s sciendo

THE ZARISKI TOPOLOGY ON THE GRADED PRIMARY SPECTRUM OVER GRADED COMMUTATIVE RINGS

Khaldoun Al-Zoubi[∗] — Malik Jaradat

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, JORDAN

Department of Mathematics, The international School of Choueifat (MHS-AlDaid), Alain, UAE

ABSTRACT. Let *G* be a group with identity *e* and let *R* be a *G*-graded ring. A proper graded ideal *P* of *R* is called *a graded primary ideal* if whenever $r_g s_h \in P$, we have $r_q \in P$ or $s_h \in Gr(P)$, where $r_q, s_q \in h(R)$. The graded primary spectrum $p.Spec_g(R)$ is define[d to](#page-9-0) be the set of all gra[de](#page-9-1)[d p](#page-9-2)[rim](#page-9-3)ary ideals of *R*. In this paper, we define a topology on $p\text{.}Spec_q(R)$, called Zariski topology, which is analogous to that for $Spec_{q}(R)$, and investigate several properties of the topology.

1. Intr[od](#page-9-4)uction

The concept of graded prime ideal was introduced by M. R e f a i, M. H a i l a t and S. O b i e d a t in $[10]$ and studied in $[1, 8, 11]$.

Zariski topology on the graded prime spectrum of grade[d](#page-9-5) commutative rings have been already studied in [7,8,10]. These results will be used in order to obtain the [ma](#page-9-5)in aims of this paper. The notion of primary spectrum was examined as a generalization of prime spectrum in [6]. They showed that the set of primary ideals can be endowed with a topology called the Zariski topology on primary spectrum of R . Graded primary ideals of a commutative graded ring have been introduced and studied by $\text{Re} \, \text{fa}$ i and $\text{Al } -\text{Z}$ ou b i in [9]. These ideals are generalizations of primary ideals in a graded ring. The set of all graded primary ideals and the set of all primary ideals need not be equal in a graded ring (see [9, Example 1.6]).

c 2019 Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 13A02, 16W50.

Keywords: Zariski topology, graded primary spectrum, graded primary ideals. ∗ Corresponding author.

Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

In this paper, we rely on the graded primary ideals and then, we introduce and study a topology on the graded primary spectrum similar to the one defined in [6], and investigate sever[al](#page-9-6) p[rop](#page-9-7)erties [o](#page-9-8)f the topology.

2. Preliminaries

CONVENTION. Throughout this paper, all the rings are commutative with identity. First, we recall some basic properties of graded rings which will be used in the sequel. We refer to [3], [4] and [5] for these basic properties and more information on graded rings. Let G be a group with identity e . A ring R is called graded (or more precisely, G-graded) if there exists a family of subgroups $\{R_g\}$ of R such that $R = \bigoplus_{g \in G} R_g$ (as abelian groups) indexed by the elements $g \in G$, and $R_qR_h \subseteq R_{gh}$ for all $g, h \in G$. The summands R_q are called homogeneous components, and elements of these summands are called homogeneous elements. If $r \in R$, then r can be written uniquely $r = \sum_{g \in G} r_g$, where r_g is the component of r in R_q . Also, we write $h(R) = \bigcup_{q \in G} R_q$. Let

$$
R = \underset{g \in G}{\oplus} R_g \quad \text{be a } G\text{-graded ring.}
$$

An i[dea](#page-9-0)l I of R is said to be a graded ideal if

$$
I = \bigoplus_{g \in G} (I \cap R_g) := \bigoplus_{g \in G} I_g.
$$

An ideal of a graded ring need not be graded.

L[et](#page-9-9) [R](#page-9-2) [be](#page-9-0) a G-graded ring. A proper graded ideal I of R is said to be *a graded prime ideal* if whenever $r_g s_h \in I$, we have $r_g \in I$ or $s_h \in I$, where $r_g, s_h \in h(R)$ (see [10]).

Let $Spec_q(R)$ denote the set of all graded prime ideals of R. For each graded ideal I of R, t[he](#page-9-0) graded variety of I is the set $V_R^g(I) = \{P \in Spec_g(R) | I \subseteq P\}$.
Then the set $\mathcal{L}^g(R) = IV^g(I) | I$ is a graded ideal of R) satisfying the axioms for The[n,](#page-9-0) [th](#page-9-0)e set $\xi^g(R) = \{V_R^g(I) | I$ is a graded ideal of R satisfying the axioms for
the closed sets of a topology on *Spec* (R) called the Zariski topology on *Spec* (R) the closed sets of a topology on $Spec_q(R)$ called the Zariski topology on $Spec_q(R)$ (see [7, 8, 10]).

The graded radical of I, denoted by $Gr(I)$, is the set of all $r = \sum_{g \in G} r_g \in R$ such that for each $g \in G$ there exists $n_g \in \mathbb{N}$ with $r_g^{n_g} \in I$. Note that if r is a homogeneous element, then $r \in Gr(I)$ if and only if $r^n \in I$ for some $n \in \mathbb{N}$ (see [\[10](#page-9-5)]). In [10], it is shown that $Gr(I)$ is the intersection of all the graded prime ideals of R containing I.

A graded ideal I of R is said to be a graded maximal ideal of R if $I \neq R$ and if *J* is a graded ideal of R such that $I \subseteq J \subseteq R$, then $I = J$ or $J = R$.

A proper graded ideal I of a G-graded ring R is said to be *a graded primary ideal* if whenever $r_q s_h \in I$, we have $r_q \in I$ or $s_h \in Gr(I)$ where $r_q, s_q \in h(R)$ (see [9]). Let $p.Spec_{q}(R)$ denote the set of all graded primary ideals of R.

THE ZARISKI TOPOLOGY ON THE GRADED PRIMARY SPECTRUM

3. Results

DEFINITION 3.1. Let R be a G-graded ring and $p.Spec_g(R)$ be the set of all method primary ideals of R. We define an add primary invited for any subset E. graded primary ideals of R . We define graded primary variety for any subset E of R as $p\text{-}V_R^g(E) = \{q \in p.Spec_{g}(R) : E \subseteq Gr(q)\}.$

LEMMA 3.2 ([9]). Let Q be a graded primary ideal of a G-graded ring R. *Then,* $P = Gr(Q)$ *is a graded prime ideal of R, and we say that* Q *is a graded* G*-*P*-primary.*

PROPOSITION 3.3. Let R be a G-graded ring and I and J be two graded ideals *of* R*. Then, the following hold:*

- (i) If $I \subseteq J$ *, then* p - $V_R^g(J) \subseteq p$ - $V_R^g(I)$ *.*
- (ii) *If* $E \subseteq R$ *and I is the graded ideal of* R *generated by* $h(E)$ *, then* p - $V_R^g(E) =$
 $h \cdot V^g(L) = n V^g(C_R(L))$ $p\text{-}V_R^g(I) = p\text{-}V_R^g\big(Gr(I)\big).$
 $K^g(\alpha) = \alpha(f)$
- (iii) $p\text{-}V_R^g(0) = p.Spec_g(R)$ *and* $p\text{-}V_R^g(R) = \phi$.
- (iv) Let ${E_{\alpha}}_{\alpha \in \Delta}$ *be a family of subsets of* R *and* I_{α} *be graded ideals of* R, *then* p -V_B($\bigcup_{\alpha \in \Delta} E_{\alpha}$) = $\bigcap_{\alpha \in \Delta} p$ -V_B(E_{α}). In particular, p -V_B($\sum_{\alpha \in \Delta} I_{\alpha}$) = $\bigcap_{\alpha \in \Delta} p$ -
V⁹(I) $V_R^g(I_\alpha)$.
- (v) For every pair I and J of graded ideals of R, we have $p-V_R^g(I \cap J) = p-V_R^g(I \cap J) nV^g(I) + nV^g(I)$ $V_R^g(IJ) = p \cdot V_R^g(I) \cup p \cdot V_R^g(J)$.

P r o o f.

(i) Let $I, J \subseteq R$ with $I \subseteq J$. If $q \in p-V_R^g(J)$, then $J \subseteq Gr(q)$, and so $I \subseteq Gr(q)$,
it follows that $q \in n-V_g^g(I)$ Hence $nV_g^g(I) \subseteq nV_g^g(I)$ it follows that $q \in p-V_R^g(I)$. Hence, $p-V_R^g(J) \subseteq p-V_R^g(I)$.

(ii) Let $E \subseteq R$ and I be the graded ideal of R generated by $h(E) \subseteq p-V_R^g(I) \subseteq$
 $p-V_R^g(E)$ if $g \in pV_R^g(E)$ then $E \subseteq Gr(g)$ and so $h(E) \subseteq Gr(g)$ which im $p\text{-}V_R^g(E)$. If $q \in p\text{-}V_R^g(E)$, then $E \subseteq Gr(q)$, and so $h(E) \subseteq Gr(q)$, which im-
plies $I \subseteq Gr(q)$ i.e. $q \in r\text{-}V_g^g(E)$ so $r\text{-}V_g^g(E) \subseteq r\text{-}V_g^g(E)$. Thus $r\text{-}V_g^g(E) =$ plies $I \subseteq Gr(q)$, i.e., $q \in p-V_R^g(I)$, so $p-V_R^g(E) \subseteq p-V_R^g(I)$. Thus, $p-V_R^g(E) =$
 $pV_R^g(I)$. Now since $I \subseteq Gr(I)$ by part (i), $pV_R^g(Cr(I)) \subseteq pV_R^g(I)$. Now $p\text{-}V_R^g(I)$. Now, since $I \subseteq Gr(I)$, by part (i), $p\text{-}V_R^g(Gr(I)) \subseteq p\text{-}V_R^g(I)$. Now,
let $g \subseteq n V^g(Gr(I))$. Then $I \subseteq Gr(I) \subseteq Gr(g)$, which implies $g \subseteq n V^g(I)$. let $q \in p-V_R^g(Gr(I))$. Then, $I \subseteq Gr(I) \subseteq Gr(q)$, which implies $q \in p-V_R^g(I)$,
so $n V_g^g(C_R(I)) \supset n V_g^g(I)$. Hence $n V_g^g(C_R(I)) \subseteq n V_g^g(I)$. Thus, $n V_g^g(E)$ so $p-V_R^g(Gr(I)) \supseteq p-V_R^g(I)$. Hence, $p-V_R^g(Gr(I)) \subseteq p-V_R^g(I)$. Thus, $p-V_R^g(E) =$
 $\frac{V^g(I)}{g(I)} = \frac{V^g(I)}{g(I)} = \frac{V^g(I)}{g(I)}$ $p\text{-}V_R^g(I) = p\text{-}V_R^g\big(Gr(I)\big).$

(iii) Since $0 \in q \subseteq Gr(q)$ for all graded primary ideals q of R, we have p- $V_R^g(0) = p.Spec_g(R)$ and $p-V_R^g(R) = \phi$.

Let $\{E_\alpha : \alpha \in \Delta\}$ be any family of subsets of R. Clearly, $E_\beta \subseteq \bigcup_{\alpha \in \Delta} E_\alpha$ for all $\beta \in \Delta$ and hence, by Part (i), $p-V_R^g(\cup_{\alpha \in \Delta} E_\alpha) \subseteq p-V_R^g(E_\beta)$ for all $\beta \in \Delta$.
Thus $n V^g(\cup_{\alpha \in \Delta} E_\alpha) \subseteq n V^g(E_\beta)$ Conversely let $g \in \Omega$ at $n V^g(E_\beta)$. Thus, $p-V_R^g(\cup_{\alpha \in \Delta} E_{\alpha}) \subseteq \cap_{\alpha \in \Delta} p-V_R^g(E_{\alpha})$. Conversely, let $q \in \cap_{\alpha \in \Delta} p-V_R^g(E_{\alpha})$.
Then, $q \in p-V_R^g(E_{\alpha})$ for all $\alpha \in \Delta$, it follows that $E_{\alpha} \subseteq Gr(q)$ for all $\alpha \in \Delta$.
So then $F \subseteq Gr(q)$ is $q \in n V^g(1, ..., F)$. He So, $\bigcup_{\alpha \in \Delta} E_{\alpha} \subseteq Gr(q)$, i.e., $q \in p\text{-}V_R^g(\bigcup_{\alpha \in \Delta} E_{\alpha})$. Hence, $p\text{-}V_R^g(\bigcup_{\alpha \in \Delta} E_{\alpha}) \supseteq \bigcap_{\alpha \in \Delta}$
 $p\text{-}V_R^g(F)$. Therefore, $p\text{-}V_R^g(1)$, $p \in R$.) $= Q$, $p \in \mathcal{N}_R^g(F)$ $p\text{-}V_R^g(E_\alpha)$. Therefore, $p\text{-}V_R^g(\cup_{\alpha\in\Delta}E_i) = \cap_{\alpha\in\Delta}p\text{-}V_R^g(E_\alpha)$.

Let I, J be any two graded ideals of R. Since $IJ \subseteq I \cap J \subseteq I$ and $IJ \subseteq I \cap J \subseteq J$, by part (i), $p\text{-}V_R^g(I) \subseteq p\text{-}V_R^g(I \cap J)$ and $p\text{-}V_R^g(J) \subseteq p\text{-}V_R^g(I \cap J)$. Hence, $p\text{-}V_R^g(I) \cup p\text{-}V_R^g(J) \subseteq p\text{-}V_R^g(I \cap J) \subseteq p\text{-}V_R^g(IJ)$. Let $q \in p\text{-}V_R^g(IJ)$. Then $IJ \subseteq Gr(q)$.
By Lemma 3.1, $Gr(q)$ is a graded prime id $I \subseteq Gr(q)$ or $J \subseteq Gr(q)$. Hence $q \in p-V_R^g(I)$ or $q \in p-V_R^g(J)$, it follows that $q \in pV_R^g(J)$ or $q \in pV_R^g(J)$ $q \in p-V_R^g(I) \cup p-V_R^g(J)$. This implies that $p-V_R^g(IJ) \subseteq p-V_R^g(I) \cup p-V_R^g(J)$.
Therefore, $p-V_R^g(I \cap J) = p-V_R^g(IJ) = p-V_R^g(I) \cup p-V_R^g(J)$.

DEFINITION 3.4. Let R be a G-graded ring. Since $p \text{-} \eta^g(R) = \{ p \text{-}V_R^g(I) \mid I \}$ is a graded ideal of R is closed under finite union, the family $p \rightarrow \eta^g(R)$ satisfies the axioms of topological space for closed sets. So, there exists a topology on p. $Spec_q(M)$ called the Zariski topology and denoted by $p-\xi^q(R)$.

We note that, since any graded prime ideal is graded primary and equal to its graded radical, the space $Spec_q(R)$ is in fact a subspace of $p.Spec_q(R)$.

PROPOSITION 3.5. Let R be a G-graded ring. For any homogeneous element r, *the set* $GX_{r}^{p} = p(Spec_{g}(R))\cdot p\cdot V_{R}^{g}(r)$ *is open in* $p.Spec_{g}(R)$ *and the family* $fGXP \cdot r \in h(R)$, *is the hasis for the Zariski topology on* n Spec₍ R) $\{GX_r^p : r \in h(R)\}\$ is the basis for the Zariski topology on $p.Spec_{g}(R)$.

P r o o f. Assume that U is any open set in p. $Spec_q(R)$. Thus, $U = p.Spec_q(R)\pmb{\cdot}$ $V_R^g(I)$ for some graded ideal I of R. Notice that $I = \bigcup_{g \in G} I_g = \langle h(I) \rangle$.
Honce $n V^g(I) = n V^g(h(I)) = 0$ we $n V^g(x)$. So $I = \bigcup_{g \in G} I_g$ spec $(R) \setminus n$. Hence, $p-V_R^g(I) = p-V_R^g(h(I)) = \bigcap_{r \in h(I)} p-V_R^g(r)$. So, $U = \bigcup_{r \in h(I)} (p.Spec_g(R)\setminus p-V_R^g(r))$ $V_R^g(r) = \bigcup_{r \in h(I)} G X_r^{\overline{p}}$. This implies that $\{G X_r^{\overline{p}} : r \in h(R)\}$ is a basis for the Zariski topology on n Spec (R) Zariski topology on $p.Spec_{a}(R)$.

PROPOSITION 3.6. Let R be a G-graded ring. Then the followings hold for any r, $s \in h(R)$ and the open sets GX_{r}^{p} and GX_{s}^{p} .

- (i) $Gr(rR) = Gr(sR)$ *if and only if* $GX_r^p = GX_s^p$.
(ii) $GY_r^p = GXY_s^p$.
- (ii) $GX_{rs}^p = GX_r^p \cap GX_s^p.$
- (iii) $GX_{r}^{p} = \phi$ $GX_{r}^{p} = \phi$ $GX_{r}^{p} = \phi$ *if [a](#page-9-5)nd only if* r *is a homogeneous nilpotent.*
- (iv) GX_{r}^{p} *is quasi compact.*

P r [o o](#page-9-5) f. (i) Suppose that $GX_{r}^{p} = GX_{s}^{p}$. Then, $p-V_{R}^{q}(rR) = p-V_{R}^{q}(sR)$. Let q he a graded primary be a graded prime ideal of R such that $rR \subseteq q$. Since q is a graded primary and $rR \subseteq q \subseteq Gr(q)$, we get $q \in p\text{-}V_R^g(rR) = p\text{-}V_R^g(sR)$. Then, $sR \subseteq Gr(q)$.
Since g is graded prime ideal by [9] Proposition 1.2(4)] we get $Gr(q) = q$. Thus Since q is graded prime ideal, by [9, Proposition 1.2(4)], we get $Gr(q) = q$. Thus, $sR\subseteq q$. Hence, $Gr(sR)\subseteq Gr(rR)$. Similarly we can show that $Gr(rR)\subseteq Gr(sR)$. Therefore, $Gr(rR) = Gr(sR)$. Conversely, assume that $Gr(rR) = Gr(sR)$. Let $q \in p-V_R^g(rR)$. Then, $rR \subseteq Gr(q)$. Hence, $sR \subseteq Gr(sR) = Gr(rR) \subseteq Gr(q)$
by [0] Proposition 1.2] Thus $q \in n V^g(sR)$ so $n V^g(rR) \subseteq n V^g(sR)$ and honce by [9, Proposition 1.2]. Thus, $q \in p-V_R^g(sR)$, so $p-V_R^g(rR) \subseteq p-V_R^g(sR)$ and hence $C X^p \subset C X^p$. Similarly we can show that $C X^p \subset C X^p$. Thus, $C X^p = C X^p$. $GX_s^p \subseteq GX_r^p$. Similarly, we can show that $GX_r^p \subseteq GX_s^p$. Thus, $GX_r^p = GX_s^p$.

THE ZARISKI TOPOLOGY ON THE GRADED PRIMARY SPECTRUM

(ii) Let $q \in G X_p^p \cap G X_s^p$ for the open sets $G X_p^p$ and $G X_s^p$. Then, $r \notin Gr(q)$
and $e \notin Gr(q)$. By Lamma 3.1, we get $r \notin Gr(q)$, it follows that $q \in G Y_p^p$ and $s \notin Gr(q)$. By Lemma 3.1, we get $rs \notin Gr(q)$. It follows that $q \in GX_{rs}^p$.
Thus $GYP \cap GYP \subseteq GXP$ For reverse inclusion assume that $q \in GXP$. Then Thus, $GX_{r}^{p} \cap GX_{s}^{p} \subseteq GX_{rs}^{p}$. For reverse inclusion, assume that $q \in GX_{rs}^{p}$. Then,
rs. $d \; Cr(a)$, namely $r \notin Cr(a)$, and $s \notin Cr(a)$. It follows that $q \in GX_{rs}^{p}$ and $rs \notin Gr(q)$, namely $r \notin Gr(q)$ and $s \notin Gr(q)$. It follows that $q \in GX_r^p$ and $q \in GYP \cap GYP \cap GYP$ $q \in GX_s^p$ So, $GX_{rs}^p \subseteq GX_r^p \cap GX_s^p$.

(iii) Let $r \in h(R)$. Then, $GX_r^p = \phi$ if and only if $p\text{-}V_R^q(r) = p\text{.}Spec_g(R)$ if and only if $r \in g$ for all graded primary ideals g of R if and only if r belongs and only if $r \in q$ for all graded primary ideals q of R if and only if r belongs to the intersection of all graded primary ideals if and only if r belongs to the intersection of all graded prime ideals if and only if r belongs to the graded nilradical of R if and only if r is a homogeneous nilpotent.

(iv) Let $r \in h(R)$. Assume that $\{GX_{s_{\alpha}}^p : \alpha \in \Lambda\}$ is an open cover of GX_{r}^p , for each $\alpha \in \Lambda$ and $s_{\alpha} \in h(R)$. Then, $GX_{r}^{p} \subseteq \bigcup_{\alpha \in \Lambda} GX_{s_{\alpha}}^{p} = \bigcup_{\alpha \in \Lambda} (p.Spec_{g}(R)\setminus p V_R^g(s_\alpha) = p.Spec_g(R) \setminus \bigcap_{\alpha \in \Lambda} p-V_R^g(s_\alpha) = p.Spec_g(R) \setminus p-V_R^g(\bigcup_{\alpha \in \Lambda} s_\alpha)$, i.e.,
 $V_g^g(\bigcup_{\alpha \in \Lambda} s_\alpha) \subset P_V^g(\bigcap_{\alpha \in \Lambda} s_\alpha) = pV_g^g(\bigcap_{\alpha \in \Lambda} s_\alpha)$, $\bigcap_{\alpha \in \Lambda} pV_R^g(\bigcup_{\alpha \in \Lambda} s_\alpha)$ $p-V_R^g(\cup_{\alpha\in\Lambda} s_\alpha) \subseteq p-V_R^g(r) = p-V_R^g$
 $r^n \in (1-\Lambda s \text{ N})$ for some $n \in \mathbb{N}$ $(Gr(rR)).$ So, $Gr(rR) \subseteq Gr(\cup_{\alpha \in \Lambda} \{s_{\alpha}\})$. Thus, $r^n \in (\bigcup_{\alpha \in \Lambda} \{s_\alpha\})$ for some $n \in \mathbb{N}$. There exists a finite subset $\Delta \subseteq \Lambda$ such that $r^n = \sum_{i \in \Delta} t_i s_i$, for any $t_i \in h(R)$ and $i \in \Delta$. Thus, $(rR)^n \subseteq (\{s_i : i \in \Delta\})$, that
is $n V^g(t_{\alpha}, \ldots, \Delta)) \subseteq n V^g(x^n) = n V^g(x)$. Hence $n V^g(\sum_{i \in \Delta} (s_i)) = 0$ is, $p-V_R^g({s_i : i \in \Delta}) \subseteq p-V_R^g(r^n) = p-V_R^g(r)$. Hence, $p-V_R^g(\sum_{i \in \Delta}(s_i)) = \cap_{i \in \Delta} p$
 $V_g^g(s) \subseteq p-V_R^g(r)$. So n Spec $(R) = pV_R^g(r) \subseteq p$. Spec $(R) = \cap_{i \in \Delta} p-V_R^g(s) = \emptyset$ $V_R^g(s_i) \subseteq p-V_R^g(r)$. So, p.Spec_g(R) – p- $V_R^g(r) \subseteq p$.Spec_g(R) – $\cap_{i \in \Delta} p-V_R^g(s_i) =$
 $\cup_{k \in \Delta} (pS_{n}e_{k}(R) - pS_{n}e_{k}(R)) = \cup_{k \in \Delta} C_{k}^{y}$. Thus, C_{k}^{y} C, $\cup_{k \in \Delta} C_{k}^{y}$. Since Δ $\bigcup_{i\in\Delta}(p.Spec_{g}(R)-p-V_{R}^{g}(s_{i}))=\bigcup_{i\in\Delta}GX_{s_{i}}^{p}$. Thus, $GX_{r}^{p}\subseteq\bigcup_{i\in\Delta}GX_{s_{i}}^{p}$. Since Δ
is finite GXP is a quasi compact is finite, GX_{r}^{p} is a quasi compact. \Box \Box

COROLLARY 3.7. Let R be a G-graded ring. Then, $p.Spec_g(R)$ is quasi-compact.

P r o o f. It can be seen directly from Proposition 3.6(iv).

DEFINITION 3.8. Let R be a G-graded ring. A family of graded ideals $\{P_{\alpha}\}_{{\alpha}\in{\Lambda}}$ satisfies condition (A) if for each $r_g \in h(R)$, there is $n \in \mathbb{N}$ such that for all $\alpha \in \Lambda$, if $r_g \in Gr(P_\alpha)$, then $r_g^n \in P_\alpha$.

 3.9 *Let* R *be a* G*-graded ring. Then, the following statements are equivalent:*

(i) *A family* $\{P_{\alpha}\}_{{\alpha \in \Lambda}}$ *of graded ideals in R satisfies condition* (*A*)*.*

(ii) *For each (countable) subset* $\Delta \subset \Lambda$, $Gr(\bigcap_{\alpha \in \Delta} P_{\alpha}) = \bigcap_{\alpha \in \Delta} Gr(P_{\alpha})$.

P r o o f.

(i)⇒(ii) Assume that $\{P_{\alpha}\}_{{\alpha \in \Lambda}}$ satisfies condition (A) and $r_g \in \bigcap_{{\alpha \in \Lambda}} Gr(P_{\alpha}) \cap$ $h(R)$, then there exists $n \in \mathbb{N}$ such that $r_g^n \in P_\alpha$ for each $\alpha \in \Delta$. So, $r_g \in C_n(\Omega)$, P and $\alpha \in \Delta$. So, $r_g \in C_n(\Omega)$ $Gr(\bigcap_{\alpha\in\Delta}P_\alpha)$. This yields that $\bigcap_{\alpha\in\Delta}Gr(P_\alpha)\subseteq Gr(\bigcap_{\alpha\in\Delta}P_\alpha)$. The other inclusion always holds.

(ii)⇒(i) Given $r_g \in h(R)$, let $\Delta = {\alpha \in \Lambda : r_g \in Gr(P_\alpha)}$. Then, the displayed equation says that there is n such that $r_g^n \in P_\alpha$ for all $\alpha \in \Delta$. Finally, we
note that if the displayed equation foils for some subset $\Delta \subset \Delta$, then it foils note that if the displayed equation fails for some subset $\Delta \subset \Lambda$, then it fails

for a countable subset of Δ . Indeed, if $r_g \notin Gr(\bigcap_{\alpha \in \Delta} P_\alpha)$, then for each n there exists $\alpha_n \in \Delta$ such that $r_g^n \notin P_{\alpha_n}$, hence $r_g \notin Gr(\bigcap_{n=1}^{\infty} P_{\alpha_n})$.

 3.10 ([5]) *Let* R *be a* G*-graded ring and* M *a graded* R*-module. Then,* R *has at least one graded maximal ideal. In particular, if* I *is a proper graded ideal of* R, then there exists a graded maximal ideal Q *of* R with $I \subseteq Q$.

Recall that the dimension of a graded ring R denoted by $dim_q(R)$ is defined to be : $\sup\{n \in \{0, 1, 2, \ldots\}$: there exists a strict chain of graded prime ideals of R of the length n }.

 3.11 *Let*R *be a* G*-graded ring. Then, the following statements are equivalent:*

- (i) $dim_q(R)=0$ *.*
- (ii) $Rr_g + \bigcup_{n=1}^{\infty} (0 : R r_g^n) = R$ *for every* $r_g \in h(R)$ *.*
- (iii) *For every* $r_g \in h(R)$ *, there exists* $n \in \mathbb{N}$ *such that* $Rr_g^n = Rr_g^{n+1}$ *.*

P r o o f.

(i) \Rightarrow (ii) Assume that $dim_g(R) = 0$ and $Rr_g + \bigcup_{n=1}^{\infty} (0 : R r_g^n)$ is a proper graded
ideal of R. Then it is contained in a graded prime ideal B of B by Lemma 3.10. ideal of R . Then, it is contained in a graded prime ideal P of R by Lemma 3.10. Look at the multiplicative system $U = \{r_g^n s_h : n = 0, 1, 2, \dots \text{ and } s_h \in h(R) \setminus P\}.$
Now $0 \notin U$ because $s_h \notin P$ and $\bigcup_{n=0}^{\infty} (0 \in \mathbb{Z}^n) \subseteq P$. So, there is a graded prime Now, $0 \notin U$ because $s_h \notin P$ and $\bigcup_{n=1}^{\infty} (0 : R r_g^n) \subseteq P$. So, there is a graded prime
ideal P' of P that misses U Sings $U \supseteq F(P) \setminus P$ we have $P' \subseteq P$. Moreover ideal P' of R that misses U. Since $U \supseteq h(R) \backslash P$, we have $P' \subseteq P$. Moreover, $r_g \in P \backslash P'$, so $P' \neq P$. Thus, P' is not graded maximal, i.e., $dim_g(R) \neq 0$, which is a contradiction.

 (i) \Rightarrow (i) We prove the contrapositive of the statement. Suppose there exist distinct graded prime ideals $P' \subset P$ in R and let $r_g \in P \cap h(R) \backslash P'$. Then, $\cup_{n=1}^{\infty} (0:_{R} r_{g}^{n}) \subset P'$ and $Rr_{g} \subset P$. So, $Rr_{g} + \cup_{n=1}^{\infty} (0:_{R} r_{g}^{n}) \subset P$, i.e., $Rr_{g} + \cup_{n=1}^{\infty} (0:_{R} r_{g}^{n})$ is a proper graded ideal of P $\cup_{n=1}^{\infty} (0:R r_g^n)$ is a proper graded ideal of R.

(ii)⇒(iii) If r_g satisfies (ii), then $t_h r_g + s_\lambda = 1$ where $s_\lambda r_g^n = 0$ and $t_h, s_\lambda \in h(R)$.
So the $n^{n+1} = r_h$. This vial depth $R_n r_h = R_n r_h + 1$. So, $t_h r_g^{n+1} = r_g^n$. This yields that $Rr_g^n = Rr_g^{n+1}$.

(iii)⇒(ii) If r_g satisfies (iii), then there exists $t_h \in h(R)$ such that $r_g^n = t_h r_g^{n+1}$,
honeo r_g^{n+1} , t_h , $r_h > 0$, It follows that $1 + t_h \in (0, t_h)^n$, and hones $1 \in$ hence $r_g^n(1 - t_h r_g) = 0$. It follows that $1 - t_h r_g \in (0 : r_g^n)$ and hence $1 \in$
 $B_{r+1} \cup \infty$ (0 : r_g^n) Thus $B = B_{r+1} \cup \infty$ (0 : r_g^n) $Rr_g + \bigcup_{n=1}^{\infty} (0 :_R r_g^n)$. Thus, $R = Rr_g + \bigcup_{n=1}^{\infty} (0 :_R r_g^n)$ \bigcap_{g}). \Box

PROPOSITION 3.12. Let R be a G-graded ring. Then, the following statements *are equivalent:*

- (i) $dim_q(R)=0$ *.*
- (ii) *Condition* (A) *holds for the family of all graded ideals of* R*.*
- (iii) *Condition* (A) *holds for the family of all graded primary ideals of* R*.*

P r o o f.

(i) \Rightarrow (ii) Suppose that $dim_q(R) = 0$ and $r_q \in h(R)$. By Lemma 3.11, there exists $n \in \mathbb{N}$ such that $R r_g^n = R r_g^{n+1}$. If *I* is any graded ideal and $r_g \in Gr(I)$, then $r_g^m \in I$ for some m , hence $r_g^n \in I$ also. Thus, (*A*) holds for the family of all graded ideals of *R* graded ideals of R.

 $(ii) \Rightarrow (iii)$ Clear.

(iii) \Rightarrow (i) Suppose that $dim_q(R) > 0$. Let I be a graded prime ideal of R that is not graded maximal. The graded primary ideals of R/I are in one-to-one correspondence with the graded primary ideals of R that contain I , and this correspondence respects intersections and graded radicals, so we may assume that R is a graded integral domain. Let r_q be a nonzero nonunit of $h(R)$ and let P be a graded minimal prime of the graded ideal Rr_g . For each positive integer n, let $P'_n = R_P r^n \cap R = \{r \in R : s_h r \in R r^n \text{ for some } s_h \in h(R) \backslash P\}$. Each P'_n is
graded P primary hange $\bigcap_{r=0}^{\infty} C_r (P') = P$. To show that $r \notin C_r (\bigcap_{r=0}^{\infty} P')$. graded P-primary, hence $\bigcap_{n=1}^{\infty} Gr(P'_n) = P$. To show that $r_g \notin Gr(\bigcap_{n=1}^{\infty} P'_n)$,
it suffices to show that $r_g^{n-1} \notin P'_n$. Suppose, by way of contradiction, that $r_g^{n-1} \in P'_n$. Then, $s_h r_g^{n-1} \in R r_g^n$ for some $s_h \in h(R) \backslash P$, so $s_h \in R r_g \subset P$ because R is a graded integral domain, a contradiction. Thus, $r_g \notin Gr(\bigcap_{n=1}^{\infty} P'_n)$. This violds that $Gr(\bigcap_{n=1}^{\infty} P') \neq Gr(\bigcap_{n=1}^{\infty} P')$. By Lamma 3.9, we get a contradiction yields that $Gr(\bigcap_{n=1}^{\infty} P'_n) \neq Gr(\bigcap_{n=1}^{\infty} P'_n)$. By Lemma 3.9, we get a contradiction. Therefore, $dim_q(R)=0.$

Let R be a G-graded ring and let $p.Spec_{q}(R)$ be endowed with the Zariskitopology. Let W be a subset of p. $Spec_q(R)$. We will denote $\cap_{P\in Y}P$ by $\Im(W)$ and the closure of W in $p.Spec_{q}(R)$ by $Cl(W)$.

PROPOSITION 3.13. Let R be a G-graded ring with $\dim_{g}(R) = 0$ and $Y \subseteq$
 $\sum_{n \text{ Since } (R) \text{ where } n} V_{\mathcal{S}}^{g}(\infty(W)) = C(W)$. Hence, W is closed if and only if $p.Spec_{B}(R)$ *. Then,* p - $V_{R}^{g}(\Im(W))$ = $Cl(W)$ *. Hence,* W is closed if and only if $p\text{-}V_R^g(\Im(W))=W.$

Proof. Let $q \in W$. Then, $\Im(W) \subseteq q \subseteq Gr(q)$, it follows that $q \in p-V_R^g(\Im(W))$. Thus, $Y \subseteq p-V_R^g(\Im(W))$. This yields that $Cl(W) \subseteq p-V_R^g(\Im(W))$. For the reverse inclusion, let $p\text{-}V_R^g(I)$ be a closed subset of $p.Spec_g(R)$ including W.
Hence $I \subseteq Gr(a)$ for all $a \in W$. Then $I \subseteq Gr(S(W))$ by Proposition 3.12 Let Hence, $I \subseteq Gr(q)$ for all $q \in W$. Then, $I \subseteq Gr(\mathfrak{F}(W))$ by Proposition 3.12. Let $q' \in p\text{-}V^g_R(\Im(W))$. It follows that $\Im(W) \subseteq Gr(q')$. Hence, $I \subseteq Gr(\Im(W)) \subseteq$ $Gr(q')$, and so $q' \in p-V_R^g(I)$, that is, $p-V_R^g(\Im(W))$ is the smallest closed subset
of n Spec (R) which includes W of $p.Spec_{q}(R)$ which includes W.

PROPOSITION 3.14. Let R be a G-graded ring and $q \in p.Spec_g(R)$. Then, the followings hold. *followings hold:*

- (i) $Cl({q}) = p-V_R^g(q)$.
- (ii) $I \in Cl({q})$ *if and only if* $q \subseteq Gr(I)$ *for any* $I \in p.Spec_{q}(R)$ *.*

P r o o f. (i) Let $W = \{q\}$. Then $Cl(\{q\}) = p\cdot V_R^g(q)$ by Proposition 3.13.
(ii) It is an immediate consequence of (i) (ii) It is an immediate consequence of (i). \Box

PROPOSITION 3.15. Let R be a G-graded ring. Then, p.Spec_g(R) is a T_0 -space
if and only if for any two angeled ideals a sund a sin p Spec (R) p $V^g(x) = p$ *if and only if for any two graded ideals* q_1 *and* q_2 *in* $p.Spec_{g}(R)$ *,* $p-V_{R}^{g}(q_1) = p$ *-*
 $V_{\mathcal{L}}^{g}(q_2)$ *implies that* $q_1 - q_2$ $V_R^g(q_2)$ *implies that* $q_1 = q_2$.

P r o o f. Let $q_1, q_2 \in p.Spec_{q}(R)$. By Proposition 3.14, $Cl({q_1}) = Cl({q_2})$ if and only if $p-V_R^g(q_1) = p-V_R^g(q_2)$ if and only if $q_1 = q_2$. Now, by the fact that a topological space is a T_0 -space if and only if the closures of distinct points are distinct, we conclude that for any graded R-module M, $p.Spec_g(R)$ is a T_0 -space. T_0 -space.

 3.16 *Let* R*be a* G*-graded ring. If every graded prime ideal is graded maximal, that is,* $dim_q(R) = 0$ *, then* $Spec_q(R)$ *is a* T_2 *-space.*

P r o o f. If $|Spec_q(R)| = 1$ or $|Spec_q(R)| = 2$, then $Spec_q(R)$ is a T_2 -space. Now, assume that $|Spec_a(R)| > 2$. Then, we can take three distinct elements in $Spec_g(R)$, say p_1, p_2 , and p_3 . Since every graded prime ideal is graded maximal,

$$
V_R^g(p_1) = \{p_1\}, \quad V_R^g(p_3) = \{p_3\},
$$

$$
V_R^g(p_1p_3) = V_R^g(p_1) \cup V_R^g(p_3) = \{p_1, p_3\} = Spec_g(R) - V_R^g(p_2),
$$

$$
V_R^g(p_2p_3) = V_R^g(p_2) \cup V_R^g(p_3) = \{p_2, p_3\} = Spec_g(R) - V_R^g(p_1)
$$

and

$$
V_R^g(p_2) = \{p_2\} = Spec_g(R) - V_R^g(p_1p_3)
$$

are open sets in $Spec_q(R)$. This implies that

$$
p_1 \in V_R^g(p_1p_3)
$$
 and $p_2 \in V_R^g(p_2)$.

Moreover,

$$
V_R^g(p_1p_3) \cap V_R^g(p_2) = \phi.
$$

PROPOSITION 3.17. Let R be a G-graded ring. Then, the following statements *are equivalent:*

- (i) *Every graded primary ideal is a graded maximal ideal in* R.
- (ii) $p.Spec_{a}(R)$ *is a* T_{2} *-space.*
- (iii) $p.Spec_{q}(R)$ *is a* T_{1} *-space.*
- (iv) $p.Spec_{q}(R)$ *is a* T_{0} *-space.*

THE ZARISKI TOPOLOGY ON THE GRADED PRIMARY SPECTRUM

P r o o f.

 $(i) \Rightarrow (ii)$ Assume that every graded primary ideal is a graded maximal ideal in R. Since every graded maximal ideal is graded prime, we get $Spec_a(R)$ coincides with $p.Spec_{q}(R)$. Since, R is a graded zero dimensional ring. By Lemma 3.16, $Spec_q(R)$ is a T_2 -space, and so is $p.Spec_q(R)$.

 $(ii) \Rightarrow (iii) \Rightarrow (iv)$ Clear.

(iv)⇒(i) Let p.Spec_g(R) be a T_0 - space and $q \in p.Spec_{g}(R)$. Then, we have $Cl({q}) = p-V_R^g(q) = p-V_R^g(Gr(q)) = Cl({Gr(q)})$. Then, $q = Gr(q)$ by Propo-
sition 3.15. Hence g is a graded prime ideal by Lemma 3.1 sition 3.15. Hence q is a graded prime ideal by Lemma 3.1. \Box

DEFINITION 3.18. Let R be a G-graded ring. The graded Zariski primary radical of a graded ideal I of R, denoted by $Zp\text{-}Gr(I)$, is the intersection of all members of $p\text{-}V_R^g(I)$ for [the](#page-9-10) Zariski topology, that is, $Zp\text{-}Gr(I) = \bigcap_{q\in p\text{-}V_R^g(I)} q = \bigcap\{q\in R(\alpha)\}\cup I \subset \bigcap_{q\geq 0} G(q)$. $p.Spec_{g}(R)$ | $I \subseteq Gr(q)$. We say, a graded ideal I is a Z_{P} -radical ideal if $I = Zp\text{-}Gr(I).$

A topological space X is said to be Noetherian if the open subsets of X satisfy the ascending chain condition (or if every descending chain of closed subsets is stationary (see [2]).

PROPOSITION 3.19. Let R be a G-graded ring with $\dim_{g}(R) = 0$. Then, R has Mathewise and density graded representation of and other if the ACC for the speed of *has Noetherian graded primary spectrum if and only if the* ACC *for the graded Zariski primary radical ideals of* R *holds.*

P r o o f. Suppose the ACC holds for the graded Zariski primary radical ideals of R.Let $p\text{-}V_R^g(I_1) \supseteq p\text{-}V_R^g(I_2) \supseteq \ldots$ be a descending chain of closed subsets $p\text{-}V_g^g(I_1)$ of n Snec (R) where L is a graded ideal of R. Then $\Im(g \cup V_g^g(I_1)) = Zn$ $V_R^g(I_i)$ of p. $Spec_g(R)$, where I_i is a graded ideal of R. Then, $\Im(p\cdot V_R^g(I_1)) = Zp$.
 $C_R(I_i) \subset \Im(p_i V_R^g(I_i)) = Zp$. $C_R(I_i) \subset \Im(p_i)$ is an according chain of graded Zaricli $Gr(I_1) \subseteq \Im(p-V_R^g(I_2)) = Zp\text{-}Gr(I_2) \subseteq \dots$ is an ascending chain of graded Zariski
primary radical ideals of R. So, by assumption, there exists $n \in \mathbb{N}$ such that for primary radical ideals of R. So, by assumption, there exists $n \in \mathbb{N}$ such that for all $i \in \mathbb{N}$, $Zp\text{-}Gr(I_n) = Zp\text{-}Gr(I_{n+i})$. Now, by Proposition 3.13, $p\text{-}V_R^g(I_n) = p\text{-}V_R^g(Z_n) = V_R^g(Z_n) = V_R^g(Z_n) = V_R^g(Z_n) = V_R^g(Z_n)$ $V_R^g(Zp\text{-}Gr(I_n)) = V_R^g(Zp\text{-}Gr(I_{n+i})) = p\text{-}V_R^g(I_{n+i})$. Thus, R has Noetherian graded primary spectrum Conversely suppose that R has a Noetherian graded graded primary spectrum. Conversely, suppose that R has a Noetherian graded primary spectrum. Let $I_1 \subseteq I_2 \subseteq \ldots$ be an ascending chain of the graded Zariski primary radical ideals of R.Thus, $p-V_R^g(I_1) \supseteq p-V_R^g(I_1) \supseteq \ldots$ is a descending
chain of closed subsets $nV_g(I_1)$ of n $Snee(R)$. By assumption, there is $n \in \mathbb{N}$ chain of closed subsets $p-V_R^g(I_i)$ of $p.\widetilde{Spec}_g(R)$. By assumption, there is $n \in \mathbb{N}$
such that for all $i \in \mathbb{N}$, $n.V_g(I_i) = n.V_g(I_i)$. Therefore $I_i = Z_nGr(I_i)$ such that for all $i \in \mathbb{N}$, $p\text{-}V_R^g(I_n) = p\text{-}V_R^g(I_{n+i})$. Therefore, $I_n = Zp\text{-}Gr(I_n) = \mathcal{E}(n V_g(I_n)) = \mathcal{E}(n V_g(I_n)) = Zp\text{-}Gr(I_{n-i}) = I$. Therefore, the ACC for $\Im(p-V_R^g(I_n)) = \Im(p-V_R^g(I_{n+i})) = Zp\text{-}Gr(I_{n+i}) = I_{n+i}$. Therefore, the ACC for
the graded Zariski primary radical ideals of R holds the graded Zariski primary radical ideals of R holds. \Box

REFERENCES

- [1] AL-ZOUBI, K.—QARQAZ, F.: *An intersection condition for graded prime ideals*, Boll. Unione Mat. Ital. **11** (2018), 483–488.
- [2] MUNKRES, J. R.: *Topology*. A a first course, Prentice-Hall, Inc. XVI, Englewood Cliffs, New Jersey, 1975.
- [3] NASTASESCU, C.—VAN OYSTAEYEN, F.: *Graded and Filtered Rings and Modules*. In: *Lecture Notes in Math., Vol. 758*, Springer-Verlag, Berlin, 1979.
- [4] *Graded Ring Theory*. In: textslMathematical Library, Vol. 28, North-Holand Publishing Co., Amsterdam-New York, 1982.
- [5] *Methods of Graded Rings*. In: *Lecture Notes in Math., Vol. 1836*, Springer-Verlag, Berlin, 2004.
- [6] $ÖZKIRISCI, N. A.—KILLC, Z.—KOC, S.: A note on primary spectrum over commutative$ *rings*, An. Științ. Univ. Al. I. Cuza Iași. Mat. (N.S.) 64 (2018), no. 1, 111–119.
- [7] OZKIRISCI, N. A.—ORAL, K. H.—TEKIR, U.: *Graded prime spectrum of a graded module*, Iran J. Sci. Technol. **37A3** [\(2013\), 411–420.](https://doi.org/10.1515/phys-2016-0011)
- [8] REFAI, M.: *On properties of G-spec*(*R*), Sci. Math. Jpn. **53** (2001), no. 3,411–415.
- [9] REFAI, M.—AL-ZOUBI, K.: *On graded primary ideals*, Turkish. J. Math. **28** (2004), no. 3, 217–229.
- [10] REFAI, M.—HAILAT, M.—OBIEDAT, S.: *Graded radicals on graded prime spectra*, Far East J. of Math. Sci. (FJMS) Spec. Vol., Part I, (2000), 59–73.
- [11] UREGEN, R. N.—TEKIR, U.—ORAL, K. H.: *On the union of graded prime ideals*, **14**, no. 1, 114–118; https://doi.org/10.1515/phys-2016-0011.

Received February 28, 2019 *Khaldoun Al-Zoubi*

Department of Mathematics and Statistics Jordan University of Science and Technology P.O.Box 3030 Irbid 22110 JORDAN E-mail: kfzoubi@just.edu.jo

Malik Jaradat Department of Mathematics The international School of Choueifat (MHS-AlDaid) P.O.Box 66973 Alain UAE E-mail: mjaradat@mhs.sabis.net