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ABSTRACT. Given a p-function ¢ and k£ € N, we introduce and study the
concept of (i, k)-variation in the sense of Riesz of a real function on a compact
interval. We show that a function u: [a,b] — R has a bounded (¢, k)-variation if
and only if u(*~1) is absolutely continuous on [a, b] and u(¥) belongs to the Orlicz
class Ly[a,b]. We also show that the space generated by this class of functions
is a Banach space. Our approach simultaneously generalizes the concepts of the
Riesz ¢-variation, the de la Vallée Poussin second-variation and the Popoviciu
kth variation.

1. Introduction

In 1807, J. Fourier ( [4]) formulated the following conjecture: Every func-
tion (what was meant by function at that time) admits an expansion into what
is called today a Fourier series. In 1829, Dirichlet [2] proved the validity
of Fourier’s conjecture for monotone functions. In 1881, C. Jordan [0], in a
critical study of Dirichlet’s work, extracted the notion of function of bounded
variation (BV]a,b]) proving that a function u: [a,b] — R has a bounded vari-
ation if and only if it can be written as a difference of monotone functions.
As a consequence, he concluded that for such functions Fourier’s conjecture
holds. These important facts motivated the generalizations of notion of bounded
variation in many ways. For example, in 1910, F. Riesz [I5] introduced the no-
tion of p-bounded variation RV,[a,b], for p € (1,00) and proved that a function
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u: [a,b] — R has a p-bounded variation if and only if u is absolutely continuous
on [a,b] (u € ACla,b]), and v’ € Lya, b]. Moreover, the formula

b
%m#wnz/wwW&

holds, that is known today as the characterization of Riesz for functions of p-
-bounded variation.

In 1953, this result was further generalized by Yu. T. Medvedev [I0] for
the class of p-variation functions 1/(1;71)[(1, b] showing that u € V(gyl)[a, b] if and
only if u is absolutely continuous and v’ € Ly[a, b]. Also,

b

Vil = [ el ).
Previously, in 1908, de la Vallée Poussin [3] introduced the class
of functions of bounded second variation BV[a,b]; here the following results
are known:

e u belongs to BVs[a,b] if and only if w is the difference of two convex

functions;

e u belongs to BVa[a,b] if, only if, u is the indefinite integral of a function

of bounded variation.

Combining the notion of p-variation in the sense of Riesz with the second vari-
ation in the sense of de la Vallée Poussin, N. Merentes in 1992 [I1] obtained
a new notion of variation (RV(, 2)[a,b] ) and showed that u € RV, [a, b] if and
only if «’ is absolutely continuous on [a,b], v’ € L,|a,b], and

b

Vo) = [ (u6))"a.

M. T. Popoviciu in 1934 [I4] extended the notion of second variation
to the case of kth variation for k > 2 (BV*[a,b]). Subsequently, this notion has
been studied by A. M. Russell [I7] in detail, and by M. Wrébel [19].

Recently, in 2010, the authors [I2] combined the notion of p-variation (1 <
p < o0) in the sense of Riesz with the k-variation in the sense of Popoviciu
introducing the new notion of (p, k)-variation in the sense of Riesz-de la Vallée
Poussin-Popoviciu. They proved that u has a bounded (p, k)-variation on [a, b]
if and only if u*) is absolutely continuous, u*) € L,[a,b] and

o]
=

a
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In the present paper, we combine the notion of ¢-variation in Riesz’s sense
with the k-variation in the sense of Popoviciu to obtain a new general notion
called (¢, k)-variation in the sense of Riesz-Popoviciu (V(IS; pla, b]). In particular,
we prove that

if @ is a convexr p-function satisfying the ooy condition and k is a positive in-
teger, then u € V(I; . [a,b] if and only if u'*=Y) is absolutely continuous on [a, b],

u®)

=) € Ly,la,b]

and

VR o (ua,b) = / 0 (

a

This result is stated and proved as Theorem B.1] below.

2. Some properties of bounded (¢, k)-variation functions

We start with some definitions and known results concerning the Riesz
p-variation, the de la Vallée Poussin second-variation and the Popoviciu kth
variation.

By a ¢-function we mean here a nondecreasing continuous function
¢: [0,00)—[0,00)
such that
(p(t) =0 <= t=0) and lim p(t) = oo.

t—o0

Remark 2.1 ( [I8] p. 80]). If ¢ is a convex g-function, then ¢ is superadditive
and, consequently,
o(At) < Ap(t), A e 0,1], t>0. (1)

DEFINITION 2.1. Let ¢ be a ¢-function, u: [a,b] - Randlet P:a <t <--- <
t, < b be a partition of the interval [a,b]. Consider the expression

n—1
u(tjt) — ult))|
olb ¢=Zsﬁ< ’ =) [t — ]

= ltj+1 — ]
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The number
‘/(I;,l) (’LL, [a7 b]) = S%po—gp,l)v

where the supremum is taken over all partitions P of [a, ], is called the Riesz

(¢, 1)-variation of v on [a,b]. If ‘/(5,1)(“7 [a,b]) < oo, then we say that the

function u has a bounded (i, 1)-variation.
The class of all (¢, 1)-variation functions is denoted by V(g pla;b] and the

vector space generated by this class is denoted by RV(,, 1)[a, b]. This vector space
RV, 1)la,b] equiped with the norm
R . U
ullfl sy = lu(@)] +int {A>0: VE,) (5.la8]) <1},
has a structure of a Banach space.

In [9], it is shown that if ¢ is a convex @-function such that tlim 2l g finite,

t
—00

then RV(, 1)[a, b] = BV [a, b]. In this way, it is necessary to assume the additional

condition for the function ¢,

lim@:

t—oo

00, (2)
which we call the co; condition.

Given a ¢-function ¢, the set
b
Lyla,b] = { u € R /<p(|u(t)|)dt <00
is usually called the Orlicz class defined by .
In [I0], the following characterization of the class V(I; pla;b] known in the
literature as Medvedev’s lemma [L10] is proved.
LEMMA 2.1. A function u belongs to V(g 1)[a, b] if and only if u € AC[a,b] and
u' € Lyla,b]. Moreover,
b

V(s lat) = [ ().

a

In 1908, de la Vallée Poussin [3] introduced the class of bounded
second variation functions as follows. Given a function u: [a,b] — R and a
partition P of [a, b],

a<ty <ty <ty<ty<- - <ta, <h, (3)
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we consider the expression

oa(u, [a,b]) = Z

Jj=1

u(ta+n) —ulteis1))  u(tzy) —u(tzj-1)
togj+1) — t2j+1 toj —t2j1

)

and define the variation by

Vo (u, [a,b]) = S};paz(u,P),

where the supremum is taken over all partitions P of the interval [a, b] of the
form (@). The number Va(u, [a,b]) is called the de la Vallée Poussin second vari-
ation of w on [a,b]. If Va(u, [a,b]) < oo, then we say that the function u has a
bounded second variation on [a, b]. In what follows, by BV3]a, b] we shall denote
the class of all functions u: [a,b] — R of bounded second variation on [a, b].

The following result can be found in [3][14].

ProroSITION 2.1. If u € BVsa,b], then u € Lipla,b] and u can be expressed
as a difference of two convex functions.

Now, we are in a position to introduce the following definitions.

DEFINITION 2.2 ( [5]). Let u: [a,b] — R and let ¢4,...,t, be distinct points

in [a,b]. We define the divided difference of u at points ¢, ..., t, by recurrence:

° U[tl] = U(t1),

ta) —u(t
® U[tl,t2] = M

to — 11

to, ... tn| —ulty, ... ,th—
.U[tl,...,tn] = u[2’ 7n] u[lv s n 1].
tn -t

Remark 2.2 ( [I7, p. 548]). Let zg, 21,...,2x be k + 1 distinct points in [a, b]
and suppose that h; = z; —xg, i =1,...,k, and 0 < |hy| < -+ < |hg|. If f/(20)
exists, then

/ . . .
o) =k lim Iim ... lm flrg,z1 ..., 2
f ( O) hr—0 hp_1—0 h1—0 [ 0>, ’ k+1]
and
! . . .
zo) = k! lim Iim ... lim L0, L1 ..., T
fL(zo) i dim e T flro, @1, .. 2ppa],
/ . . .
zo) = k! lim lim ... lim Lo L1 -, T .
f+( O) hi—0t hp_1—0t h1—0+ f[ 01, ’ k+1]

In the case when two of arguments coincide, we can make the following defi-
nition.
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DEeFINITION 2.3. Let 21,...,25-1,(s, Zs, - - ., X be k+1 distinct points in [a, b].
Then, we define
(X1, T, Ty ooy = m [z, ..., 25-1,Cs, Tsy-- -, Th),
(s—Ts

providing this limit exists.

DEFINITION 2.4. Let ¢ be a ¢-function, £ € IN and u: [a,b] — R. Given a
partition P :a < t; < --- <t, <bof the interval [a, b] with at least k+ 1 points,
we define

R O (ultyers -ty = ulty, kel
ot W P):=> ¢ T tive —t;|  (4)
j=1 J J

and

Vi i (w3 [a,8]) = Vi 1y (u) = sup o, 4 (u, P),
where the supremum is taken over all partitions P of the interval [a,b] with
at least k + 1 points. If V(g g (U [a,b]) < oo, we say that the function u has

a bounded (¢, k)-variation on [a,b] and the class of such functions is denoted
by Vv(g,k) [aa b]

Remark 2.3. If ¢ is a convex p-function, then the functional
VE 1 () RO [0, 00) U {oo}
is also convex and, by (),
Vv(g,k) (Au) < /\Vv(g,k) (U)7 A€ [07 1]3 u € Vv(g,k) [aa b] <5>

Remark 2.4. (a) If £ = 1 and ¢(t) = t?, p > 1, Definition [Z4] coincides
with the classical concept of p-variation considered by F. Riesz in 1911 [I5].
If £ =1 and ¢ is a convex p-funtion, this definition coincides with the notion
of p-variation considered by Yu. Medveded [I0]. If k is a positive integer and
©(t) = tP, p > 1, this definition generalizes the concept of p-variation studied
by N. Merentes, S. Rivas and J. Sdnchez in [12].

(b) Since

ultjyr, tivo, - tir] —ulty, by, - tipr—i]
titk — 1

the sum in (@) of Definition 4] may be written as

u[tj7tj+la"'>tj+k?] = )
n—k

D o (lultystiers s tyanll) [tin — 1]

j=1

On the other hand, from the properties of k£ divided differences, we may deduce
that, if u(t) = p(t) = apt® + ap_1t* ' + ... ag, then ufty,to,... txr1] = ag,
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for arbitrary k + 1 points t1,...,tr+1. As a consequence, if u is a polynomial
of degree k — 1, then V(g gy (w) = 0.

(¢) From the definition of the class V(I; k) [a,b], we conclude that this class
is a symmetric set; if ¢ is convex, this class is also convex; however, it is not
necessarily a linear space. Notice that the space

RV la,b] :== | J AVE ,, la, b]
A>0

- {u eR N> 0,V (%) < oo}
forms a vector space.

Indeed, if uy,up € RV, la, b], then V(R k)( L) < oo and V )(1/\‘—;) < oo for
some Aj, Ay > 0. The convexity of functional V( o k)( ) implies

() £ e () + e ()

ul + ug € va(%k) [a, b]

thus

To prove that au; € RV, 1la,b] for some o € R, it suffices to observe that

u 1
V(gyk) <)\_1> = Wﬁ,k) <(_O‘U1) <_Oé>\1 >> for a < 0.

Let ¢ be a convex p-function and put

A= {ueR > 0,VE, (5) <1}

Then, A is balanced as convex and symetric. Moreover, given u € RV(,, i[a, ]
suchthatV(@k)( ) =k >1, by @), we get

R u 1. r u
‘/(Qﬁ,k) (ﬁ) - k‘/(@v )(X) S 17

S0 it is also absorbing set. Therefore, the Minkowski functional associated with A
given by

() == 1nf{)\>0 V(M)(A) <1} u € RV, la, b,

is a seminorm on RV, 1)[a, b].
Let us recall the following definition given by Popoviciu in [I4] and studied
by Russell in [I7] (cf. also M. Wrébel [19]).
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DEFINITION 2.5. Let £ > 1 be an integer. For a given partition P : a<t; <---
oo <tp < b, withn > k+ 1, and a function u: [a,b] — R, we define

n—k
Uk(uvp) = Z |u[tj+17 ceey tj+k] - u[tjv oo 7tj+k—1]| ) (6)
n=1

and
Vie(u; [a,b]) = Vi(u) := s%p or(u, P),

where the supremum is taken over all the partitions P of the interval [a, b] with
at least k + 1 points. If Vi (u;[a,b]) < oo, we say that the function u has a
bounded k-variation on the interval [a, b], and the vector space of such functions
is denoted by BVj|a, b].

Modifying the sum (@) slightly, we can consider the following similar but
different definition. If k is a positive integer, u: [a,b] — R and

Pra<t) < - <ty <tppr < -+ <top Stopg1 <+ <tpn <Db

is a partition of the interval [a, b], with at least kn points, we define
n—1

ox(u, [a,b]) = 6x(u) == Z [ultjests - tgenye) — ultG_tyetts - - tikl| 5
j=1

and . .
Vi(u; [a, b]) = Vi (u) := sup Poy(u, P),

where the supremum is taken over all partitions P of the interval [a,b] with at
least kn points.

We define the vector space
BVi[a,b] = {u: [a,b] = R : Vi(u) < oo}.
From this definition, it can be inferred that if a < ¢ < b, then
Viela, b] > Vila, ¢ + Vile, b].
THEOREM 2.1. For k being a positive integer, we have the estimates
Vi (u, [a,b]) < Vi(u, [a,b]) < 3kVi(u, [a,b])
and, therefore, BVi|a,b] = BVi[a,b].

Proof. Let u € BVk[a, bl and a < t; < -+ < tpp1 < b. Consider numbers
bi,...bk,c1,...,c, such that

th <by <--- <bp =tg, tp <cp <---<cp="1gs+1-
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Then,
|’LL[t2, . ,tk+1] — u[tl, e ,tk”

<|ulte, ..., tkr1] — ulbr,. .., bk
+ |ulby, ..., bg] —uler, ..., cgll
+uler, ... ek —ulty, ..t
< 3Vi(u, [t1, tes))-

In this way, if P:a <t <...<t, <bis a partition of [a,b] and, without lost
of generality, n = [k for some natural number [ > 2, then

(=1)k
Z |wltjsr,. tivk) —ulty, .t ]
=1

(1=1)k
< > 3V (u, [ty k)
j=1

<3 (V (u, [t1, tra]) + Vi (W [trr1s taisa]) + -+ Vie (u, [Ea—opets ta—1)et1])
+ Vi (u, [t2, tark]) + Vi (u, [tosks tarra]) + - + Vi (u [ta_ayhras ta—1)hra))
oo Vi (uy [ty tor]) + Vi (u, [tars tax]) + - + Vi (u, [t(l—l)katlk])>

< 3kVi (u, [a, b]).

/N

Hence,
Vk(uv [a7 b]) < 3k‘7/€ (’LL, [a7 b])

and so, u € BVi[a, b]. Therefore, we conclude that BV ;[a,b] C BVi[a,b]. On the
other hand, if u € BVy]a,b] and

Pra<ty <-- <t Stpyrr <top Stopyr <0 <tpp < b

is a partition of the interval [a, b], then from the triangular inequality we obtain

[ultiests s tGanw] — wltG-trsts - il

< ultjirt, - s tnm] = ulties i tipr—1]|
+lultjp tiks1 - s tippr—1] — ultjr—1, Lk tiks1, - - tjkrr—2]|
+...+ ’U[tjk—k+2> tik—kt3--- >tjk:,tjk+1] — U[t(j—l)k-',-la - 7tjk:”
k—1

= |U[tjk:—i+la oty ki) — Wtik—iy s t(j—',—l)k—i—l” .
=0
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From here, putting | = jk — 1, we get:

n—1
Z [ ultjrsts - tgnyn] — ultGotypets - - - tikl|
j=1

n—1 ik

<S> ultign - stek] = ult stk

J=11=jk—k+1
(n—1)k

= Z |u[tl+1, o 7tl+k] — u[tl, R tl—i—k—l” = Vk(u, [a, b])
=1

Finally, we get Vk(u, [a,b]) < Vi(u,[a,b]), so, u € BV, [a,b]. As a consequence,
the inclusion BV (u, [a,b]) C BV (u, [a,b]) holds as well. O

From this result, we deduce that all properties of the space BVj[a,b] are
shared by the space BVj[a,b] as well. We summarize some of these properties

in the following
THEOREM 2.2 ( [I7]). If k is a positive integer, then
(1) If Vi(u, [a,b]) < oo, then ulty,. .., tx] is bounded for all t1,...,t; € [a,b].

(ii) BVkH[a, b] C BVy [a, b]

(ili) Ifu € BVala,b], then u is absolutely continuous on [a, b], v/, exists on [a,b),
u’_ exists on (a,b] and u has finite derivatives exept for at most countably
many points. If u € BVi|a,b], k >3, then u"), r =1,..., k — 2, exist and
belong to BVj,_,[a,b] and u*~Y ezists a.e. in [a,b].

(iv) If u € BVi[a,b], then u = upy — upo, where u,1,upe are r-convex functions
(r=1,...,k), which means that

Upi[t1y .oy tep1] >0, for i=1,2, r=1,...0k; t1,...,t,41 € [a,b].

In the following theorem, we present a relation between the class V(I; k) [a, b]
and the space BVj[a,b].
THEOREM 2.3. If ¢ is a convex @-function and k a positive integer, then
V(I;’k) [a,b] C BVy|a,b] and

I r R
Vie(u) < k(b—a) + @V(%k)(u), u € V(%k)[a, b].
Also, if the ooy condition does not hold, then
V& 1la,b] = BV[a, b].

Moreover, the above relations are also true if we replace Vi(u) by Vi(u) and

BVi[a,b] with BV;[a,b].
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Proof. Let u € V(Rk)[a,b] and P:a <ty <ty <---<t, <bbe a partition
of [a,b] containing at least k + 1 points. Consider the set

r— {je{O,...,n—k} : lultjr1,tjre, -tk —ulty tiva, - tjre—1]| < 1}'
[tjrr — t;]

Since ¢ is convex and ¢(0) = 0, we have ¢(t) > te(1) for t > 1 and

Z [ultjprstjpo, - o tipn] —ulty s oo tn—]|

Z S Jultjts oy -y tr) = Ultys by, ooty ]] tn— 1]
[tj+r — t)] e
- Z |ty+k — 1 |
jer
1 |u[tj+1> tj+27 ) tj—i-k] — U[t]a tj+17 ) tj+k—1”>
+— tiw —t
A0 ;0( s 1] el
n—k 1
< S tan — ] + ——VE
= = | J+k ]| + L)0(1) (cp,k)(u)
n—k 1
< (e —tjrr—1 ttjrr—1 —tjrr—2 + ... H i — ;) + Wl)v(g’k) (u)
=0
< k(b L yn
<k(b—a)+ =) (o) ()

Therefore, we get that u € BVi[a,b] and the indicated relation is verified.
The proof of the second part of the theorem is the counterpart of the proof
of theorem in [J] saying that if the co; condition does not hold, then

Vla,b] = RV(, 1[a, b].
g

Remark 2.5. As a consequence of Theorem 2] and Theorem 23, we have
that Theorem is also true if we replace BVy|a,b] with BVi[a,b] and Vi (u)
with Vi (u). In view of this result, from now on, we will assume that ¢ is a
convex ¢-function that verifies the ooy condition. Also, functions of bounded
(p, k)-variation in the sense of Riesz share all properties with the functions
of bounded k-variation.

PROPOSITION 2.2. Let ¢ be a p-function and k o positive integer. Then,

Vigarnla,tl € ViE pla.bl.
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Proof. Letue ‘/(g,,k+1)[av b]. Then, Theorem [Z3]implies that v € BVj11]a, b].

As a consequence, there is a constant K such that |u[si, ..., sk41]| < K for any
choice of s1,..., s, € [a,b]. Consider a partition P: a <ty <t; < - <t, <b
of the interval [a, b] containing at least k + 1 points. Then,
—k
S [ultjsr, b, - tjpr] —ulty, b, -ty |,
Z(‘O |t- *t-| |t]+k t]|
=0 j+k J
n—k
=D e ulty e, i) [Eirn — 2]
j=0
n—k
<Q(K) Y oltyn =t < oK)k (b - a).
j=0
From this, we conclude that V(ﬁ,k) (u,[a,b]) < o(K)k(b—a). O

COROLLARY 2.1. Let k be a positive integer and ¢ a @-function. Then,

RV k41)a,b] C RV, 1yla, b].
Using notation of Definition 2.3 we have the following lemma.

LEMMA 2.2 ( [I7, Theorem 8]). If u:[a,b] =R has a derivative in ty,ta, ..., t; €
[a,b], then

'ty te, .. tg] = ulty, tr,toy oot oo Fulty e, ot e ]
PROPOSITION 2.3. Let ¢ be a convez p-function, k > 2 an integer, and
u € V(ﬁ,k) la,b]. If u’ exists, then % € V(ﬁ’”k_l)[a, b] and

Ul

R R
V(so,k—l) (Z) s V(%k) (u).

Proof Let P:a <ty <ty <--+ <t, <bbe a partition of [a,b]. From the
above lemma and the convexity of ¢, it follows that
n—(k—1)
]‘ !
> @(E W't tj+1, - - 7tj+k—1]|> |tj+r—1 — ;]
j=0

—(k— it (k—
g Eanlngl [ultj, tjgr, - thtsthsthy thgts - oo tjpn—1]]
= 2|l X

[tjrk—1— 1]
J=0 h=j ¥
L) (i)
<z > eultyticn, - tntn, - tipr—l) | [tano1 — 4]
Jj=0 h=j
R
= V(soyk) (u) O



ON FUNCTIONS OF BOUNDED (¢, k)-VARIATION

COROLLARY 2.2. Let ¢ be a convex p-function, k > 3 a positive integer, and
u € RV, pla,b]. Then, v € RV, ,_1)[a,b].

Comparing with the definition of Vj[a,b] and modifying the sum in @), we
can consider the following definition. Given a positive integer k, a p-function ¢,
a function u: [a,b] — R, and a partition

Pra<t) < <ty <tppr < -+ <top Stopg1 < -+ <t <D
of the interval [a, b], let us consider the expression

&(I?p’k) (U, P)

n—1
. Z - <|U[tjk:+1> stk — byt - ikl
=1

|tk = -1kt
ltGrok = tG-1kta]

and put
Vi (w3 [a,0]) = V& 1y (u) = Sup Gt (s P),

where the supremum is taken over all partitions P of the interval [a, b] containing
at least 2k — 1 points. Let

f/'(];’k)[a, b = {u: [a,0] = R: f/(g’k)(u) < oo}

From this definition, it immediately follows that V(I; 5 [a,b] is a symmetric set
and, if ¢ is convex, this set is convex.
Consequently, for convex ¢,

RAV(%;Q) [a,b] = {u: [a,b] = R 3\ >0, XA/(I;’,C) (%) < oo}

= UMWV plab)
A>0
is the vector space generated by IA/(I;’ g la, b

THEOREM 2.4. Let k be a positive integer and ¢ a convex p-function.
(1) If’LL € ‘7(1;’]{;) [(I, b]7 then ‘/(5719)(%7 [(I, b]) S kf/(g,k) (’LL, [a7 b]) .
(i) Ifu € V(ﬁyk)[a, b], then Wﬁ,k)(%’ [a,b]) < %V(ﬁ,k)(% [a, b]).
(iii) RV(%;{;) [a, b] = RV(%;C) [a, b]
Proof. Let u € IA/(g K [a,b] and a < t; < ... < tg41 < b. Consider numbers
ai,...,ag, by, ..., b, such that

t1 =a1 <...<ap <to, tk§b1<...<bk:tk+1.
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Now, we proceed similarly as in the proof of Theorem Bl Using the triangular
inequality and the convexity of ¢, we have

|u[t2, Ce ,tk+1] — u[tl, e ,tk”
lth1 — ta]

3trs1 —ta]

1 t ot —
_|: |U 29 y k+1] u[ah 7ak]|) ‘tk—i-l —(Z1|
3 |tk:+1—a1|

al,.. [bl,,bk”

QO( ‘bk—al‘ )‘bk_a1|

wlby, ..., bp] —ulty, ..., tg

(el ety
k — t]

< VE (s [t taga)).

Therefore, if P:a <t; < --- <t, <bis a partition of [a,b], proceeding as in
the proof of Theorem 2], we obtain

. [ultjpr, tive] —ulty, el |, ‘
Z |tj+k - tj‘
— 3tj+r — ]
g J

‘/(I;,k) (Ua [aa b]) ’

hence,

u ~
‘/(I;,k) (ga [aa b]) < kvv({zk) (U, [(l, b]) .

Therefore, RAV(%;Q) la,b] C RV, 1la,b].

If we consider u € V(ﬁ' pla,b] and a partition
Pra<t) < <ty <tpp1 < -+ <top Stopg1 < - <t <D

of the interval [a, b], then proceeding as in the proof of Theorem 2] and using
the triangular inequality and the convexity of ¢, we get

ultjer1, - tGaenel — wWtG-re1, -5 tikl
® | . SAsS! SRSl - | X |t(j+1)k _t(j—l)k+1|
kltGrr = tg-1y4]

[ultin—it1,- s bGrryh—i) — Wtjk—iy - - - tG+1)h—io1]]
=3l =

|t 1yh—i — tik—i|

x [t - — ik
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From here, we get in turn

i [ulties1s- - tgen) — wltGo1yhrts - - - k)| < [0 — ttyers
e kltGne = tg-ni] ! !

< TV 4y (0, B]).
Thus, we concluc}e that V({Z,k)%’ [a,b]) < %V(w 1 (U [a, b]) and, as a consequence,
RV(%;C) [a,b] C RV(q;’k) [a,b], O

In case ¢(t) = t?, p > 1, the class V{, i)[a, b] coincides with the vector space
RV, 1yla, b] which has been studied in [I2]. So, we get the following

COROLLARY 2.3. Let k be a positive integer. Then, RV, i[a,b] = R\/(pyk) [a, b].

Moreover, proceeding in a similar way as in the proof of Theorem 23] the
following theorem can be proved.

THEOREM 2.5. Let ¢ be a convexr p-function and k a positive integer. Then,
V(& pyla.b] C BVia,b] and

A~

1 - A
Vi (’LL) <b—a+ m‘/(g,k) (’LL), u € ‘/(g,k) [(I, b]

Moreover, if the co1 condition does not hold, then
Vi ola,b] = BVi[a, b].

THEOREM 2.6. Let ¢ be a convex o-function, k > 2 be a positive integer, and
u € V(f7 wla,b]. Then, u*=V) ezists and is continuous on [a,b] .

Proof. Fix arbitrarilly a natural number k& > 2 and take u € f/(gk) [a, b]. Apply-
ing Theorem 2.4l we get ¥ € BVi[a,b] and, by [17, Theorem 12], it follows that
uF=2) ¢ BVs]a, b]. Consequently, u~2) is continuous and can be expressed as a
difference of two convex functions. As a consequence, the unilateral derivatives
uf_l)(t) on [a,b) and w7t )( t) on (a,b] exist and are continuous. In addition,
the set E of all points ¢ € [a, b], where u* =1 (¢) does not exist, is countable and
u*=1) is continuous on [a,b] . E (Theorem 23).
Suppose that there exists z¢ € (a,b), where u(*~1) does not exist. Then,

azy = [u 7V (20) — u 7V (m0)| > 0. (7)

Consider 3(k + 2) distinct points t1,...,tk—2,Q1, ..., Qk_2,81,...,8k—2 €
(a,b) and h > 0 such that

a<zo—h<ti<..<tp_o<zog<o <...<ap<s1<...<S8p_9<xo+h<b.

105



H. LEIVA — N. MERENTES — S. T. RIVAS — J. SANCHEZ — M. WROBEL

By Remark 222] we have, for sufficiently small h > 0,

_ e, Sk h|— ce, Qg
ulf D (o) = (k —2)! lim< fjn Lo Shoon o M ulw, 0, ﬂ)

h—0t+\ si—xo+h h
Q20
and
k—1 . . UNToy XYy ooy X 2| —U l‘()—h tl tk_g
u* ™ (20) = (k—2)! lim lim o, 0, |=u] e ) .
h—0+\ Qk—2—T0 h
tk—_o—xo—h

Hence, putting

AZO :AQO (t17~-~7tk—27a17-~-704k—27517-~-75k—2)
_ u[S1, ...y Sk—2,To + h] — ulxg, a1, ..., p_2]
h
B u[xo,ozl, cen ,Oék;_g} - U[l‘() - h,tl, cen ,tk_g]
h )

by (), we get A;L,O (t1y . yth—o, 00, ., Q—2,81,...,86—2) # 0 and

. . h
az, = (k—2)!|lim lim A} (t1,...,tk—2,Q1,..., Q) _2,51,..., 8 2)
h—0 s1—xo+h
Qp—2—X(
tk_o—xo—h

(8)

Since

|AZ’0 (tl, .,tk_g,al,...,ak_g,sl,...,sk_z)’

Vi) > e ( = o7 ) 2h

= % ’Ai o ’Ah
?\ Top 2h @0l

applying (&), the continuity of ¢ and the co; condition, we have

h h -1
R (o simwoth (AR (AR _Owo
Vig (u) = lim (hnltk_’“;i;_‘“h@( on )\ o (k=2 >

which contradicts the fact that V(I; 0 (u) < oo. Hence, u*~1) exists on [a, b].

Since E = (), we conclude that u*~1) is continuous on the whole interval [a, b].

O
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3. Main result

Now, we will need the following proposition.

ProrosiTIiON 3.1 ( [B], [I]). Let n > 1 and let ty,...,tn41 be points of the
interval [a,b] C R. If u € C™[a,b], then there exist

u™ ()

€€ min{ty,...,thy1}, max{ty,...,the1}] such that ufty,... tn41] = oy

In particular, if the function w is n-times continuously differentiable in the
neighbourhood of ¢, then

(n) (¢
u[t,...,t]:u |()
—— n!

n+1 times

The main result reads as follows.

THEOREM 3.1. Let ¢ be a convex w-function that satisfies the ooy condition
and k a positive integer. Then, u € V(I; 5 [a,b] if and only if w1 s absolutely

continuous on |a, b], % € Lyla,b], and the following equality holds

)t

Proof. Fixu € V(I; k)[a,b] and consider a partition P:a <t < --- <1, <b

of the interval [a, b] with points s1,. .., Spk € [a, b] such that

uF) (1)
(k—1)!

V2 o (ula, b)) = / 0 (

tp =81 < -or <8 <o =8p41 < < Sgp < b3 = Sop4+1
< <1 =Skt < < Sk < Stn—1)k+1
<o < Sy =t

By Proposition Bl there exist intermediate points

f] € (S(j—l)k+1asjk)7 ]: ]-,-..,Tl,
such that
()
u .
ﬁ:“[s(y‘—l)kJﬂ,---,S;‘k], j=1,...,n.
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Since u € V(];,k:) [a, b], we have

”il 4 ( [u* D (€j41) —u* D ()

(k=D sgrr = 5G-1)kt|

) ’3(j+1)k: - 5(j—1)k+1’
j=1

n—1
Z ” <|U[5jk+1, e 8GR — U[SG— 1)kt 1 - - s

sit]]
|S(j+1)k - S(j—l)k+1’ |S(j+1)k — SGi—1Dk+1

S ‘A/(gyk) (U, [a7 b])

Passing to the limit as s — sj_1)p41 =15, J = 1,--- ,n—1,and s, _1)p41 —
Sk = tn, we get & — t;, j = 1,...,n. Since u*~1) is continuous on [a, b], we
obtain

1

— (p<|u(k D(tj41) —u*=D(t;)]

tig1 —t;| <VE b)).
(k= Dtje1 — 8] >‘J+1 il < Vipw (u: o))

j=1
W=D u(k=1 ,
So, (=i € Vd;’l)[a b] and V({; N 1),, [a b]) k) (u, [a,b]). By Medvedev’s

Wk
lemma [I0], we have % m € ACla, bl m € Ls@[ ,b] and

As a consequence, u*~Y € AC|a,b], 2 (k 1)‘ € Ly[a,b], and

/@(%)dt < Vi (u, [a, ).

a

Conversely, let us suppose that u(*~1) is absolutely continuous on [a, b] and

(k(kl)), € Lyla,b]. Consider any partition

Pra<t) <...<tp <tps1 <...<top <topg1 <...<tpp <D

of the interval [a, b]. By Proposition 3.1, there exist intermediate points

& € (tG-vm+1:tic) - j=1,...,n,
such that
()
u .
W:“[t(j—l)kﬂ,---,tjk], ji=1,...,n.
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Using the properties of the o-function ¢, the absolute continuity of u(*~1) on
[a,b], and Jensen’s inequality, we obtain

Stgenk)l — ultG_re1s -

<|u[tjk+1, ..
¥

tG+1)k

-1kt

tGi+1)k

tG—Dk+1

tG+1)k

<

tG—1)kt1

tG+1)k

tG—Dk+1
ti+1)k

tG—1)kt1

Therefore,

¥

2

.,t]‘k” ’t ‘ g
’t(j-l-l)k — t(j—l)k-}-l’ (G+D)k (j—1)k+1

(LA ETI A
£
(k= D Gk — tG-1kr]

Ejt1

’u(k) (t)’
(k= DttGak = t—1yre]

dt) d¢
&

tG+1)k

|u(k) (t)|
(k) — 1)' ’t(j—i-l)k - t(j—l)k+1|

dt) d¢
tG—1k+1

tGi+1)k

1 [u®) (2)|

o —= 1)!>dtdg

|G+ — t(j—l)k+1|t(_ ) (k
.

=1

)

n—1
Z <p( |U[tjk:+1, coostGrnk] = ult Gkt -

tij |t ; —
[tG+0r = tG-nes| (G+DE 7 HG-1k+1

a

Thus, we get
b
A [u® (8)|
V(I;,k:) (u, [a,b]) < /@(W>dta
which completes the proof. (]
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COROLLARY 3.1. Let ¢ be a convex p-function satisfying the ooy condition and
k a positive integer. Then,

. A . R RS
(i) ue V(g’k) [a,b] if and only if {T—57 € V(g,r)

R (r=D! w—n)\ _ or
Vie.r <(k _ 1)!“ = Vig i (w).

(ii) u € RV, x[a,b] if and only if u'*=") € RV, »y[a,b], r=1,...k—1.

[a,b], r=1,....,k—1, and

COROLLARY 3.2. Let ¢ be a convex p-function satisfying the ooy condition and
k a positive integer. Then,

(1) mzozl R‘/(@,k) [aa b] = Coo [aa b]a
(i) Urzi BV(g,pla, b] = RV, 1)la, b].

ProrosITION 3.2 ( [7], [8]). Let 1,2 be p-functions. Then,

(i) Ly, [a,b] is a vector space if and only if p1 satisfies the condition Ng(00),
that is, there exist numbers n > 0, tog > 0 such that

©(2t) < ne(t), t >to. 9)

(i) Ly, [a,b] C Ly, la,b] if and only if there exist numbers n, to > 0 such that

p2(t) <mpr(t),  t=to.
LEMMA 3.1. Let @1 and s be p-functions. Then, the following result holds.

(i) limsup i;gg is finite if there are n > 0,tg > 0, such that v1(t) < nea(t),
t—o00

t>to.

(ii) limsup i;%g = 00, then there are n > 0,1ty > 0, such that p2(t) < ne1(t),
t—o0
t>to.

THEOREM 3.2. Let k be a positive integer, and let 1 and po be conver p-
functions. Then,

Vg, mlat] C ViE, 5 la, 0]

if and only if there are n > 0, ty > 0, such that

wa(t) < npr(t), t>t.
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Proof. Suppose first that there are n > 0, to > 0, such that @a(t) < ne1(t),

t > to. By Proposition 5.2}, we know that Ly, [a,b] C Ly, [a,b]. Ifu € Vi | [a,b],
then by Theorem Bl we have

(k)
w1V € ACla,b] and —— € Ly [a8] € Ly, fa. ).

R
Using Theorem [B.1] again, we conclude that u € ‘7(1;2 k) [a, b].

On the other hand, if V(I;I 0 [a,b] C V(I;Z %) [a, b], then there are n > 0, ¢y > 0,
such that o1 (t) < n, pa(t), t > to. Applying reasoning as in the first part of this

proof, we obtain the inclusion V(I;Z 0 [a,b] C ‘A/({;l %) [a, b], which is a contradiction.
Therefore, the claimed inequality is established. O

COROLLARY 3.3. Let k be a positive integer, and let 1 and po be p-functions.
Then, RV, iyla,b] C RVig, iyla,b] if and only if the relation (8) is satisfied.

THEOREM 3.3. Let k be a positive integer, and let ¢ be a p-function. Then,
V(I; 0 [a, b] is a vector space if and only if ¢ satisfies the Ay(00) condition.

Proof. Suppose that ¢ satisfies the Ay (o0) condition. Then, by Proposition3.2]
Lya,b] is a vector space. If u,v € V(ﬁ'l 0 [a,b], a, B € R, then by Theorem [B]

(k) (k)
(k—1) (k—1) u v
u . v € ACla,b] and =1 =1 € Lyla,b).
Since AC[a,b] and Ly[a,b] are vector spaces, we get that
_ au + v (k—1)
(oau + Bv)*Y € AC[a,b] and {outfv) 77 € Lyla,b).

(k—1)!
So, by Theorem Bl we get the result.
Conversely, suppose that V,[a,b] is a vector space. Then, if we consider the
convex @-function ¢1(t) = p(2t), t > 0, we obtain the inclusion
Viola, bl C Vi, [a, b].
From Theorem B2 we conclude that ¢ satisfies the Ag(c0) condition. O

Since the set I
A= {ueRViplat] : 3A>0:VE,(5) <1

is balanced and absorbing, the Minkowski functional associated with A given by
the formula .
. on (1 ()

a

is a seminorm on R\A/(%k) [a,b], and, by Theorem 24 (iii), is a seminorm on
R‘/(‘Pfk) [a’ b] :
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4. A Banach space of functions
of bounded (¢, k)-variation

LEMMA 4.1. Let ¢ be a p-function, k a positive integer, and u: [a,b] — X.
Then, the following holds.

(i) If pa(u) # 0, then V2 ) (#(u)) <1.

(ii) For A > 0, we have: X > pa(u) if, and only if, ‘A/'(gyk) (
(i) If 0 < pa(u) <1, then ‘A/'(I;’k) (u) < pa(u).

DES!

Proof. (i) Let A, > 0 be such that A\, > A\ = pa(u),V, (@k ( )<1 n €N,

and A, converges to pa(u) as n — oco. Since - pointwise converges to

pa(u) as n — oo, by the lower semicontinuity of the functional V(%,c (),

we get
u ~ u
1> lim V% =V ——).
o (7 (A) o <uA<u>>

(ii) Tt is sufficient to show that if 0 < pa(u) < A, then pa (%) < 1. By the
convexity of functional p4 (+) and of part (i), we have

~p o Uy pa(u) g u pa(u)
V(so,k)<X)§ \ V(so,k)<MA(u)>§ A\ <1

which completes the proof.

(iii) For 0 < A < 1, by the convexity of functional 4 (), we have
Lor
Ve <V, (5) <t
Thus, V(ﬁ,k) (u) < A, and therefore V(I;M (u) is a lower bound of

(ot (2) 1)

As a consequence, we have V(ﬁ,k) (u) < pa(u).

O

COROLLARY 4.1. Let ¢ be a p-function, k a positive integer, and w: [a,b] — R
such that jua(u) = 0. Then, u*=1) is constant.

Proof. By property (iii) of Lemma [Tl we see that V( (u) =0, s0

[Aye-o

a
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o (e=n) =0

almost everywhere. This shows that u(*)(t) = 0 almost everywhere. Since u(*~1)

and therefore,

is absolutely continuous, u*~1 is constant. (]
Consider the function ||. || : RV, ila,b] — R defined by
R _ . - u
lull gy = u(@)] + o/ (@) + .. + ‘u(k U(a)‘ +1nf{)\ >0: V8, (X> < 1}.

By standard properties of the Minkowski functional and the above corollary,
R .
we get that (o.k) 18 @ norm on RV, 1 [a, b].

THEOREM 4.1. The space (RV(%k) [a,0],] . \|307k)) is a Banach space.

Proof. Let {un},>, be a Cauchy sequence in (Rv(%k) [a,b], ]| . Hﬁ)’k)). Thus,

for every € > 0, we can choose N > 0 such that

(n —wn)(@)] <&, @D —ui)@)| <o i=1. k=1, (10)
and
pa(ty — ) <&, n,m > N. (11)

By (I0), it follows that
{un(a)},~; and {ug)(a)} , i=1...k—1,
- n>1

are Cauchy sequences in R, because they converge. Applying [£.1] (ii) and Corol-
lary B] (i), by (), we have

~R ulF R Up — Uy,
V(M) = e () < 12)
for n,m > N, whence
(ug@—l) _ ug;:—l)xt) _ (uﬁf‘l) _ u7(7/§_1))(a

e(k =Dt —al

~—

2

for all n,m > N and t € (a,b].
Since ¢ satisfies co; condition, by (2,

1
lim sp~! <—> = lim — =0,
s—0+ S r—00 (’r)
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therefore, there exists M > 0 such that

1
t—alep! <M t b
S =) S

and, consequently, by (I0), for i =k — 1,

u%’“_l)(t)—ugr’f_l)(t)‘§(1+M)(k—1)!5, n,m>N, t¢lab].

()
n>1

satisfies a uniform Cauchy condition which together with convergence

w20}

Thus,

n>1

.
n>1

Repeating this procedure, after (k—1) steps, we get the existence of
(k — 1)-continuously differentiable function u: [a,b] — R such that

gives a uniform convergence of

Up, = u and ug):iu(i), i=1...,k—1.

Therefore, taking into account (I2]), and by the lower semicontinuity of functional
Ve (), we get

(k—=1) _  (k—1) (k=1)  (k—1)
~ R U, U . R U, U
VW’D( TEDE > < i View ( TEDE > =

for all n,m > N and, consequently, by Corollary B1] (i),

~ Up — U
vE n <1, > N.
(i2.k) < - > = "

Hence, u, —u € RV, 1[a,b], n € N, and, by Lemma E.T] (ii),
pa (un —u) <e. (13)

Thus, u € RV, ila,b], as RV, 1)[a,b] is a vector space, and by (I0), uniform
convergence {uy}, ~; to v and (I3), the sequence {u,,},~, converges to v in the

R
norm ||+[[ (5, - O

114



ON FUNCTIONS OF BOUNDED (¢, k)-VARIATION

THEOREM 4.2. The space RV, iyla,b] is an algebra.

Proof. Foru,v € RV, la,b], we have

and

k—1
(ur) D = 3 (’“ - 1> W (b=1=3) ()
J

Jj=0

k=17 W@ € RV, 1yla, ], j=0,.... k-1,

by Corollary Bl Since RV, 1)[a,b] is an algebra, (uv)*~Y € RV, 1)la,b],

and

S0,
uv € RV, 1yla,b].
O
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