💲 sciendo



# THE ZARISKI TOPOLOGY ON THE GRADED PRIMARY SPECTRUM OVER GRADED COMMUTATIVE RINGS

Khaldoun Al-Zoubi\* — Malik Jaradat

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, JORDAN

Department of Mathematics, The international School of Choueifat (MHS-AlDaid), Alain, UAE

ABSTRACT. Let G be a group with identity e and let R be a G-graded ring. A proper graded ideal P of R is called a graded primary ideal if whenever  $r_g s_h \in P$ , we have  $r_g \in P$  or  $s_h \in Gr(P)$ , where  $r_g, s_g \in h(R)$ . The graded primary spectrum  $p.Spec_g(R)$  is defined to be the set of all graded primary ideals of R. In this paper, we define a topology on  $p.Spec_g(R)$ , called Zariski topology, which is analogous to that for  $Spec_g(R)$ , and investigate several properties of the topology.

## 1. Introduction

The concept of graded prime ideal was introduced by M. Refai, M. Hailat and S. Obiedat in [10] and studied in [1,8,11].

Zariski topology on the graded prime spectrum of graded commutative rings have been already studied in [7,8,10]. These results will be used in order to obtain the main aims of this paper. The notion of primary spectrum was examined as a generalization of prime spectrum in [6]. They showed that the set of primary ideals can be endowed with a topology called the Zariski topology on primary spectrum of R. Graded primary ideals of a commutative graded ring have been introduced and studied by R e f a i and Al - Zoubi in [9]. These ideals are generalizations of primary ideals in a graded ring. The set of all graded primary ideals and the set of all primary ideals need not be equal in a graded ring (see [9, Example 1.6]).

<sup>© 2019</sup> Mathematical Institute, Slovak Academy of Sciences.

<sup>2010</sup> Mathematics Subject Classification: 13A02, 16W50.

Keywords: Zariski topology, graded primary spectrum, graded primary ideals.

<sup>\*</sup> Corresponding author.

Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

In this paper, we rely on the graded primary ideals and then, we introduce and study a topology on the graded primary spectrum similar to the one defined in [6], and investigate several properties of the topology.

## 2. Preliminaries

**CONVENTION.** Throughout this paper, all the rings are commutative with identity. First, we recall some basic properties of graded rings which will be used in the sequel. We refer to [3], [4] and [5] for these basic properties and more information on graded rings. Let G be a group with identity e. A ring R is called graded (or more precisely, G-graded) if there exists a family of subgroups  $\{R_g\}$ of R such that  $R = \bigoplus_{g \in G} R_g$  (as abelian groups) indexed by the elements  $g \in G$ , and  $R_g R_h \subseteq R_{gh}$  for all  $g, h \in G$ . The summands  $R_g$  are called homogeneous components, and elements of these summands are called homogeneous elements. If  $r \in R$ , then r can be written uniquely  $r = \sum_{g \in G} r_g$ , where  $r_g$  is the component of r in  $R_q$ . Also, we write  $h(R) = \bigcup_{g \in G} R_g$ . Let

$$R = \bigoplus_{g \in G} R_g \quad \text{be a } G\text{-graded ring.}$$

An ideal I of R is said to be a graded ideal if

$$I = \bigoplus_{g \in G} (I \cap R_g) := \bigoplus_{g \in G} I_g.$$

An ideal of a graded ring need not be graded.

Let R be a G-graded ring. A proper graded ideal I of R is said to be a graded prime ideal if whenever  $r_g s_h \in I$ , we have  $r_g \in I$  or  $s_h \in I$ , where  $r_g, s_h \in h(R)$ (see [10]).

Let  $Spec_g(R)$  denote the set of all graded prime ideals of R. For each graded ideal I of R, the graded variety of I is the set  $V_R^g(I) = \{P \in Spec_g(R) | I \subseteq P\}$ . Then, the set  $\xi^g(R) = \{V_R^g(I) | I$  is a graded ideal of  $R\}$  satisfying the axioms for the closed sets of a topology on  $Spec_g(R)$  called the Zariski topology on  $Spec_g(R)$  (see [7, 8, 10]).

The graded radical of I, denoted by Gr(I), is the set of all  $r = \sum_{g \in G} r_g \in R$ such that for each  $g \in G$  there exists  $n_g \in \mathbb{N}$  with  $r_g^{n_g} \in I$ . Note that if r is a homogeneous element, then  $r \in Gr(I)$  if and only if  $r^n \in I$  for some  $n \in \mathbb{N}$ (see [10]). In [10], it is shown that Gr(I) is the intersection of all the graded prime ideals of R containing I.

A graded ideal I of R is said to be a graded maximal ideal of R if  $I \neq R$  and if J is a graded ideal of R such that  $I \subseteq J \subseteq R$ , then I = J or J = R.

A proper graded ideal I of a G-graded ring R is said to be a graded primary ideal if whenever  $r_g s_h \in I$ , we have  $r_g \in I$  or  $s_h \in Gr(I)$  where  $r_g, s_g \in h(R)$ (see [9]). Let  $p.Spec_g(R)$  denote the set of all graded primary ideals of R.

## 3. Results

**DEFINITION 3.1.** Let R be a G-graded ring and  $p.Spec_g(R)$  be the set of all graded primary ideals of R. We define graded primary variety for any subset E of R as  $p-V_R^g(E) = \{q \in p.Spec_g(R) : E \subseteq Gr(q)\}.$ 

**LEMMA 3.2** ([9]). Let Q be a graded primary ideal of a G-graded ring R. Then, P = Gr(Q) is a graded prime ideal of R, and we say that Q is a graded G-P-primary.

**PROPOSITION 3.3.** Let R be a G-graded ring and I and J be two graded ideals of R. Then, the following hold:

- (i) If  $I \subseteq J$ , then  $p V_R^g(J) \subseteq p V_R^g(I)$ .
- (ii) If  $E \subseteq R$  and I is the graded ideal of R generated by h(E), then  $p V_R^g(E) = p V_R^g(I) = p V_R^g(Gr(I))$ .
- (iii)  $p V_R^g(0) = p.Spec_g(R)$  and  $p V_R^g(R) = \phi$ .
- (iv) Let  $\{E_{\alpha}\}_{\alpha\in\Delta}$  be a family of subsets of R and  $I_{\alpha}$  be graded ideals of R, then  $p V_R^g(\bigcup_{\alpha\in\Delta}E_{\alpha}) = \bigcap_{\alpha\in\Delta}p V_R^g(E_{\alpha})$ . In particular,  $p V_R^g(\sum_{\alpha\in\Delta}I_{\alpha}) = \bigcap_{\alpha\in\Delta}p V_R^g(I_{\alpha})$ .

(v) For every pair I and J of graded ideals of R, we have  $p-V_R^g(I \cap J) = p-V_R^g(IJ) = p-V_R^g(I) \cup p-V_R^g(J)$ .

Proof.

(i) Let  $I, J \subseteq R$  with  $I \subseteq J$ . If  $q \in p$ - $V_R^g(J)$ , then  $J \subseteq Gr(q)$ , and so  $I \subseteq Gr(q)$ , it follows that  $q \in p$ - $V_R^g(I)$ . Hence, p- $V_R^g(J) \subseteq p$ - $V_R^g(I)$ .

(ii) Let  $E \subseteq R$  and I be the graded ideal of R generated by  $h(E) \subseteq p-V_R^g(I) \subseteq p-V_R^g(E)$ . If  $q \in p-V_R^g(E)$ , then  $E \subseteq Gr(q)$ , and so  $h(E) \subseteq Gr(q)$ , which implies  $I \subseteq Gr(q)$ , i.e.,  $q \in p-V_R^g(I)$ , so  $p-V_R^g(E) \subseteq p-V_R^g(I)$ . Thus,  $p-V_R^g(E) = p-V_R^g(I)$ . Now, since  $I \subseteq Gr(I)$ , by part (i),  $p-V_R^g(Gr(I)) \subseteq p-V_R^g(I)$ . Now, let  $q \in p-V_R^g(Gr(I))$ . Then,  $I \subseteq Gr(I) \subseteq Gr(q)$ , which implies  $q \in p-V_R^g(I)$ , so  $p-V_R^g(Gr(I)) \supseteq p-V_R^g(I)$ . Hence,  $p-V_R^g(Gr(I)) \subseteq p-V_R^g(I)$ . Thus,  $p-V_R^g(E) = p-V_R^g(I) = p-V_R^g(I)$ .

(iii) Since  $0 \in q \subseteq Gr(q)$  for all graded primary ideals q of R, we have p- $V_R^g(0) = p.Spec_g(R)$  and p- $V_R^g(R) = \phi$ .

Let  $\{E_{\alpha} : \alpha \in \Delta\}$  be any family of subsets of R. Clearly,  $E_{\beta} \subseteq \bigcup_{\alpha \in \Delta} E_{\alpha}$  for all  $\beta \in \Delta$  and hence, by Part (i),  $p \cdot V_R^g(\bigcup_{\alpha \in \Delta} E_{\alpha}) \subseteq p \cdot V_R^g(E_{\beta})$  for all  $\beta \in \Delta$ . Thus,  $p \cdot V_R^g(\bigcup_{\alpha \in \Delta} E_{\alpha}) \subseteq \bigcap_{\alpha \in \Delta} p \cdot V_R^g(E_{\alpha})$ . Conversely, let  $q \in \bigcap_{\alpha \in \Delta} p \cdot V_R^g(E_{\alpha})$ . Then,  $q \in p \cdot V_R^g(E_{\alpha})$  for all  $\alpha \in \Delta$ , it follows that  $E_{\alpha} \subseteq Gr(q)$  for all  $\alpha \in \Delta$ . So,  $\bigcup_{\alpha \in \Delta} E_{\alpha} \subseteq Gr(q)$ , i.e.,  $q \in p \cdot V_R^g(\bigcup_{\alpha \in \Delta} E_{\alpha})$ . Hence,  $p \cdot V_R^g(\bigcup_{\alpha \in \Delta} E_{\alpha}) \supseteq \bigcap_{\alpha \in \Delta} p \cdot V_R^g(E_{\alpha})$ .

Let I, J be any two graded ideals of R. Since  $IJ \subseteq I \cap J \subseteq I$  and  $IJ \subseteq I \cap J \subseteq J$ , by part (i),  $p \cdot V_R^g(I) \subseteq p \cdot V_R^g(I \cap J)$  and  $p \cdot V_R^g(J) \subseteq p \cdot V_R^g(I \cap J)$ . Hence,  $p \cdot V_R^g(I) \cup p \cdot V_R^g(J) \subseteq p \cdot V_R^g(I \cap J) \subseteq p \cdot V_R^g(IJ)$ . Let  $q \in p \cdot V_R^g(IJ)$ . Then  $IJ \subseteq Gr(q)$ . By Lemma 3.1, Gr(q) is a graded prime ideal, hence by [10, Proposition 1.2],  $I \subseteq Gr(q)$  or  $J \subseteq Gr(q)$ . Hence  $q \in p \cdot V_R^g(I)$  or  $q \in p \cdot V_R^g(J)$ , it follows that  $q \in p \cdot V_R^g(I) \cup p \cdot V_R^g(J)$ . This implies that  $p \cdot V_R^g(IJ) \subseteq p \cdot V_R^g(I) \cup p \cdot V_R^g(J)$ . Therefore,  $p \cdot V_R^g(I \cap J) = p \cdot V_R^g(IJ) = p \cdot V_R^g(I) \cup p \cdot V_R^g(J)$ .

**DEFINITION 3.4.** Let R be a G-graded ring. Since  $p \cdot \eta^g(R) = \{ p \cdot V_R^g(I) \mid I$  is a graded ideal of  $R\}$  is closed under finite union, the family  $p \cdot \eta^g(R)$  satisfies the axioms of topological space for closed sets. So, there exists a topology on  $p.Spec_q(M)$  called the Zariski topology and denoted by  $p \cdot \xi^g(R)$ .

We note that, since any graded prime ideal is graded primary and equal to its graded radical, the space  $Spec_q(R)$  is in fact a subspace of  $p.Spec_q(R)$ .

**PROPOSITION 3.5.** Let R be a G-graded ring. For any homogeneous element r, the set  $GX_r^p = p.Spec_g(R) \setminus p-V_R^g(r)$  is open in  $p.Spec_g(R)$  and the family  $\{GX_r^p : r \in h(R)\}$  is the basis for the Zariski topology on  $p.Spec_g(R)$ .

Proof. Assume that U is any open set in  $p.Spec_g(R)$ . Thus,  $U = p.Spec_g(R) \setminus p-V_R^g(I)$  for some graded ideal I of R. Notice that  $I = \bigcup_{g \in G} I_g = \langle h(I) \rangle$ . Hence,  $p-V_R^g(I) = p-V_R^g(h(I)) = \bigcap_{r \in h(I)} p-V_R^g(r)$ . So,  $U = \bigcup_{r \in h(I)} (p.Spec_g(R) \setminus p-V_R^g(r)) = \bigcup_{r \in h(I)} GX_r^p$ . This implies that  $\{GX_r^p : r \in h(R)\}$  is a basis for the Zariski topology on  $p.Spec_g(R)$ .

**PROPOSITION 3.6.** Let R be a G-graded ring. Then the followings hold for any r,  $s \in h(R)$  and the open sets  $GX_r^p$  and  $GX_s^p$ .

- (i) Gr(rR) = Gr(sR) if and only if  $GX_r^p = GX_s^p$ .
- (ii)  $GX_{rs}^p = GX_r^p \cap GX_s^p$ .
- (iii)  $GX_r^p = \phi$  if and only if r is a homogeneous nilpotent.
- (iv)  $GX_r^p$  is quasi compact.

Proof. (i) Suppose that  $GX_r^p = GX_s^p$ . Then,  $p \cdot V_R^g(rR) = p \cdot V_R^g(sR)$ . Let q be a graded prime ideal of R such that  $rR \subseteq q$ . Since q is a graded primary and  $rR \subseteq q \subseteq Gr(q)$ , we get  $q \in p \cdot V_R^g(rR) = p \cdot V_R^g(sR)$ . Then,  $sR \subseteq , Gr(q)$ . Since q is graded prime ideal, by [9, Proposition 1.2(4)], we get Gr(q) = q. Thus,  $sR \subseteq q$ . Hence,  $Gr(sR) \subseteq Gr(rR)$ . Similarly we can show that  $Gr(rR) \subseteq Gr(sR)$ . Therefore, Gr(rR) = Gr(sR). Conversely, assume that Gr(rR) = Gr(sR). Let  $q \in p \cdot V_R^g(rR)$ . Then,  $rR \subseteq Gr(q)$ . Hence,  $sR \subseteq Gr(sR) = Gr(rR) \subseteq Gr(q)$  by [9, Proposition 1.2]. Thus,  $q \in p \cdot V_R^g(sR)$ , so  $p \cdot V_R^g(rR) \subseteq p \cdot V_R^g(sR)$  and hence  $GX_s^p \subseteq GX_r^p$ . Similarly, we can show that  $GX_r^p \subseteq GX_s^p$ . Thus,  $GX_r^p = GX_s^p$ .

#### THE ZARISKI TOPOLOGY ON THE GRADED PRIMARY SPECTRUM

(ii) Let  $q \in GX_r^p \cap GX_s^p$  for the open sets  $GX_r^p$  and  $GX_s^p$ . Then,  $r \notin Gr(q)$ and  $s \notin Gr(q)$ . By Lemma 3.1, we get  $rs \notin Gr(q)$ . It follows that  $q \in GX_{rs}^p$ . Thus,  $GX_r^p \cap GX_s^p \subseteq GX_{rs}^p$ . For reverse inclusion, assume that  $q \in GX_{rs}^p$ . Then,  $rs \notin Gr(q)$ , namely  $r \notin Gr(q)$  and  $s \notin Gr(q)$ . It follows that  $q \in GX_r^p$  and  $q \in GX_s^p$ So,  $GX_{rs}^p \subseteq GX_r^p \cap GX_s^p$ .

(iii) Let  $r \in h(R)$ . Then,  $GX_r^p = \phi$  if and only if  $p \cdot V_R^g(r) = p.Spec_g(R)$  if and only if  $r \in q$  for all graded primary ideals q of R if and only if r belongs to the intersection of all graded primary ideals if and only if r belongs to the intersection of all graded prime ideals if and only if r belongs to the graded nilradical of R if and only if r is a homogeneous nilpotent.

(iv) Let  $r \in h(R)$ . Assume that  $\{GX_{s_{\alpha}}^{p} : \alpha \in \Lambda\}$  is an open cover of  $GX_{r}^{p}$ , for each  $\alpha \in \Lambda$  and  $s_{\alpha} \in h(R)$ . Then,  $GX_{r}^{p} \subseteq \bigcup_{\alpha \in \Lambda} GX_{s_{\alpha}}^{p} = \bigcup_{\alpha \in \Lambda} (p.Spec_{g}(R) \setminus p-V_{R}^{g}(s_{\alpha})) = p.Spec_{g}(R) \setminus \bigcap_{\alpha \in \Lambda} p-V_{R}^{g}(s_{\alpha}) = p.Spec_{g}(R) \setminus p-V_{R}^{g}(\bigcup_{\alpha \in \Lambda} s_{\alpha})$ , i.e.,  $p-V_{R}^{g}(\bigcup_{\alpha \in \Lambda} s_{\alpha}) \subseteq p-V_{R}^{g}(r) = p-V_{R}^{g}(Gr(rR))$ . So,  $Gr(rR) \subseteq Gr(\bigcup_{\alpha \in \Lambda} \{s_{\alpha}\})$ . Thus,  $r^{n} \in (\bigcup_{\alpha \in \Lambda} \{s_{\alpha}\})$  for some  $n \in \mathbb{N}$ . There exists a finite subset  $\Delta \subseteq \Lambda$  such that  $r^{n} = \sum_{i \in \Delta} t_{i}s_{i}$ , for any  $t_{i} \in h(R)$  and  $i \in \Delta$ . Thus,  $(rR)^{n} \subseteq (\{s_{i} : i \in \Delta\})$ , that is,  $p-V_{R}^{g}(\{s_{i} : i \in \Delta\}) \subseteq p-V_{R}^{g}(r^{n}) = p-V_{R}^{g}(r)$ . Hence,  $p-V_{R}^{g}(\sum_{i \in \Delta} (s_{i})) = \bigcap_{i \in \Delta} p-V_{R}^{g}(s_{i}) \subseteq p-V_{R}^{g}(r)$ . So,  $p.Spec_{g}(R) - p-V_{R}^{g}(r) \subseteq p.Spec_{g}(R) - \bigcap_{i \in \Delta} p-V_{R}^{g}(s_{i}) = \bigcup_{i \in \Delta} (p.Spec_{g}(R) - p-V_{R}^{g}(s_{i})) = \bigcup_{i \in \Delta} GX_{s_{i}}^{p}$ . Thus,  $GX_{r}^{p} \subseteq \bigcup_{i \in \Delta} GX_{s_{i}}^{p}$ . Since  $\Delta$ is finite,  $GX_{r}^{p}$  is a quasi compact.

**COROLLARY 3.7.** Let R be a G-graded ring. Then,  $p.Spec_q(R)$  is quasi-compact.

Proof. It can be seen directly from Proposition 3.6(iv).

**DEFINITION 3.8.** Let R be a G-graded ring. A family of graded ideals  $\{P_{\alpha}\}_{\alpha \in \Lambda}$  satisfies condition (A) if for each  $r_g \in h(R)$ , there is  $n \in \mathbb{N}$  such that for all  $\alpha \in \Lambda$ , if  $r_g \in Gr(P_{\alpha})$ , then  $r_q^n \in P_{\alpha}$ .

**LEMMA 3.9.** Let R be a G-graded ring. Then, the following statements are equivalent:

(i) A family  $\{P_{\alpha}\}_{\alpha \in \Lambda}$  of graded ideals in R satisfies condition (A).

(ii) For each (countable) subset  $\Delta \subset \Lambda$ ,  $Gr(\cap_{\alpha \in \Delta} P_{\alpha}) = \cap_{\alpha \in \Delta} Gr(P_{\alpha})$ .

Proof.

(i)  $\Rightarrow$ (ii) Assume that  $\{P_{\alpha}\}_{\alpha \in \Lambda}$  satisfies condition (A) and  $r_g \in \cap_{\alpha \in \Delta} Gr(P_{\alpha}) \cap h(R)$ , then there exists  $n \in \mathbb{N}$  such that  $r_g^n \in P_{\alpha}$  for each  $\alpha \in \Delta$ . So,  $r_g \in Gr(\cap_{\alpha \in \Delta} P_{\alpha})$ . This yields that  $\cap_{\alpha \in \Delta} Gr(P_{\alpha}) \subseteq Gr(\cap_{\alpha \in \Delta} P_{\alpha})$ . The other inclusion always holds.

(ii) $\Rightarrow$ (i) Given  $r_g \in h(R)$ , let  $\Delta = \{\alpha \in \Lambda : r_g \in Gr(P_\alpha)\}$ . Then, the displayed equation says that there is n such that  $r_g^n \in P_\alpha$  for all  $\alpha \in \Delta$ . Finally, we note that if the displayed equation fails for some subset  $\Delta \subset \Lambda$ , then it fails

for a countable subset of  $\Delta$ . Indeed, if  $r_g \notin Gr(\cap_{\alpha \in \Delta} P_\alpha)$ , then for each *n* there exists  $\alpha_n \in \Delta$  such that  $r_q^n \notin P_{\alpha_n}$ , hence  $r_g \notin Gr(\cap_{n=1}^{\infty} P_{\alpha_n})$ .

**LEMMA 3.10** ([5]). Let R be a G-graded ring and M a graded R-module. Then, R has at least one graded maximal ideal. In particular, if I is a proper graded ideal of R, then there exists a graded maximal ideal Q of R with  $I \subseteq Q$ .

Recall that the dimension of a graded ring R denoted by  $dim_g(R)$  is defined to be :  $\sup\{n \in \{0, 1, 2, ...\}$  : there exists a strict chain of graded prime ideals of R of the length n }.

**LEMMA 3.11.** Let R be a G-graded ring. Then, the following statements are equivalent:

- (i)  $dim_q(R) = 0.$
- (ii)  $Rr_g + \bigcup_{n=1}^{\infty} (0:_R r_q^n) = R$  for every  $r_g \in h(R)$ .
- (iii) For every  $r_g \in h(R)$ , there exists  $n \in \mathbb{N}$  such that  $Rr_q^n = Rr_q^{n+1}$ .

Proof.

(i)  $\Rightarrow$  (ii) Assume that  $\dim_g(R) = 0$  and  $Rr_g + \bigcup_{n=1}^{\infty} (0:_R r_g^n)$  is a proper graded ideal of R. Then, it is contained in a graded prime ideal P of R by Lemma 3.10. Look at the multiplicative system  $U = \{r_g^n s_h : n = 0, 1, 2, \dots$  and  $s_h \in h(R) \setminus P\}$ . Now,  $0 \notin U$  because  $s_h \notin P$  and  $\bigcup_{n=1}^{\infty} (0:_R r_g^n) \subseteq P$ . So, there is a graded prime ideal P' of R that misses U. Since  $U \supseteq h(R) \setminus P$ , we have  $P' \subseteq P$ . Moreover,  $r_g \in P \setminus P'$ , so  $P' \neq P$ . Thus, P' is not graded maximal, i.e.,  $\dim_g(R) \neq 0$ , which is a contradiction.

(ii)  $\Rightarrow$  (i) We prove the contrapositive of the statement. Suppose there exist distinct graded prime ideals  $P' \subset P$  in R and let  $r_g \in P \cap h(R) \setminus P'$ . Then,  $\bigcup_{n=1}^{\infty} (0:_R r_g^n) \subset P'$  and  $Rr_g \subset P$ . So,  $Rr_g + \bigcup_{n=1}^{\infty} (0:_R r_g^n) \subset P$ , i.e.,  $Rr_g + \bigcup_{n=1}^{\infty} (0:_R r_g^n)$  is a proper graded ideal of R.

(ii) $\Rightarrow$ (iii) If  $r_g$  satisfies (ii), then  $t_h r_g + s_\lambda = 1$  where  $s_\lambda r_g^n = 0$  and  $t_h, s_\lambda \in h(R)$ . So,  $t_h r_g^{n+1} = r_g^n$ . This yields that  $Rr_g^n = Rr_g^{n+1}$ .

(iii) $\Rightarrow$ (ii) If  $r_g$  satisfies (iii), then there exists  $t_h \in h(R)$  such that  $r_g^n = t_h r_g^{n+1}$ , hence  $r_g^n(1 - t_h r_g) = 0$ . It follows that  $1 - t_h r_g \in (0 : r_g^n)$  and hence  $1 \in Rr_g + \bigcup_{n=1}^{\infty} (0 :_R r_g^n)$ .  $\Box$ 

**PROPOSITION 3.12.** Let R be a G-graded ring. Then, the following statements are equivalent:

- (i)  $\dim_g(R) = 0.$
- (ii) Condition (A) holds for the family of all graded ideals of R.
- (iii) Condition (A) holds for the family of all graded primary ideals of R.

Proof.

(i)  $\Rightarrow$  (ii) Suppose that  $dim_g(R) = 0$  and  $r_g \in h(R)$ . By Lemma 3.11, there exists  $n \in \mathbb{N}$  such that  $Rr_g^n = Rr_g^{n+1}$ . If I is any graded ideal and  $r_g \in Gr(I)$ , then  $r_g^m \in I$  for some m, hence  $r_g^n \in I$  also. Thus, (A) holds for the family of all graded ideals of R.

 $(ii) \Rightarrow (iii)$  Clear.

(iii)  $\Rightarrow$  (i) Suppose that  $dim_g(R) > 0$ . Let I be a graded prime ideal of R that is not graded maximal. The graded primary ideals of R/I are in one-to-one correspondence with the graded primary ideals of R that contain I, and this correspondence respects intersections and graded radicals, so we may assume that R is a graded integral domain. Let  $r_g$  be a nonzero nonunit of h(R) and let P be a graded minimal prime of the graded ideal  $Rr_g$ . For each positive integer n, let  $P'_n = R_P r_g^n \cap R = \{r \in R : s_h r \in Rr_g^n \text{ for some } s_h \in h(R) \setminus P\}$ . Each  $P'_n$  is graded P-primary, hence  $\bigcap_{n=1}^{\infty} Gr(P'_n) = P$ . To show that  $r_g \notin Gr(\bigcap_{n=1}^{\infty} P'_n)$ , it suffices to show that  $r_g^{n-1} \notin P'_n$ . Suppose, by way of contradiction, that  $r_g^{n-1} \in P'_n$ . Then,  $s_h r_g^{n-1} \in Rr_g^n$  for some  $s_h \in h(R) \setminus P$ , so  $s_h \in Rr_g \subset P$  because R is a graded integral domain, a contradiction. Thus,  $r_g \notin Gr(\bigcap_{n=1}^{\infty} P'_n)$ . This yields that  $Gr(\bigcap_{n=1}^{\infty} P'_n) \neq Gr(\bigcap_{n=1}^{\infty} P'_n)$ . By Lemma 3.9, we get a contradiction. Therefore,  $dim_g(R) = 0$ .

Let R be a G-graded ring and let  $p.Spec_g(R)$  be endowed with the Zariskitopology. Let W be a subset of  $p.Spec_g(R)$ . We will denote  $\bigcap_{P \in Y} P$  by  $\Im(W)$ and the closure of W in  $p.Spec_g(R)$  by Cl(W).

**PROPOSITION 3.13.** Let R be a G-graded ring with  $\dim_g(R) = 0$  and  $Y \subseteq p.Spec_g(R)$ . Then,  $p-V_R^g(\mathfrak{F}(W)) = Cl(W)$ . Hence, W is closed if and only if  $p-V_R^g(\mathfrak{F}(W)) = W$ .

Proof. Let  $q \in W$ . Then,  $\Im(W) \subseteq q \subseteq Gr(q)$ , it follows that  $q \in p-V_R^g(\Im(W))$ . Thus,  $Y \subseteq p-V_R^g(\Im(W))$ . This yields that  $Cl(W) \subseteq p-V_R^g(\Im(W))$ . For the reverse inclusion, let  $p-V_R^g(I)$  be a closed subset of  $p.Spec_g(R)$  including W. Hence,  $I \subseteq Gr(q)$  for all  $q \in W$ . Then,  $I \subseteq Gr(\Im(W))$  by Proposition 3.12. Let  $q' \in p-V_R^g(\Im(W))$ . It follows that  $\Im(W) \subseteq Gr(q')$ . Hence,  $I \subseteq Gr(\Im(W)) \subseteq Gr(q')$ , and so  $q' \in p-V_R^g(I)$ , that is,  $p-V_R^g(\Im(W))$  is the smallest closed subset of  $p.Spec_g(R)$  which includes W.

**PROPOSITION 3.14.** Let R be a G-graded ring and  $q \in p.Spec_g(R)$ . Then, the followings hold:

- (i)  $Cl(\{q\}) = p V_R^g(q)$ .
- (ii)  $I \in Cl(\{q\})$  if and only if  $q \subseteq Gr(I)$  for any  $I \in p.Spec_q(R)$ .

Proof.

(i) Let  $W = \{q\}$ . Then  $Cl(\{q\}) = p \cdot V_B^g(q)$  by Proposition 3.13.

(ii) It is an immediate consequence of (i).

**PROPOSITION 3.15.** Let R be a G-graded ring. Then,  $p.Spec_g(R)$  is a  $T_0$ -space if and only if for any two graded ideals  $q_1$  and  $q_2$  in  $p.Spec_g(R)$ ,  $p-V_R^g(q_1) = p-V_R^g(q_2)$  implies that  $q_1 = q_2$ .

 $\square$ 

Proof. Let  $q_1, q_2 \in p.Spec_g(R)$ . By Proposition 3.14,  $Cl(\{q_1\}) = Cl(\{q_2\})$  if and only if  $p-V_R^g(q_1) = p-V_R^g(q_2)$  if and only if  $q_1 = q_2$ . Now, by the fact that a topological space is a  $T_0$ -space if and only if the closures of distinct points are distinct, we conclude that for any graded *R*-module *M*,  $p.Spec_g(R)$  is a  $T_0$ -space.

**LEMMA 3.16.** Let R be a G-graded ring. If every graded prime ideal is graded maximal, that is,  $\dim_q(R) = 0$ , then  $Spec_q(R)$  is a  $T_2$ -space.

Proof. If  $|Spec_g(R)| = 1$  or  $|Spec_g(R)| = 2$ , then  $Spec_g(R)$  is a  $T_2$ -space. Now, assume that  $|Spec_g(R)| > 2$ . Then, we can take three distinct elements in  $Spec_g(R)$ , say  $p_1, p_2$ , and  $p_3$ . Since every graded prime ideal is graded maximal,

$$V_R^g(p_1) = \{p_1\}, \quad V_R^g(p_3) = \{p_3\},$$
  
$$V_R^g(p_1p_3) = V_R^g(p_1) \cup V_R^g(p_3) = \{p_1, p_3\} = Spec_g(R) - V_R^g(p_2),$$
  
$$V_R^g(p_2p_3) = V_R^g(p_2) \cup V_R^g(p_3) = \{p_2, p_3\} = Spec_g(R) - V_R^g(p_1)$$

and

$$V_R^g(p_2) = \{p_2\} = Spec_g(R) - V_R^g(p_1p_3)$$

are open sets in  $Spec_q(R)$ . This implies that

$$p_1 \in V_R^g(p_1 p_3)$$
 and  $p_2 \in V_R^g(p_2)$ .

Moreover,

$$V_R^g(p_1p_3) \cap V_R^g(p_2) = \phi.$$

**PROPOSITION 3.17.** Let R be a G-graded ring. Then, the following statements are equivalent:

- (i) Every graded primary ideal is a graded maximal ideal in R.
- (ii)  $p.Spec_g(R)$  is a  $T_2$ -space.
- (iii)  $p.Spec_q(R)$  is a  $T_1$ -space.
- (iv)  $p.Spec_g(R)$  is a  $T_0$ -space.

#### THE ZARISKI TOPOLOGY ON THE GRADED PRIMARY SPECTRUM

### Proof.

(i)  $\Rightarrow$  (ii) Assume that every graded primary ideal is a graded maximal ideal in R. Since every graded maximal ideal is graded prime, we get  $Spec_g(R)$  coincides with  $p.Spec_g(R)$ . Since, R is a graded zero dimensional ring. By Lemma 3.16,  $Spec_g(R)$  is a  $T_2$ -space, and so is  $p.Spec_g(R)$ .

 $(ii) \Rightarrow (iii) \Rightarrow (iv)$  Clear.

 $(iv) \Rightarrow (i)$  Let  $p.Spec_g(R)$  be a  $T_0$ - space and  $q \in p.Spec_g(R)$ . Then, we have  $Cl(\{q\}) = p-V_R^g(q) = p-V_R^g(Gr(q)) = Cl(\{Gr(q)\})$ . Then, q = Gr(q) by Proposition 3.15. Hence q is a graded prime ideal by Lemma 3.1.

**DEFINITION 3.18.** Let R be a G-graded ring. The graded Zariski primary radical of a graded ideal I of R, denoted by Zp-Gr(I), is the intersection of all members of p- $V_R^g(I)$  for the Zariski topology, that is, Zp- $Gr(I) = \bigcap_{q \in p$ - $V_R^g(I)}q = \bigcap \{q \in p.Spec_g(R) \mid I \subseteq Gr(q)\}$ . We say, a graded ideal I is a  $Z_P$ -radical ideal if I = Zp-Gr(I).

A topological space X is said to be Noetherian if the open subsets of X satisfy the ascending chain condition (or if every descending chain of closed subsets is stationary (see [2]).

**PROPOSITION 3.19.** Let R be a G-graded ring with  $\dim_g(R) = 0$ . Then, R has Noetherian graded primary spectrum if and only if the ACC for the graded Zariski primary radical ideals of R holds.

Proof. Suppose the ACC holds for the graded Zariski primary radical ideals of R.Let p- $V_R^g(I_1) \supseteq p$ - $V_R^g(I_2) \supseteq \ldots$  be a descending chain of closed subsets p- $V_R^g(I_i)$  of p.Spec<sub>g</sub>(R), where  $I_i$  is a graded ideal of R. Then,  $\Im(p$ - $V_R^g(I_1)) = Zp$ - $Gr(I_1) \subseteq \Im(p$ - $V_R^g(I_2)) = Zp$ - $Gr(I_2) \subseteq \ldots$  is an ascending chain of graded Zariski primary radical ideals of R. So, by assumption, there exists  $n \in \mathbb{N}$  such that for all  $i \in \mathbb{N}$ , Zp- $Gr(I_n) = Zp$ - $Gr(I_{n+i})$ . Now, by Proposition 3.13, p- $V_R^g(I_n) = p$ - $V_R^g(Zp$ - $Gr(I_n)) = V_R^g(Zp$ - $Gr(I_{n+i})) = p$ - $V_R^g(I_{n+i})$ . Thus, R has Noetherian graded primary spectrum. Conversely, suppose that R has a Noetherian graded primary radical ideals of R. Thus, p- $V_R^g(I_1) \supseteq p$ - $V_R^g(I_1) \supseteq \ldots$  is a descending chain of closed subsets p- $V_R^g(I_n) = p$ - $V_R^g(I_{n+i})$ . Therefore,  $I_n = Zp$ - $Gr(I_n) =$  $\Im(p$ - $V_R^g(I_n)) = \Im(p$ - $V_R^g(I_n) = p$ - $V_R^g(I_{n+i})$ . Therefore,  $I_n = Zp$ - $Gr(I_n) =$  $\Im(p$ - $V_R^g(I_n)) = \Im(p$ - $V_R^g(I_{n+i})) = Zp$ - $Gr(I_{n+i}) = I_{n+i}$ . Therefore, the ACC for the graded Zariski primary radical ideals of R holds.

#### REFERENCES

- AL-ZOUBI, K.—QARQAZ, F.: An intersection condition for graded prime ideals, Boll. Unione Mat. Ital. 11 (2018), 483–488.
- [2] MUNKRES, J. R.: Topology. A a first course, Prentice-Hall, Inc. XVI, Englewood Cliffs, New Jersey, 1975.
- [3] NÅSTÅSESCU, C.—VAN OYSTAEYEN, F.: Graded and Filtered Rings and Modules. In: Lecture Notes in Math., Vol. 758, Springer-Verlag, Berlin, 1979.
- [4] \_\_\_\_\_ Graded Ring Theory. In: textslMathematical Library, Vol. 28, North-Holand Publishing Co., Amsterdam-New York, 1982.
- [5] \_\_\_\_\_ Methods of Graded Rings. In: Lecture Notes in Math., Vol. 1836, Springer-Verlag, Berlin, 2004.
- [6] OZKIRIŞCI, N. A.—KILIÇ, Z.—KOÇ, S.: A note on primary spectrum over commutative rings, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 64 (2018), no. 1, 111–119.
- [7] OZKIRISCI, N. A.—ORAL, K. H.—TEKIR, U.: Graded prime spectrum of a graded module, Iran J. Sci. Technol. 37A3 (2013), 411–420.
- [8] REFAI, M.: On properties of G-spec(R), Sci. Math. Jpn. 53 (2001), no. 3,411-415.
- [9] REFAI, M.—AL-ZOUBI, K.: On graded primary ideals, Turkish. J. Math. 28 (2004), no. 3, 217–229.
- [10] REFAI, M.—HAILAT, M.—OBIEDAT, S.: Graded radicals on graded prime spectra, Far East J. of Math. Sci. (FJMS) Spec. Vol., Part I, (2000), 59–73.
- [11] UREGEN, R. N.—TEKIR, U.—ORAL, K. H.: On the union of graded prime ideals, 14, no. 1, 114–118; https://doi.org/10.1515/phys-2016-0011.

Received February 28, 2019

Khaldoun Al-Zoubi Department of Mathematics and Statistics Jordan University of Science and Technology P.O.Box 3030 Irbid 22110 JORDAN E-mail: kfzoubi@just.edu.jo

Malik Jaradat Department of Mathematics The international School of Choueifat (MHS-AlDaid) P.O.Box 66973 Alain UAE E-mail: mjaradat@mhs.sabis.net