
Consequently, there are

ab/g2

non-square rectangles.

In the partition of the billiard table given by the path there are squares with side
lengths r

√
2 and (g − r)

√
2. There is the same amount of squares of the two types

because, replacing r with g− r, we obtain a second path which only differs from the first
by a symmetry of the billiard table. Reasoning as above, the number of squares of side
length r

√
2 is

(a− g)(b− g)/2g2

Namely, the centers of these squares are the points in the billiard table whose coordinates
are of the form (n2g,m2g) for some integers n,m plus the point (g, g) or the point
(2g, 2g).

The number of closed paths

Let r be an integer in the range from 1 to g − 1, which we use as parameter. Then
in Figures 3 and 4 we have given parametric formulas for the boundary points of the
closed path going through the point (r, 0). We have also observed that all closed paths
in a given billiard table have some boundary point on the bottom a-side. Moreover, a
point of the form (x, 0) belongs to the corner paths if x is a multiple of g. The formulas
in Figures 3 and 4 then guarantee that each closed path goes through exactly one of the
points of the form (r, 0). We deduce that there are g− 1 closed paths in a given billiard
table.

For example, if g = 2, then there is only one closed path, which consists of the grid
of squares whose corners are the points (x, y) in the billiard table such that x+ y is odd.

However, if we count the closed paths up to a symmetry of the billiard table, then
their amount is the integer part of g/2 because with a symmetry we may replace r by
g − r. To understand the symmetry visually, consider that a closed path in a given
billiard table is determined by the size and position of the corner triangles (whose legs
are r and g − r), and that a symmetry has the effect of permuting the corner triangles.

Comparing billiard tables

The pattern of a closed path in a billiard table (namely, the structure with the two
grids of diagonally oriented squares) only depends on a and b through g. So if we take
any two billiard tables with the same g, and we consider the closed path from the point
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(r, 0) in both cases, then the two closed paths coincide on the intersection of the two
billiard tables. The same holds for the corner paths starting at (0, 0) on various billiard
tables having the same g, because the pattern is a grid of squares which only depends
on g.
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