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ABSTRACT. Multimodal biometric systems are nowadays considered as state
of the art subject. Since identity establishment in everyday situations has become
very significant and rather difficult, there is a need for reliable means of identi-
fication. Multimodal systems establish identity based on more than one biomet-
ric trait. Hence one of their most significant advantages is the ability to provide
greater recognition accuracy and resistance against the forgery. Many papers have
proposed various combinations of biometric traits. However, there is an inferior
number of solutions demonstrating the use of fingerprint and finger vein patterns.
Our main goal was to contribute to this particular field of biometrics.

In this paper, we propose OpenFinger, an automated solution for identity
recognition utilizing fingerprint and finger vein pattern which is robust to finger
displacement as well as rotation. Evaluation and experiments were conducted
using SDUMLA-HMT multimodal database. Our solution has been implemented
using C++ language and is distributed as a collection of Linux shared libraries.

First, fingerprint images are enhanced by means of adaptive filtering where
Gabor filter plays the most significant role. On the other hand, finger vein im-
ages require the bounding rectangle to be accurately detected in order to focus
just on useful biometric pattern. At the extraction stage, Level-2 features are
extracted from fingerprints using deep convolutional network using a popular
Caffe framework. We employ SIFT and SURF features in case of finger vein pat-
terns. Fingerprint features are matched using closed commercial algorithm de-
veloped by Suprema, whereas finger vein features are matched using OpenCV
library built-in functions, namely the brute force matcher and the FLANN-
-based matcher. In case of SIFT features score normalization is conducted by
means of double sigmoid, hyperbolic tangens, Z-score and Min-Max functions.
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On the side of finger veins, the best result was obtained by a combination
of SIF'T features, brute force matcher with scores normalized by hyperbolic tan-
gens method. In the end, fusion of both biometric traits is done on a score level
basis. Fusion was done by means of sum and mean methods achieving 2.12%
EER. Complete evaluation is presented in terms of general indicators such as
FAR/FRR and ROC.

1. Introduction

Biometric systems are classified as pattern recognition systems which are
used to collect and process one or more biological traits leading to identifica-
tion or verification of one’s identity [§]. Furthermore, biometric systems may be
categorized into two groups based on the number of traits they use for iden-
tity establishment. Namely, they can be unimodal, where such systems utilize
only one behavioral or anatomical trait. On the other hand, multimodal systems
incorporate several traits for recognition purposes.

Fingerprints are biological traits which are made of pattern of ridges and
valleys. For a long time they have been and still are considered as very distinctive
and reliable identifiers. They are acknowledged as unique and permanent due
to their ability of maintaining uniformity throughout one’s lifetime. Fingerprint
patterns differentiate even between identical twins [2]. Fingerprint patterns may
be categorized into three groups (see Figure [I]).

// / Level-3 pattern
Level-2 pattern

Level-1 pattern

FIGURE 1. Fingerprint features organized in levels [I§].

Level—1 patterns (coarse level) are the most apparent structural patterns
defining a global ridge flow. When observed at this level, there are regions where
ridges form a specific shape. These regions may be classified into three typolo-
gies also known as loops, archs and whorls [§]. Level-1 patterns do not suffice
in determining one’s identity as they are shared among individuals, however they
can considerably speed up the whole authentication process by narrowing the
extensive database search if Level-1 patterns do not match.
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Level—2 patterns (local level) represent the local ridge characteristics.
Namely such characteristics are denoted as minutiae points or Galton points.
Minutiae indicate locations where ridge lines terminate, merge, split or emer-
ge [9]. Minutiae points are the most prominent features employed by the majority
of available commercial or forensic recognition systems. Discriminative strength
of minutiae set extracted from a fingerprint has given a rise to minutiae-based
matching algorithms where minutiae positions, orientations and sometimes even
shape is analyzed to compute a similarity score between two fingerprints [27].

Level —3 patterns (the finest level) consist of sweat pores, ridge line edges,
scars, creases and breaks. Namely, such details can be observed only at very high
resolution — at least 1000 ppi. Hence an increased attention is devoted to them
because they are deemed rather significant when matching latent fingerprints
since normally 20-40 pores are sufficient to recognize a person [27].

Human recognition based on finger veins gained widespread popularity back
in 1997-2000 and its commercialization began with Hitachi [2§]. Finger vein
patterns are acquired in digitized form by means of scanners utilizing near
infrared light (NIR), where such illumination is absorbed by oxygenated and
de-oxygenated hemoglobin [29].
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FIGURE 2. Finger vein acquisition principle [19].
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Blood vessels located within an individual’s finger are intrinsic features used
for identity establishment. When compared to fingerprint, finger vein pattern
offers several advantages. Due to vein being a part of intrinsic features, it is
almost impossible to falsify or replicate it. Note that one of the reasons of its
popularity is the user-friendly acquisition. Images can be captured non-invasively
using contactless sensors, thus convenience as well as cleanliness is ensured [22].
Besides being very resistant to falsification, finger veins are also considered to be
permanent and unique and to offer higher security level than the fingerprint [23].

In this paper we investigate the existing approaches to fingerprint and fin-
ger vein multimodal systems and propose our software solution to address this
problem. The core of our multimodal automated system named OpenFinger is
formed by two independent modules for fingerprint and finger vein recognition.
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Each module is divided into three smaller sub-modules, namely, each sub-module
represents a particular stage in the recognition process. The three stages are:
preprocessing, feature extraction and matching. Obtained scores from the afore-
mentioned modules are then fused together within our fusion module.

The paper is organized further as follows. First, in Section 2] we provide a
brief analysis of the most important problems in the field. In addition, we focus
on some of the existing well-established methods of fingerprint and finger vein
recognition as well as some recent published attempts to merge both biometric
features into a multimodal system. Our proposed solution is discussed in Sec-
tion B providing a schematic representation and in-depth analysis of internal
working of both fingerprint and finger vein pattern recognition modules respec-
tively. Subsequently, we introduce our approach to the fusion of both modules.
In the end, we discuss the obtained results as well as contribution of this paper
in Section [l

2. Problem Analysis and Related Work

The main drawbacks and limitations of unimodal systems are lower noise
tolerance, accuracy as well as security since they are easier to succumb to spoof
attacks [8]. Hence, a robust identification system requires several modalities
to address such limitations [I]. This is achieved by fusing the modalities which
can be performed at various levels. Namely, fusion may be done at sensor, feature,
score and decision level. Each one has its own benefits as well as weaknesses. They
are further described in [§] and [25]. There are many situations in everyday life
where one biometric feature cannot guarantee a successful authentication, i.e.,
partial or poor-quality fingerprints. Combining more traits may help to solve
this issue by strengthening the match of biometric features to avoid a false
rejection and weakening the similarity of the features to avoid a false acceptance.
Despite the advantages of multimodal biometrics, we need to ensure the comfort
of capturing the biometric trait. There are available sensors that make it possible
to capture fingerprint and finger vein images at the same time, i.e., M2-FuselD
by MSYS company [I7] thus providing the desired trouble-free scanning.

Furthermore, to ensure a reliable user authentication, both fingerprint and
finger vein images need to be efficiently enhanced. The problem that arises dur-
ing fingerprint recognition process is the restoration of image quality in order
to reliably extract Level-2 features. Features can be detected in the enhanced im-
ages or in the raw images from sensor where they keep their original properties.
The main problems with finger vein pattern recognition are the reliable extrac-
tion of region of interest, contrast enhancement so that the visibility of veins is
at its maximum in order to process the patterns correctly.
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In [33], authors argue that fingerprint image enhancement stage is neces-
sary since a reliable minutiae extraction is always heavily affected by low image
quality. Gabor filter has proven itself as one of the most suitable techniques
to restore the original fingerprint quality as it can adapt its parameters to en-
hance ridge orientations as well as frequencies. After extensive testing using so
called EI (Error Index) indicator they have arrived at the conclusion that cor-
rectly tuned Gabor filter rapidly increases the accuracy of minutiae detection.
One of its drawbacks is its computational complexity. In our solution we de-
signed an adaptive Gabor filter that runs on GPU what makes its running time
very negligible.

Convolutional neural network (CNN) is a type of deep neural network that is
primarily used to classify visual data. CNNs can learn spatial hierarchies of fea-
tures what makes them robust against image alteration due to deformation,
translation, scaling or rotation. Some of the most popular CNN architectures
are LeNet-5, AlexNet, VGG-16, Inception, ResNet, ResNeXt and DenseNet [G].
More researchers have recently published papers devoted to Level-2 feature ex-
traction from fingerprint images where they used CNNs at the heart of their
solutions.

One such solution is called MinutiaeNet which is a special CNN for Level-
2 feature extraction implemented in Tensorflow framework. MinutiaeNet works
in two stages. First stage, so-called CoarseNet, is a deep network which extracts
minutiae score map and their orientations. Subsequently, another network called
FineNet is employed to refine the candidate minutiae locations and produce
final set of detected features. CoarseNet is a residual learning based network
and FineNet uses Inception-Resnet network as a core of its architecture. Their
solution was evaluated on FVC2004 and NIST SD27 (latent fingerprints) datasets
in terms of precision, recall and F1 score. It outperformed well-known algorithms
like MINDTCT and VeriFinger.

FIGURE 3. Minutiae score map (left) produced by CoarseNet and corre-
sponding final minutiae set (right) produced by FineNet [20].
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Another important step in incorporating CNNs into fingerprint recognition
was made by authors in [24]. They invented FingerNet, a unified deep net-
work that performs image enhancement and minutiae extraction in a single
network. FingerNet normalizes image contrast, estimates orientations, segments
ridge pattern and enhances ridge flow by using Gabor filter and finally extracts
the minutiae. The network was tested in terms of minutiae extraction accuracy
where it achieved minutia location error of 4.4 pixels and angle error of 5.0°
In order to see if fingerprint matching benefits from FingerNet authors com-
pared their solution with well-known algorithms using CMC curve which shows
that FingerNet outperforms other solutions.

Ong et al. [2I] proposed two-stage multi-instance finger vein recognition sys-
tem based on minutiae matching by using genetic algorithm and the k-modified
Hausdorff distance (k-MHD) measurement. Their recognition rate is as high as
99.7%. In [I1], Ling used deep learning for finger vein recognition. The accuracy
of their multi-class classification is 91.67 %, whereas the accuracy of binary clas-
sification is 96.27 %. It is worth noting that the low quality dataset may present
issue to the neural network. The model might not classify well if the obtained
region of interest from preprocessing is of low quality.

In [14] authors introduced a multimodal system based on fusion of finger
vein, fingerprint and finger-knuckle-print. The recognition rate of their finger
vein unimodal system is 88.68 % when classification is done using SVM. Recog-
nition rate when utilizing KNN classifier is 84.59 %. Their unimodal fingerprint
system’s recognition rate is at 55.97 % with SVM as classifier and 54.72 % with
KNN, respectively. However, they conducted fusion on feature level as well as
decision and obtained recognition rate > 94%. In [7] authors conduct finger
vein recognition by means of utilizing convolutional neural network to avoid
dependency on image quality. Their recognition rates go beyond 95 %.

In [31] we can learn about a feature-level fusion of fingerprints an finger veins.
Distinctive features from both traits are extracted using Gabor filter frame-
work and then transformed into unified feature vector by proposed supervised
local-preserving canonical correlation analysis. Unified vectors are classified us-
ing nearest neighbourhood method. Recognition accuracy results shows that
unimodal fingerprint approach achieved 89.062 % and unimodal finger vein ap-
proach was slightly better at 97.187 %. Multimodal approach involved two tests,
one with feature-level fusion and another one with score-level fusion. Recogni-
tion accuracy of score-level fusion was at 98.75 % being slightly worse than that
of feature-level approach with 99.687 %.
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3. Proposed Solution

In this section we present our multimodal biometric solution, titled OpenFinger
(see Figure H]) which combines fingerprints and finger veins patterns. It is built
on top of the DBOX open source library introduced by Kédek [13] in his
master’s thesis. DBOX itself is a unimodal biometric system for fingerprints.
For finger vein processing we have developed our own open source library which
will be discussed in latter subchapter. Both libraries are developed using tech-
nologies such as ArrayFire (GPU computing) [30], OpenCV [5], Caffe (deep neural
networks) [10] and Qt.
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FI1GURE 4. OpenFinger system architecture.

The research was conducted on the SDUMLA-HMT multimodal database in-
troduced by Shandong University (see [32]). It contains a bundle of biometric
data, namely face images, iris images, finger veins, fingerprints and gait videos.
These data were acquired from 106 different persons.
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FIGURE 5. SDUMLA-HMT fingerprint images from different sensors: a)
URU4000B b) Z2Y202-B ¢) FT2BU d) FPR620.

Fingerprint data was acquired from five different sensors, however, note that
we have used data from only 4 sensors (see Figure[H). Images from fifth sensor are
swipe fingerprints. Images were taken from six fingers, whereas eight impressions
were taken from each finger. In total, we have used 20352 images.

Ficure 6. SDUMLA-HMT finger vein images.

Finger vein pattern data were acquired from six fingers from each subject,
whereas six additional scans of each finger were taken, which gives us 3816
images.

3.1. Fingerprint Recognition

The DBOX solution consists of three libraries where each library represents a
particular phase in fingerprint recognition process. First, the image is enhanced
in order to ensure reliable extraction of salient features, namely minutiae points.
Subsequently, minutiae are extracted using a convolutional neural network and
in the end the matching is done using Bozorth3 or Suprema algorithms.
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3.1.1. Preprocessing

The first part of the preprocessing stage is segmentation of fingerprint to pre-
vent processing of the irrelevant fingerprint background. However, the contrast is
at first enhanced using SUACE (Speeded Up Adaptive Contrast Enhancement)
provided by OpenCV. Segmentation is normally done by analyzing the grayscale
variance within small image blocks. To distinguish the background, Kadek em-
ployed a convolutional neural network for classification, which was trained on
blocks of size 19 x 19. The image was then divided into blocks of W x W,
where W = 8px. Around each such block, additional larger block of K x K is
cropped, where W <= K. In this case K = 19pz. These larger blocks are then
forwarded into the CNN. Classification result for each block is then assigned to
the corresponding smaller blocks [13].

Quality map is computed with the help of MINDTCT algorithm developed
by NIST. Quality map represents the explicitness of ridge lines in a particular
area.

Frequency map is needed since preprocessing phase requires employment
of Gabor filters. The local ridge frequency is used to denote the number of ridges
per unit length along a hypothetical segment centered at [x,y] and orthogonal
to the local ridge orientation ©; ; [26]. However, instead of using frequency map,
single global frequency value was used for the entire image.

One of the most important steps in preprocessing phase is the local ridge
orientation computation. It is inevitable for the correct setting of Gabor filter
(see Figure [7). Furthermore, it is needed in determining minutiae orientations
in the extraction phase.

Application of Gabor filter is computationally the most demanding step in pre-
processing. The filter itself works as a lowpass filter that eliminates high frequen-
cies (e.g., noise) and highlights frequencies corresponding to the density of the
ridge lines in the fingerprint image (see Figure b). The definition of an even-
-symmetric Gabor filter in spatial domain is as follows [13]

G(z,y;0,f) = exp {—% [i—% + z—%’] } cos (2mfro), (1)
re = xcos©®+ysin®O, (2)
Yo = —xcosO +ysin®O, (3)

where © is the filter orientation, f is the cosine wave frequency (f = 1), and
04, 0y being the standard deviations of the Gaussian curve along the z and y
axes. Application of filter proceeds by spatially convolving the fingerprint image
with the Gabor filter. The orientation image O as well as frequency image F is
required during image convolution. Therefore, the image E with applied Gabor
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filter G is obtained as follows.
E(i,j) = G (u,v;0(i, ), F(i,j)) N (i — u,j —v), (4)

Yz Y
U=T" v=——

where N is the normalized fingerprint image and w,, w, denote the width and
height of Gabor filter mask [26].

DBOX offers possibility of computing Gabor filter application either with the
use of CPU or GPU (using ArrayFire framework), whereas if the CPU is used,
the image is then split into smaller parts depending on number of computer’s
threads. Each thread then processes smaller portion of an image.

After application of Gabor filter, the binarization process follows. Every pixel
is converted either to white or black. This may be done by using global thresh-
old, however, results have shown that it is better to use adaptive binarization.
This is done using OpenCV'’s adaptive binarization (see Figure [1]).
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FI1GURE 7. Visualization of fingerprint preprocessing stages.
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Skeleton creation is the last step in the preprocessing phase where width
of ridge lines is reduced to 1lpz. Modified Guo-Hall algorithm is implemented
in DBOX for this purpose (see Figure [1]).
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3.1.2. Feature Extraction

After successful preprocessing, the salient features are extracted. This is imple-
mented by using Crossing Number (CN) method. The neighbourhood of each
ridge pixel (i.e., black pixel) is scanned in the fingerprint skeleton using a block
of size 3 x 3 (see Figure ). The CN value is then computed as follows [13].

| —

8
en(p) = Z ‘Val(pi mod 8) — val(pi—1)/; (5)

where p represents the skeleton pixel, while pg, p1,...p7 are its neighbour pixels,
respectively. Namely, the value of en(p) may be one of the following;:

e ( - isolated point,

e 1 - ridge ending point,

e 2 - continuing ridge point,
e 3 - bifurcation,

e > 3 - part of a more complex, undefined minutia point.

1 B [] H N
_ . | _ N | (.
Nl NEEEEE NN L]
B _EE ey e | | .
HE B E B E B

Ordinary point in Ridge line termination Ridge line bifurcation
fingerprint skeleton detected detected

FIGURE 8. Crossing Number method [13].

Furthermore, the CN method is combined with convolutional neural network
in order to extract and validate minutiae points, since CN only reveal potential
minutiae which require further verification. LeNet based neural network is used
to classify image blocks containing minutia candidates. Image blocks are taken
from the original fingerprint image from positions where CN method detected
ridge line endpoints and bifurcations.

To achieve higher level of robustness, we had decided to train our neural net-
work on images taken from four sensors. When compared to the network utilized
in DBOX, its architecture remains unchanged, however it can now successfully
classify minutiae on fingerprint images from multiple different sensors.

As shown in Figure [, we have created an interactive application for image
collection for purposes of neural network training. Through such approach we
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have managed to acquire roughly 170 000 image data samples out of which 80 %
were then used for training. Whereas the remaining 20 % was used for validation.
The achieved average accuracy of this network is 97 %.
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F1GURE 9. User interface of the application for training data collection
depicting minutiae marking.

3.1.3. Feature Matching

Matching is applicable only during identification or verification after the pro-
vided fingerprint has been processed. This is the final step within the fingerprint
recognition process.

OpenFinger fingerprint matching module offers the use of two algorithms for
matching, namely Bozorth3 and Suprema, whereas Suprema is superior when
compared to Bozorth3 since the latter one requires a large number of match-
ing minutiae in order to consider two fingerprints identical. However, our im-
ages varied in quality and sometimes the number of detected minutiae was very
small for Bozorth 3. The success of the identification and verification is evaluated
according to the preset threshold values. These threshold values are:

e Bozorth3 - 50 (achieved score higher than 50 signifies a successful match).

e Suprema - 0.15 (score lies in the interval [0,1]).

In our experiments we have used the Suprema algorithm for matching.
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3.2. Finger Vein Recognition

Despite many benefits, there exists a number of challenges that need to be
overcome. During acquisition, poor illumination or misalignment of the finger
position are some of the circumstances that may significantly decrease the recog-
nition rate [22]. Hence a reliable recognition process is needed.
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FI1GURE 10. OpenFinger finger vein module scheme.

As show in Figure[IT the module is split into three smaller sub-modules (blue
colour). Each smaller module represents a stand-alone shared library as well as
a particular phase in the recognition process. Furthermore, they are compatible
between each other, i.e., the output from one module may be subsequently for-
warded as input into the next module. Their communication is based on utilizing
the Qt provided signals and slots mechanism.

3.2.1. Preprocessing

Our preprocessing phase consists of the following steps: edge-preserving smooth-
ing using bilateral filter, edge detection by Canny algorithm, contour computa-
tion, ROI (region of interest) extraction and finally enhancement of ROI using
histogram equalization.

The concept of our preprocessing module is designed in a way which makes
it user friendly, meaning it provides an easy-to-use API. As Figure [[1] depicts,
one might choose between inserting a single finger vein image, an entire bulk,
i.e., vector of such images or even a path to a particular image or to a directory
containing the images. Furthermore, one can also set additional preprocessing
parameters. This allows the user to experiment with the module, thus providing
the possibility of achieving better results.
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FI1GURE 11. OpenFinger finger vein preprocessing module scheme.
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F1GURE 12. Intermediate results of the finger vein preprocessing.
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Since finger vein images from SDUMLA-HMT database contain side noise, we
slightly crop each image. The original image is of size 240 x 320 pixels, whereas
our cropped image is of size 200 x 220 pixels. Such resolution was obtained
from empirical observation. Furthermore, this significantly improves our end-
point search during ROI extraction.

In order to efficiently detect the finger boundaries, we first employ the bilateral
filter, which helps us to remove unwanted noise, while keeping the edges rather
sharp. The filter is applied three times in a row since such approach has shown
better results when compared to single filter application. We use the OpenCV
implementation of the filter.

Bilateral filter uses three parameters, namely diameter of each pixel neigh-
bourhood that is used during filtering, filter sigma in the colour space and filter
sigma in the coordinate space. We use value 10 as the diameter and set filter
sigma in the colour space to the value of 10 as well, whereas the sigma in the
coordinate space is set to 3. Also note that we apply the filter three times in a
row (see Figure [12).

One ought to note, why utilization of bilateral filter is to be deemed important.
Namely, as shown in Figure [ finger vein images are mostly of low quality.
Certain subset of such images is distinguished with vivid illumination, whereas
another subset yields murky and obscure areas. Hence employment of bilateral
filter flattens out such irregularities to some extent.

The next step in the preprocessing phase is the employment of Canny edge
detector. We use the implementation provided by OpenCV. Since bilateral filter
leaves the finger edges sharp, Canny algorithm can reliably detect the finger
boundaries.

Prior to utilizing Canny algorithm for distinguishing finger boundaries, we
attempted to select the region of interest by means of applying binarization.
However, as shown in Figure [[2] such approach has proven as unreliable.
This happens due to varying levels of illumination in finger vein images.

After we have applied edge smoothing, we employ Canny edge detector (CED)
algorithm on our filtered image. The result of CED is a matrix of the same size
as our cropped image, however, this matrix contains only values 0 and 255. If the
value at (z,y) is 0, then this means that CED did not detect an edge-like pixel
at (x,y), hence such pixel is black in the CED matrix. If the value at (z,y) is
255, then this pixel represents edge pixel and such pixel is white, respectively.

OpenCV provides implementation for finding contours, namely it is applied
onto Canny matrix and results in a vector of vectors of points, where each vector
represents a particular contour, while each point represents an edge pixel in the
Canny matrix. Such approach is used to simplify the endpoint search in the ROI
extraction step.
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Ficure 13. Neighbourhood scan of potential endpoint.

The most crucial step in the finger vein preprocessing phase is the ROI extrac-
tion. First, we find the longest as well as the second longest contour in the con-
tour vector. Presumably, they represent the finger edges. Subsequently, in each
of these contours we look for endpoints. The candidate for endpoint is a point
situated near the image boundary. These potential endpoints are then filtered
by scanning their neighbourhoods. This ought to be done in order to avoid hav-
ing a random noise pixel as the ROI endpoint. To ensure the candidate is a valid
endpoint, i.e., it is a part of the finger edge, we employ an algorithm which scans
50 neighbouring edge pixels. With the help of Canny matrix, such approach en-
sures a reliable endpoint selection (see Figure [[3]), as a posteriori results have
shown.

After ROI has been extracted, we further submit it to enhancement, namely
we conduct histogram equalization (see Figure [I4]).

FIGURE 14. Enhanced ROI by means of histogram equalization.
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3.2.2. Feature Extraction

Many methods have been proposed on feature extraction in finger vein patterns.
However, even though they result in high accuracy, the lack of rotation as well
as scale invariance may be considered as drawback. For this purpose, we have
decided to use the SIFT [I6] and SURF [3] algorithms. Both algorithm imple-
mentations are provided by OpenCV.

SIFT performs in five different phases. First, by scanning the entire image,
SIFT detects potential points of interest which are invariant to scale and rotation.
Subsequently, keypoints are selected based on their stability, namely each can-
didate location goes through a test of scale and location determination. To each
keypoint location, one or more orientations are assigned based on local gradi-
ent directions. Around each keypoint, the local gradients are measured at the
selected scale and are henceforth transformed into representations, which allow
significant degree of local shape distortion as well as change in brightness.

SURF is another approach that deals with detection of scale and rotation-
invariant points. To achieve even better performance in computation time and
accuracy, their solution is based on Hessian matrix. They rely on determinant
of the matrix as the measure for choosing the location and scale.

As shown in Figure [I5 we have come across various outcomes when experi-
menting with these algorithms. The instance depicted in Figure[I5la) represents
the outcome with adequately set parameters, obtained a posteriori. On the other
hand, the situation shown in Figure[THlb), represents an instance where the edge
threshold is set at higher values, which results in more keypoints detected at fin-
ger edges. In order to filter out these edge-like features, the edge threshold needs
to be set at lower values. When it comes to SIFT, in default, it is set to 10,
however such keypoints cannot be considered as a reliable source of information.
Thus we have set the edge threshold value at 4. Note that this issue was also
addressed in [I2]. The situation shown in Figure[I5lc) shows how the higher con-
trast thresholds impacts the number of detected keypoints. When it comes to
SURF, we have set the value 170 as the hessian threshold. This means that only
features whose hessian value is larger than the threshold are retained. Namely,
the larger the value, the less keypoints are obtained. Other parameters are left
at default. To ensure higher number of keypoints detected, we use 0.009 as the
contrast threshold value. Another important thing to be noted is the drawback
of these algorithms, which we have observed during our experiments. Note that
the images shown in Figure [[0 a) and b) are not the same. Namely, these im-
ages are two different scans taken from the same finger. Notice how some of the
keypoints detected are not at the same location. Such observation shows how
these algorithms are very sensitive to the intra class variations. Nonetheless, this
represents an issue that ought to be taken into an account, otherwise matching
might result in very few keypoints matched correctly.
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a) b) c)

FIGURE 15. Finger vein keypoint detection. a) favourable parameter values;
b) higher edge threshold; c) higher contrast threshold.

FIGURE 16. Distance-based feature matching.

3.2.3. Feature Matching

When the features are extracted, we employ OpenCV’s Brute force and FLANN-
-based (Fast Library for Approximate Nearest Neighbour) matcher to perform
the keypoint matching. According to the OpenCV documentation, the Brute force
matcher finds for each descriptor in the first set, the closest one in the second
set by trying each descriptor. On the other hand, the FLANN-based matcher is
considered to be faster than the Brute force one, however, it will find a good
match, although it may not find the best possible one.

Namely, we have found out that SIFT and SURF algorithms are very sensitive
to the intra class variations. We have observed that when matching the keypoints
extracted from two different impressions of the same finger vein pattern, many
of these are false matches, meaning that the Euclidean distance between them
is high. Due to such occurrence, we perform thresholding on these keypoints
by classyfing two keypoints as matched if the Euclidean distance between them
is below the chosen threshold. Note that this issue was addressed by similar
approach in [12]. Experimental observations have shown favourable results when
addressing the aforementioned issue by means of distance thresholding method.
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FIGURE 17. Genuine and impostor distribution using SIFT/Brute force
approach for finger vein images.

3.2.4. Score Normalization

Match scores from fingerprint module when using Suprema range from 0 to 1.
However, note that the distances between matched SIFT-extracted finger vein
keypoints range from 0 to ~500 (see Figure [[7). Hence before proceeding with
fusion, these match scores need to be normalized.

We have conducted experiments utilizing several normalization techniques.
To map the obtained distance-based score to interval [0,1] we use double sigmoid,
hyperbolic tangens, min/max and Z-score methods.

The normalized score using double sigmoid is then given as follows [4].

1 .
fsp<t
14exp (—2((sg—t)/r1 ) 1 k ?
kN p(=2((sk—1t)/71)) (6)

1 .
T+exp (—2((sx—1)/72))’ OtheI‘Wlse7

where t is the reference operating point and r; and ro denote the left and right
edges of the region in which the function is linear, i.e., the double sigmoid func-
tion exhibits linear characteristics in the interval (¢ — r1, t 4+ r3). Value ¢ is
generally chosen to be some value from the region of overlap between the gen-
uine and impostor score distribution, whereas r; and ro are made equal to the
extent of overlap between the two distributions toward the left and right of ¢,
respectively [4].

Normalized scores from genuine and impostor distribution shown in Figure 7]
are depicted in Figure We have chosen value 230 for ¢t while r; and ro are
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FIGURE 18. Normalization of SIFT/Brute force scores by means of double
sigmoid function.

both set to 20. It is important to note that in order to obtain good results, one
must select these parameters carefully.

Note that in Figure I8 high frequency of genuine scores is around 1, whereas
the frequency of impostor scores is higher around 0. This shows that our fin-
ger vein module matched different impressions from the same finger as genuine
correctly while different impressions from different fingers were matched as im-
postors, respectively.

The normalized score by means of hyperbolic tangens function is obtained as

follows [4].
1 _
sy == {tanh(0.0l(w» + 1} , (7)
2 0Sg

where ps. and og, are the mean and the standard deviation calculated from the
genuine scores. This method is robust because it is insensitive to the presence
of aberrant scores [4].
Z-score normalization method is given as follows [4].
st ==, ®)
gs

where g and og are the mean and the standard deviation of the set of scores.
This technique is not robust because of its two parameters (mean and standard
deviation) which are sensitive to outliers [4]. Normalization by means of Z score
method is presented in Figure
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FIGURE 19. Normalization of SIFT/Brute force scores by means of Z-score approach.

The simplest normalization method is the Min — Max. Normalized score ob-
tained by means of Min — Max technique is given as follows [4].

N Sk — Min(S)

*F 7 Max(S) — Min(S)’ ®

where Max(.S) and Min(S) are respectively the maximum and minimum values
of the scores. This method is not robust because it is sensitive to the presence
of outliers [4].

3.3. Score-Level Fusion

Several methods have been proposed on score level fusion approach. However,
we have conducted our experiments using min, max, tanH, sum, mean and product
fusion methods.

Score fusion using the selected methods is conducted as follows [15].

M Stnar = min(M Sy, MSt,), (10)
M Sgna1 = max(MSs,, MSy,), (11)
M Sgna1 = tanh(MSyp) + tanh(M Sy,), (12)
MSgna = MSy, + MSy,, (13)
M Sgnar = (axMSy, +bxMSy,)/2, (14)
MSna = MS;, x MSy,, (15)
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where M Sgna represents the final match score while M Sy, and M Sy, denote
the match score from fingerprint and finger vein, respectively. Also note that
in (I0) a and b represent the weights assigned to each trait. We have used 0.5
for both a and b, respectively.

4. Experimental Results

Well-established indicators of performance of a biometric system are False
Accept Rate (FAR/FRR), False Reject Rate (FRR), Receiver Operating Char-
acteristic (ROC) and Equal Error Rate (EER). A false accept occurs when a
genuine score falls below the threshold 7, whereas false reject is the result of an
impostor score exceeding the given threshold 7. Hence FAR/FRR represents a
fraction of impostor scores that surpass the threshold 7 while FRR marks a por-
tion of genuine scores that have not surpassed the given threshold 7. The ROC
curves are mainly used to compare the performance of different biometric sys-
tems where FRR is plotted against FAR/FRR in a logarithmic scale. EER denotes
the point where the FAR/FRR equals the FRR. Higher EER hence suggests worse
performance of the system.

To perform evaluation of our system, we have conducted several tests. Namely,
we have tested the performance of each module, where a particular module
represents unimodal biometric system. Subsequently we have conducted tests
on both modules as part of our multimodal system. Multimodal system tests
were conducted using each of the six aforementioned fusion methods. In total
there were 4 213 440 impostor fingerprint pairs, 17 640 genuine fingerprint pairs,
7269 480 impostor and 9 540 genuine finger vein pairs.

The preprocessing time durations of all finger vein images from SDUMLA-HMT
database are given in Table [II Note that this evaluation was done on Lenovo
IdeaPad 700-15ISK laptop with Intel Core i5 6300 HQ 2.3GHz (quad core),
8 GB DDR4 2133MHz and Nvidia GeForce GTX 950M 2 GB. Time duration of pre-
processing of single image is ~0.007 seconds. Note that the preprocessing is done
sequentially.

TABLE 1. Time durations of preprocessing stages of all finger vein images

from the SDUMLA-HMT database (3816 images).

‘ Phase H Filtering ‘ Edge detection ‘ Contour computation ‘ ROI ext. ‘
| Duration (s) | 275 | 1.4 | 0.18 | 031 |
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FIGURE 20. Genuine and impostor distribution using SURF/FLANN ap-
proach for finger vein images.

In Table 2] we present the results obtained by testing both fingerprint and
finger vein recognition modules independently. Namely, we may conclude that
both modules as such have obtained noteworthy results. The best recognition
rate is provided by fingerprint module - 94.3 %. For finger veins, the combina-
tions of SIFT and brute force matcher provide similar equal error rates ~6 %.
Note that the use of FLANN-based matcher with SURF algorithm obtained rather
lower recognition rate. The background cause is discussed in the latter part
of this section.

TABLE 2. Equal Error Rates obtained with unimodal systems.

Module H EER ‘ Recognition rate
Fingerprint 5.7 % 94.3 %
Finger vein (SIFT/BF, double sigmoid) || 6.1 % 93.9%
Finger vein (SIFT/BF, Z-score) 6.12% 93.88 %
Finger vein (SIFT/BF, Min-Max) 6.1% 93.9%
Finger vein (SIFT/BF, TanH) 6.12% 93.88%
Finger vein (SURF/FLANN) 26.12% 73.88 %
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TableBl portrays the results obtained with various fusion methods, whereas the
normalization of SIFT /brute force scores is done by means of hyperbolic tangens.
In general, this particular combination with sum and mean fusion methods has
yielded the best results. The recognition rate goes as high as 97.88 %. FAR/FRR
performance plot of this combination is shown in Figure 21l whereas the ROC
curve plot is shown in Figure On the other hand, the use of min, max and
product fusion methods resulted in slightly lower recognition rates.

TABLE 3. Equal Error Rates obtained with SIFT/Brute force and TanH
normalization combination.

Fusion method H Min‘ Max‘ Sum ‘ Product ‘ TanH ‘ Mean

EER 6.67% | 6.03% | 212% | 649% | 2.79% | 2.12%
Recognition rate|| 93.33%[93.97% |97.88 % | 93.51% | 97.21% | 97.88 %

As shown in Table @ Table [l and Table [, all three SIFT/brute force combi-
nations utilizing Z-score, Min — Max and double sigmoid normalization methods
obtained rather notable scores. All three combinations obtained recognition rates
>90 %.

TABLE 4. Equal Error Rates obtained with SIFT/Brute force and Z-score
normalization combination.

Fusion method H Min ‘ Max ‘ Sum ‘ Product ‘ TanH ‘ Mean ‘

EER 6.03% | 6.04% | 4.8% 3.16% | 4.67% | 4.79%
Recognition rate || 93.97 % | 93.96 % [ 95.2 % | 96.84 % | 95.33% |95.21 %

TABLE 5. Equal Error Rates obtained with SIFT/Brute force and Min-
Max normalization combination.

Fusion method H Min ‘ Max ‘ Sum ‘ Product TanH ‘ Mean ‘

EER 6.67% | 6.06% | 3.28% 4.27% | 2.99% | 3.23%
Recognition rate|| 93.33 % [93.94% | 96.72% | 95.73% | 97.01 % | 96.77 %

TABLE 6. Equal Error Rates obtained with SIFT/Brute force and double
sigmoid normalization combination.

Fusion method H Min ‘ Max ‘ Sum ‘ Product ‘ TanH ‘ Mean ‘

EER 62% | 6% | 547% 6.12% 5% | 54%
Recognition rate || 93.8% | 94% | 94.53% | 93.88% | 95 % | 94.6%
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Fiqure 21. FAR/FRR performance plot for combination of SIFT/Brute
force normalized by hyperbolic tangens and fused by mean method.
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FI1qURE 22. ROC curve plot for combination of SIFT/Brute force normal-
ized by hyperbolic tangens and fused by mean method.
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We observe that recognition rates are significantly lower when FLANN mat-
cher is used (see Table [M). Such behaviour may also be seen in Figure
The overlap between genuine and impostor is greater when compared to Fig-
ure[[7, where Brute force matcher was used. As we have regarded before, FLANN
matcher does not necessarily find the best keypoint match from the matching
set. Hence employment of FLANN-based matcher greatly influences the obtained
scores.

TABLE 7. Equal Error Rates obtained with SURF /Flann combination.

Fusion method H Min ‘ Max ‘ Sum ‘Product‘ TanH ‘ Mean ‘

EER 6.68% |26.12% | 14.05% | 5.95% | 11.09% | 13.99%
Recognition rate|| 93.32% | 73.88% | 85.95% | 94.05% | 88.91% | 86.01 %

During our investigation it was rather difficult to find a similar solution com-
bining fingerprints and finger veins. Moreover, finding experimental results ob-
tained from SDUMLA-HMT database was impossible at the time of our research.
Fortunately, Yang and Zhang in [31] proposed a solution incorporating feature-
level and score-level fusion of fingerprints and finger veins (see section [2).

Similar to our results, their ROC curves confirm superiority of multimodal
systems over unimodal ones. In addition, feature-level fusion significantly out-
performed score-level fusion approach. Tests were carried out on the dataset
of 640 fingerprints and the same number of finger veins.

Another important outcome of their research was obtaining recognition accu-
racy rates of 99.687 % for feature-level fusion and 98.75 % for score-level fusion.
We achieved similar results despite having dataset consisting of images from
multiple sensors. Thus, we may consider our solution as a noteworthy entry into
the particular research field.

5. Conclusion and Future Work

In this paper we introduced OpenFinger, our automated multimodal biomet-
ric system utilizing fingerprint and finger vein pattern for recognition purposes.
It consists of two major modules, where each module is used for processing
of particular biometric trait. The extraction of salient features (Level 2 features)
in fingerprint module is done by employing convolutional neural network, which
is trained on images from four different sensors thus providing sensor interoper-
ability.
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F1cure 23. ROC curves measured for unimodal and multimodal systems
by authors in [31].

On the other hand, finger vein recognition module employs keypoint-based
features which are computed by SIFT and SURF algorithms. Prior to extraction,
we employ our endpoint-based algorithm for ROT extraction. Despite obtaining
high recognition rates, we consider that our finger vein preprocessing algorithm
ought to be further improved. ROI extraction may be improved by adapting the
algorithm to slanted finger images. In addition, we consider employing convolu-
tional neural network for extraction of salient features from finger vein images.
Another future prospect is to administer concurrency for preprocessing phase.

Nonetheless, we may consider our current solution rather successful, as have
the a posteriori results shown, due to its ability to keep up with already proposed
solutions. Hence the proposed fully automated multimodal biometric system
based on fingerprints and finger vein patterns utilizing several normalization as
well as fusion techniques along with its complete evaluation and comparison
with published pertinent research may be considered as a contribution to the
field of biometrics.
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