

NECESSARY AND SUFFICIENT CONDITIONS FOR OSCILLATION OF SOLUTIONS TO SECOND-ORDER NEUTRAL DIFFERENTIAL EQUATIONS WITH IMPULSES

Shyam Sundar Santra

Department of Mathematics, JIS College of Engineering, Kalyani, Nadia, West Bengal, INDIA

ABSTRACT. In this work, necessary and sufficient conditions for oscillation of solutions of second-order neutral impulsive differential system

$$
\begin{cases}\n\left(r(t)(z'(t))^{\gamma}\right)' + q(t)x^{\alpha}(\sigma(t)) = 0, & t \geq t_0, \ t \neq \lambda_k, \\
\Delta\left(r(\lambda_k)(z'(\lambda_k))^{\gamma}\right) + h(\lambda_k)x^{\alpha}(\sigma(\lambda_k)) = 0, & k \in \mathbb{N}\n\end{cases}
$$

are established, where $\frac{1}{x}$

$$
(t) = x(t) + p(t)x(\tau(t)).
$$

Under the assumption $\int_{-\infty}^{\infty} (r(\eta))^{-1/\alpha} d\eta = \infty$, two cases when $\gamma > \alpha$ and $\gamma < \alpha$ are considered. The main tool is Lebesgue's Dominated Convergence theorem. Examples are given to illustrate the main results, and state an open problem.

1. Introduction

Consider the neutral impulsive differential system

$$
\begin{cases}\n\left(r(t)\left(z'(t)\right)^{\gamma}\right)' + q(t)x^{\alpha}(\sigma(t)) = 0, & t \ge t_0, \ t \neq \lambda_k, \\
\Delta\left(r(\lambda_k)\left(z'(\lambda_k)\right)^{\gamma}\right) + h(\lambda_k)x^{\alpha}(\sigma(\lambda_k)) = 0, & k \in \mathbb{N},\n\end{cases}
$$
\n(1.1)

where

$$
z(t) = x(t) + p(t)x(\tau(t)), \quad \Delta x(a) = \lim_{s \to a^{+}} x(s) - \lim_{s \to a^{-}} x(s),
$$

[©] 2020 Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 34K, 34C10, 34K11.

K e y w o r d s: Oscillation, non-oscillation, neutral, delay, Lebesgue's Dominated Convergence theorem, impulses.

Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

the functions p, q, h, r, σ, τ are continuous that satisfy the conditions stated below; and assume that the sequence $\{\lambda_k\}$ satisfies $0 < \lambda_1 < \lambda_2 < \ldots$ as $k \to \infty$; and γ and α are the quotient of two odd positive integers.

- (A1) $\sigma \in C([0,\infty), \mathbb{R}_+)$, $\tau \in C^2([0,\infty), \mathbb{R}_+)$, $\sigma(t) < t$, $\tau(t) < t$, $\lim_{t \to \infty} \sigma(t) = \infty$, $\lim_{t\to\infty}\tau(t)=\infty.$
- (A2) $r \in C^1([0,\infty), \mathbb{R}_+), q, h \in C([0,\infty), \mathbb{R}_+); 0 < r(t), 0 \leq q(t), 0 \leq h(t),$ for all $t \geq 0$; $q(t)$ is not identically zero in any interval $[b, \infty)$.

(A3)
$$
\int_{0}^{\infty} r^{-1/\gamma}(s) ds = \infty
$$
; let $\Pi(t) = \int_{0}^{t} r^{-1/\gamma}(\eta) d\eta$.

- $(A4) -1 < -p_0 \le p(t) \le 0$ for $t \ge t_0$.
- (A5) there exists a differentiable function $\sigma_0(t)$ such that $0 < \sigma_0(t) \leq \sigma(t)$ $0 < \sigma_0(t) \leq \sigma(t)$ $0 < \sigma_0(t) \leq \sigma(t)$ and $\sigma'_0(t) \ge \alpha$ for $t \ge t^*$, $\alpha > 0$.

The main featu[re of](#page-0-0) this article is having conditions that are both necessary and sufficient for the oscillation of [all](#page-12-0) [so](#page-12-1)lutions to (1.1). Sufficient conditions for the oscillation and nonoscillation of all solutions to the first and second order neutral impulsive differential systems are provided in [12–15, 21, 29–32]. The necessary and sufficient conditions for oscillation of all solutions to the first order neutral impulsive differential systems are discussed in [30,31]. In this work, our main aim is to present the necessary and sufficient conditions for oscillation of all solutions of (1.1).

In 2011, Dimitrova and Donev [13–15] considered the first order impulsive diff[eren](#page-1-0)tial system of the form

$$
\begin{cases}\n\left(x(t) + p(t)x(\tau(t))\right)' + q(t)x(\sigma(t)) = 0, & t \neq \lambda_k, \ k \in \mathbb{N}, \\
\Delta\left(x(\lambda_k) + p(\lambda_k)x(\tau(\lambda_k))\right) + q(\lambda_k)x(\sigma(\lambda_k)) = 0, & k \in \mathbb{N}\n\end{cases}
$$
\n(1.2)

and established several sufficient conditions for oscillation of the solutions of (1.2).

In 2014, Tripathy [29] establi[shed](#page-13-0) sufficient conditions for oscillation of all solutions of

$$
\begin{cases}\n\left(x(t) + p(t)x(t-\tau)\right)' + q(t)f\left(x(t-\sigma)\right) = 0, & t \neq \lambda_k, \ k \in \mathbb{N}, \\
\Delta\left(x(\lambda_k) + p(\lambda_k)x(\tau(\lambda_k - \tau)) + q(\lambda_k)f\left(x(\sigma(\lambda_k - \sigma))\right)\right) = 0, & k \in \mathbb{N}.\n\end{cases}
$$
\n(1.3)

In 2015, Tripathy and Santra [30] obtained the necessary and sufficient conditions for oscillatory and asymptotic behavior of solutions of

$$
\begin{cases}\n\big(x(t) + p(t)x(t-\tau)\big)' + q(t)f\big(x(t-\sigma)\big) = g(t), & t \neq \lambda_k, \ k \in \mathbb{N}, \\
\Delta\big(x(\lambda_k) + p(\lambda_k)x(\lambda_k - \tau)\big) + q(\lambda_k)f\big(x(\lambda_k - \sigma)\big) = h(\lambda_k), & k \in \mathbb{N}.\n\end{cases}
$$

In 2016, Tripath[y, S](#page-13-3)antra and Pinelas [31] obtained necessary and sufficient conditions of (1.3). In the subsequent year, Tripathy and Santra [32] established sufficient conditions for oscillation and existence of positive solutions of

$$
\begin{cases}\n\left(r(t)\left(x(t)+p(t)x(t-\tau)\right)'\right)' + q(t)f\left(x(t-\sigma)\right) = 0, & t \neq \lambda_k, \ k \in \mathbb{N}, \\
\Delta\left(r(\lambda_k)\left(x(\lambda_k)+p(\lambda_k)x(\lambda_k-\tau)\right)'\right) + q(\lambda_k)f\left(x(\lambda_k-\sigma)\right) = 0, & k \in \mathbb{N}.\n\end{cases}
$$

In 2018, Santra [21] established sufficient conditions for oscillations of solutions of

$$
\begin{cases}\n\left(r(t)\left(x(t)+p(t)x(\tau(t))\right)'\right)' + q(t)f\left(x(\sigma(t))\right) = 0, & t \neq \lambda_k, \ k \in \mathbb{N}, \\
\Delta\left(r(\lambda_k)\left(x(\lambda_k)+p(\lambda_k)x(\tau(\lambda_k))\right)'\right) + q(\lambda_k)f\left(x(\sigma(\lambda_k))\right) = 0, & k \in \mathbb{N}.\n\end{cases}
$$

By a solution x we mean a function differentiable on $[t_0, \infty)$ such that $z(t)$ and $z'(t)$ are differentiable for $t \neq \lambda_k$, and $z(t)$ is left continuous at λ_k and has right limit at λ_k , and x satisfies (1.1). We restrict our attention to solutions for which $\sup_{t>b} |x(t)| > 0$ for every $b \geq 0$. A solution is called oscillatory if it has arbitrarily large zeros; otherwise is [non-](#page-0-0)oscillatory.

To define a particular solution, we need an initial function $\phi(t)$ which is twice differen[tiabl](#page-0-0)e for t in the interval

$$
\min \{ \inf \{ \tau(t) : t_0 \le t \}, \, \inf \{ \sigma(t) : t_0 \le t \} \} \le t.
$$

Then a solution is obtained using the method of steps: When replacing $x(\tau(t))$ by $\phi(\tau(t))$, and $x(\sigma(t))$ by $\phi(\sigma(t))$ in (1.1), we obtain a second-order differential equation. We solve this equation by taking into account discrete equation of (1.1), let say on an interval $[t_0, t_1]$. Then we repeat the process starting at $t = t_1$.

2. Necessary and Sufficient Conditions

LEMMA 2.1. Assume that $(A1)$ – $(A4)$ hold for $t \ge t_0$. If x is an eventually positive solution of (1,1) then z satisfies any one of the following two cases: *positive solution of* (1.1)*, then* z *satisfies any one of the following two c[ases:](#page-0-0)*

- (i) $z(t) < 0, \quad z'(t) > 0, \quad (r(z')^{\gamma})'(t) \leq 0;$
- (ii) $z(t) > 0$, $z'(t) > 0$, $(r(z')^{\gamma})'(t) \le 0$

for all sufficiently large t*.*

P r o o f. Let x be an eventually positive solution. Then by (A1) there exists a t^*
such that $x(t) > 0$, $x(\tau(t)) > 0$ and $x(\tau(t)) > 0$ for all $t > t^*$. From (1.1) it such that $x(t) > 0$, $x(\tau(t)) > 0$ and $x(\sigma(t)) > 0$ for all $t \geq t^*$. From (1.1) it

follows that

$$
\left(r(t)\left(z'(t)\right)^{\gamma}\right)' = -q(t)x^{\alpha}(\sigma(t)) \le 0 \quad \text{for } t \ne \lambda_k,
$$

$$
\Delta\left(r(\lambda_k)\left(z'(\lambda_k)\right)^{\gamma}\right) = -h(\lambda_k)x^{\alpha}(\sigma(\lambda_k)) \le 0 \quad \text{for } k \in \mathbb{N}.
$$
 (2.1)

Therefore, $r(t)(z'(t))^{\gamma}$ is non-increasing for $t \geq t^*$, including jumps of discontinuity. nuity. Next we show the $r(t)(z'(t))^{\gamma}$ is positive. By contradiction assume that $r(t)(z'(t))^{\gamma} \leq 0$ at a certain time $t \geq t^*$. Using that q is not identically zero on
any interval $[b,\infty)$ and by $(2,1)$, there exists $t_0 \geq t^*$ such that any interval $[b, \infty)$, and by (2.1) , there exists $t_2 \geq t^*$ such that

$$
r(t)\big(z'(t)\big)^{\gamma} \le r(t_2)\big(z'(t_2)\big)^{\gamma} < 0 \quad \text{for all } t \ge t_2.
$$

Recall that γ is the quotient of two positive odd integers. Then

$$
z'(t) \le \left(\frac{r(t_2)}{r(t)}\right)^{1/\gamma} z'(t_2) \quad \text{for } t \ge t_2.
$$

Since $r(\lambda_k)(z'(\lambda_k))^{\gamma} \le r(t_2)(z'(t_2))^{\gamma} < 0$ for all $\lambda_k \ge t_2$. Integrating from t_2 to t , we have

$$
z(t) \le z(t_2) + \sum_{t_2 \le \lambda_k < \infty} z'(\lambda_k) + (r(t_2))^{1/\gamma} z'(t_2) (\Pi(t) - \Pi(t_2))
$$

$$
\le z(t_2) + (r(t_2))^{1/\gamma} z'(t_2) (\Pi(t) - \Pi(t_2)) \to -\infty
$$

as $t \to \infty$ due to (A3). Now, we consider the following two possibilities.

If x is unbounded, then there exists a sequence $\{\eta_k\} \to \infty$ such that

$$
x(\eta_k) = \sup\{x(\eta) : \eta \le \eta_k\}.
$$

By $\tau(\eta_k) \leq \eta_k$, we have $x(\tau(\eta_k)) \leq x(\eta_k)$ and hence

$$
z(\eta_k) = x(\eta_k) + p(\eta_k)x(\tau(\eta_k)) \ge (1 + p(\eta_k))x(\eta_k) \ge (1 - p_0))x(\eta_k) \ge 0,
$$

which contradicts $\lim_{k\to\infty} z(t) = -\infty$. Recall that $\{\lambda_k\}$ is the sequence of points for $t \geq \lambda_k$, then by similar argument we can show that $z(\lambda_k) \geq 0$ to get a contradiction to $\lim_{k\to\infty} z(t) = -\infty$. Therefore $r(t)(z'(t))^{\gamma} > 0$ for all $t \ge t^*$.

If x is bounded, then z is also bounded, which is a contradiction to

$$
\lim_{k \to \infty} z(t) = -\infty.
$$

From $r(t)(z'(t))^{\gamma} > 0$ and $r(t) > 0$, it follows that z'
 $\geq t^*$ such that z satisfies only one of two cases (i) and $\ell'(t) > 0$. Then there is $t_1 \geq t^*$ such that z satisfies only one of two cases (i) and (ii). This completes the proof the proof. \Box

LEMMA 2.2. Assume that $(A1)$ – $(A4)$ *hold. If* x *is an eventually positive solution* of $(1\ 1)$, then any one of following two cases exists: *of* (1.1)*, then any one of following two cases exists:*

(1) *if* z *satisfies* (i), $\lim_{t\to\infty} x(t) = 0$;

(2) *if* z *satisfies* (ii)*, there exist* $t_1 \ge t_0$ *and* $\delta > 0$ *such that*
 $0 \le t_0 \le t_0 \le \delta \Pi(t)$

$$
0 < z(t) \leq \delta \Pi(t), \tag{2.2}
$$
\n
$$
\left(\Pi(t) - \Pi(t_1)\right) \left[\int\limits_t^\infty q(\zeta) x^\alpha(\sigma(\zeta)) \, d\zeta + \sum\limits_{\lambda_k \geq t} h(\lambda_k) x^\alpha(\sigma(\lambda_k)) \right]^{1/\gamma}
$$

$$
\leq z(t) \leq x(t), \quad \text{for all } t \geq t_1. \quad (2.3)
$$

P r o o f. Let x be an eventually positive solution. Then by (A1) there exist t^*
such that $x(t) > 0$, $x(\tau(t)) > 0$ and $x(\sigma(t)) > 0$ for all $t > t^*$. Then Lemma 2.1 such that $x(t) > 0$, $x(\tau(t)) > 0$ and $x(\sigma(t)) > 0$ for all $t \geq t^*$. Then Lemma 2.1 holds and we have following two possible cases.

Case 1: Let z satisfies (i) for all $t \geq t_1$. Note that $\lim_{t\to\infty} z(t)$ exists and by (A1), $\limsup_{t\to\infty} x(t) = \limsup_{t\to\infty} x(\tau(t))$. Then $0 > z(t) \geq x(t) - p_0x(\tau(t))$ implies

$$
0 \geq \lim_{t \to \infty} z(t) \geq \lim_{t \to \infty} \left[x(t) - p_0 x(\tau(t)) \right] \geq (1 - p_0) \limsup_{t \to \infty} x(t).
$$

Since $(1 - p_0) > 0$, it follows that $\limsup_{t\to\infty} x(t) = 0$; hence $\lim_{t\to\infty} x(t) = 0$ for $t \neq \lambda_k$, $k \in \mathbb{N}$. We may note that $\{x(\lambda_k - 0)\}_{k \in \mathbb{N}}$ and $\{x(\lambda_k + 0)\}_{k \in \mathbb{N}}$ are sequences of real numbers, and because of continuity of x

$$
\lim_{k \to \infty} x(\lambda_k - 0) = 0 = \lim_{k \to \infty} x(\lambda_k + 0)
$$

due to $\liminf_{t\to\infty} x(t) = 0 = \limsup_{t\to\infty} x(t)$. Hence, $\lim_{t\to\infty} x(t) = 0$ for all t and $\lambda_k, k \in \mathbb{N}$.

Case 2: Let z satisfies (ii) for all $t \geq t_1$. Note that $x(t) \geq z(t)$ and z is positive and increasing so x cannot converge to zero. From $r(t)(z'(t))^{\gamma}$ being nonincreasing, there exist a constant $\delta > 0$ and $t \ge t_1$ such that $(r(t))^{1/\gamma} z'$ $'(t) \leq \delta,$ and hence $z(t) \leq \delta \Pi(t)$ for $t \geq t_1$.

Since $r(t)(z'(t))^{\gamma}$ is positive and non-increasing, $\lim_{t\to\infty} r(t)(z'(t))^{\gamma}$, exists d is non-negative. Integrating (1,1) from t to a we have and is non-negative. Integrating (1.1) from t to a, we have

$$
r(a)\left(z'(a)\right)^{\gamma}-r(t)\left(z'(t)\right)^{\gamma}=-\int_{t}^{a}q(\eta)x^{\alpha}(\sigma(\eta))\,\mathrm{d}\eta+\sum_{t\leq\lambda_{k}
$$

Computing the limit as $a \to \infty$,

$$
r(t)\big(z'(t)\big)^{\gamma} \ge \int\limits_t^{\infty} q(\eta)x^{\alpha}(\sigma(\eta)) d\eta + \sum\limits_{\lambda_k \ge t} h(\lambda_k)x^{\alpha}(\sigma(\lambda_k)). \quad (2.4)
$$

$$
z'(t) \geq \left[\frac{1}{r(t)} \left[\int_t^{\infty} q(\eta) x^{\alpha}(\sigma(\eta)) d\eta + \sum_{t \leq \lambda_k} h(\lambda_k) x^{\alpha}(\sigma(\lambda_k)) \right] \right]^{1/\gamma}
$$

Since $z(t_1) > 0$, integrating the above inequality yields

$$
z(t) \geq \int_{t_1}^t \left[\frac{1}{r(\eta)} \left[\int_{\eta}^{\infty} q(\zeta) x^{\alpha}(\sigma(\zeta)) d\zeta + \sum_{\eta \leq \lambda_k} h(\lambda_k) x^{\alpha}(\sigma(\lambda_k)) \right] \right]^{1/\gamma} d\eta.
$$

Since the int[egra](#page-4-0)nd is positive, we can increase the lower limit of integration from s to t, and then use the definition of $\Pi(t)$ to obtain

$$
z(t) \geq (\Pi(t) - \Pi(t_1)) \left[\int_t^{\infty} q(\zeta) x^{\alpha}(\sigma(\zeta)) d\zeta + \sum_{t \leq \lambda_k} h(\lambda_k) x^{\alpha}(\sigma(\lambda_k)) \right]^{1/\gamma},
$$

h yields (2.3).

which yields (2.3) .

Then

2.1. The Case $\alpha < \gamma$.

In this subsection, we assume that there exists a constant β_1 , the quotient of two positive odd integers such that $0 < \alpha < \beta_1 < \gamma$.

THEOREM 2.1. Under assumptions (A1)–(A4), each solution of (1.1) is eit[her](#page-2-0) *oscillatory or converges to zero if and only if*

$$
\int_{0}^{\infty} q(\eta) \Pi^{\alpha}(\sigma(\eta)) d\eta + \sum_{k=1}^{\infty} h(\lambda_k) \Pi^{\alpha}(\sigma(\lambda_k)) = \infty.
$$
 (2.5)

P r o o f. We prove the sufficiency by contradiction. Initially, we assume that a solution x is eventually positive which does not converge to zero. So, Lemma 2.1 holds and z satisfies any one of two cases (i) and (ii). In Lemma 2.2, Case 1 leads to $\lim_{t\to\infty} x(t) = 0$ which is a contradiction.

For Case 2, we can find $t_1 > 0$ such that

$$
x(t) \geq z(t) \geq (\Pi(t) - \Pi(t_1))w^{1/\gamma}(t) \geq 0 \text{ for } t \geq t_1,
$$

where

$$
w(t) = \int_{t}^{\infty} q(\zeta) x^{\alpha}(\sigma(\zeta)) d\zeta + \sum_{\lambda_k \geq t} h(\lambda_k) x^{\alpha}(\sigma(\lambda_k)) \geq 0.
$$

As $\lim_{t\to\infty} \Pi(t) = \infty$, there exists $t_2 \geq t_1$, such that $\Pi(t) - \Pi(t_1) \geq \frac{1}{2}R(t)$ for $t \geq t_2$ and hence

$$
z(t) \ge \frac{1}{2} \Pi(t) w^{1/\gamma}(t) . \tag{2.6}
$$

162

Note that w is left continuous at λ_k ,

$$
w'(t) = -q(t)x^{\alpha}(\sigma(t)) \text{ for } t \neq \lambda_k,
$$

\n
$$
\Delta w(\lambda_k) = -h(\lambda_k)x^{\alpha}(\sigma(\lambda_k)) \leq 0.
$$

Thus w is non-negative and non-increasing for $t \ge t_2$. Using (2.2), $\alpha - \beta_1 < 0$ and (2.6) , we have

$$
x^{\alpha}(t) \geq z^{\alpha-\beta_1}(t)z^{\beta_1}(t) \geq (\delta\Pi(t))^{\alpha-\beta_1}z^{\beta_1}(t)
$$

$$
\geq (\delta\Pi(t))^{\alpha-\beta_1}\left(\frac{\Pi(t)w^{1/\gamma}(t)}{2}\right)^{\beta_1} = \frac{\delta^{\alpha-\beta_1}}{2^{\beta_1}}\Pi^{\alpha}(t)w^{\beta_1/\gamma}(t) \text{ for } t \geq t_2.
$$

Since w is non-increasing, $\beta_1/\gamma > 0$, and $\sigma(\eta) < \eta$, it follows that

$$
x^{\alpha}(\sigma(\eta)) \geq \frac{\delta^{\alpha-\beta_1}}{2^{\beta_1}} \Pi^{\alpha}(\sigma(\eta)) w^{\beta_1/\gamma}(\sigma(\eta)) \geq \frac{\delta^{\alpha-\beta_1}}{2^{\beta_1}} \Pi^{\alpha}(\sigma(\eta)) w^{\beta_1/\gamma}(\eta).
$$

Now, we have

$$
\left(w^{1-\beta_1/\gamma}(t)\right)' = \left(1 - \frac{\beta_1}{\gamma}\right) w^{-\beta_1/\gamma}(t) \left(-q(t)x^{\alpha}(\sigma(t))\right) \quad \text{for } t \neq \lambda_k. \tag{2.7}
$$

To estimate the discontinuities of $w^{1-\beta_1/\gamma}$ we use a Taylor polynomial of order 1 for the function $h(x) = x^{1-\beta_1/\gamma}$ with $0 < \beta_1 < \gamma$ about $x = a$. 1 for the function $h(x) = x^{1-\beta_1/\gamma}$, with $0 < \beta_1 < \gamma$, about $x = a$:

$$
b^{1-\beta_1/\gamma} - a^{1-\beta_1/\gamma} \le \left(1 - \frac{\beta_1}{\gamma}\right) a^{-\beta_1/\gamma} (b - a) .
$$

Then $\Delta w^{1-\beta_1/\gamma}(\lambda_k) \leq (1-\frac{\beta_1}{\gamma})w^{-\beta_1/\gamma}(\lambda_k)\Delta w(\lambda_k)$. Integrating (2.7) from t_2 to t_1 we have $t,$ we have

$$
w^{1-\beta_1/\gamma}(t_2) \geq \left(1 - \frac{\beta_1}{\gamma}\right) \left[\int_{t_2}^t w^{-\beta_1/\gamma}(\eta) w'(\eta) d\eta - \sum_{t_2 \leq \lambda_k < t} w^{-\beta_1/\gamma}(\lambda_k) \Delta w(\lambda_k) \right]
$$

\n
$$
= \left(1 - \frac{\beta_1}{\gamma}\right) \left[\int_{t_2}^t w^{-\beta_1/\gamma}(\eta) \left(q(\eta) x^{\alpha}(\sigma(\eta))\right) d\eta + \sum_{t_2 \leq \lambda_k < t} w^{-\beta_1/\gamma}(\lambda_k) h(\lambda_k) x^{\alpha}(\sigma(\lambda_k)) \right]
$$

\n
$$
\geq \frac{\left(1 - \frac{\beta_1}{\gamma}\right)}{2^{\beta_1} \delta^{\beta_1 - \alpha}} \left[\int_{t_2}^t q(\eta) \Pi^{\alpha}(\sigma(\eta)) d\eta + \sum_{t_2 \leq \lambda_k < t} h(\lambda_k) \Pi^{\alpha}(\sigma(\lambda_k)) \right].
$$

which contradicts (2.5) as $t \to \infty$ and completes the proof of sufficiency for eventually positive solutions. For an eventually negative solution x , we introduce the variables $y = -x$ so that we can apply the above process for the solution y.

For an eventually negative solution x, we introduce the variables $y = -x$ so that we can apply the above process for the solution y.

Next, we show the necessity part by a contrapositive argument. Let (2.5) do not hold. Then, it is possible to find $t_1 > 0$ such that

$$
\int_{\eta}^{\infty} q(\zeta) \Pi^{\alpha}(\sigma(\zeta)) d\zeta + \sum_{\lambda_k \ge \eta} h(\lambda_k) \Pi^{\alpha}(\sigma(\lambda_k)) \le \epsilon/\delta^{\alpha}
$$
\n(2.8)

for all $\eta \geq t_1$ and $\delta, \epsilon > 0$ satisfying the relation

$$
(2\epsilon)^{1/\gamma} = (1 - p_0)\delta\,,\tag{2.9}
$$

so that $0 < \epsilon^{1/\gamma} \le (1 - p_0) \delta / 2^{1/\gamma} < \delta$. Define the set of continuous functions

$$
M = \{x \in C([0,\infty)) : \epsilon^{1/\gamma} \big(\Pi(t) - \Pi(t_1) \big) \leq x(t) \leq \delta \big(\Pi(t) - \Pi(t_1) \big), \ t \geq t_1 \}
$$

and define an operator Φ on M by

$$
(\Phi x)(t) = \begin{cases} 0 & \text{if } t \leq t_1, \\ -p(t)x(\tau(t)) + \int_{t_1}^t \left[\frac{1}{r(\eta)} \left[\epsilon + \int_{\eta}^{\infty} q(\zeta) x^{\alpha}(\sigma(\zeta)) \, d\zeta + \frac{\sum_{\lambda_k \geq \eta} h(\lambda_k) x^{\alpha}(\sigma(\lambda_k)) \right] \right]^{1/\gamma} d\eta & \text{if } t > t_1. \end{cases}
$$

We need to show that if x is a fixed point of Φ , i.e. $\Phi x = x$, then x is a solution of (1.1).

First we estimate $(\Phi x)(t)$ from below. For $x \in M$ $x \in M$, we have $0 \leq \epsilon^{1/\gamma} (\Pi(t) - t) \leq x(t)$ and by $(\Lambda 2)$ and $(\Lambda 3)$ we have $\Pi(t_1)$ \leq $x(t)$ and by (A2) and (A3) we have

$$
(\Phi x)(t) \geq 0 + \int_{t_1}^t \left[\frac{1}{r(\eta)} [\epsilon + 0 + 0] \right]^{1/\gamma} d\eta = \epsilon^{1/\gamma} \big(\Pi(t) - \Pi(t_1) \big) .
$$

Now we estimate $(\Phi x)(t)$ from above. For x in M, by definition of the set M, we have $x^{\alpha}(\sigma(\eta)) \leq (\delta \Pi(\sigma(\eta)))^{\alpha}$. Therefore, by (2.8),

$$
(\Phi x)(t) \le p_0 \delta(\Pi(t) - \Pi(t_1))
$$

+
$$
\int_{t_1}^t \left[\frac{1}{r(\eta)} \left[\epsilon + \delta^{\alpha} \int_{\eta}^{\infty} q(\zeta) \Pi^{\alpha}(\sigma(\zeta)) d\zeta + \delta^{\alpha} \sum_{\lambda_k \ge \eta} h(\lambda_k) \Pi^{\alpha}(\sigma(\lambda_k)) \right] \right]^{1/\gamma} d\eta
$$

$$
\le p_0 \delta(\Pi(t) - \Pi(t_1)) + (2\epsilon)^{1/\gamma} (\Pi(t) - \Pi(t_1)) = \delta(\Pi(t) - \Pi(t_1)).
$$

Therefore, Φ maps M to M .

To find a fixed point for Φ in M, let us define a sequence of functions in M by the recurrence relation

$$
u_0(t) = 0 \qquad \text{for } t = 0,
$$

\n
$$
u_1(t) = (\Phi u_0)(t) = \begin{cases} 0 & \text{if } t < t_1, \\ \epsilon^{1/\gamma} (\Pi(t) - \Pi(t_1)) & \text{if } t \ge t_1, \end{cases}
$$

\n
$$
u_{n+1}(t) = (\Phi u_n)(t) \qquad \text{for } n \ge 1, t \ge t_1.
$$

Note that fo[r ea](#page-0-0)ch fixed t, we have $u_1(t) \geq u_0(t)$. Using mathematical induction, we can show that $u_{n+1}(t) \geq u_n(t)$. Therefore, the sequence $\{u_n\}$ converges pointwise to a function u. Using the Lebesgue dominated convergence theo[rem,](#page-5-2) we can show that u is a fixed point of Φ in M. This shows under assumption (2.8), there a non-oscillatory solution that does not converge to zero. there a non-oscillatory solution that does not converge to zero.

 2.1 Under the assumptions of Theorem 2.1, every unbounded solution of (1.1) is oscillatory if and only if (2.5) holds.

P r o o f. The [pro](#page-0-0)of of the corollary is an immediate consequence of Theorem 2.1. \Box

2.2. The Case $\alpha > \gamma$.

In this subsection, we assume that there exists a constant β_2 , the quotient of two positive odd integers such that $\gamma < \beta_2 < \alpha$.

THEOREM 2.2. Under assumptions $(A1)$ – $(A5)$ and $r(t)$ is non-decreasing, every solution of (11) is either oscillatory or converges to zero if and only if *solution of* (1.1) *is either oscillatory or converges to zero if a[nd o](#page-4-2)nly [if](#page-2-0)*

$$
\int_{0}^{\infty} \left[\frac{1}{r(\eta)} \left[\int_{\eta}^{\infty} q(\zeta) \,d\zeta + \sum_{k=1}^{\infty} h(\lambda_k) \right] \right]^{1/\gamma} d\eta = \infty.
$$
 (2.10)

P r o o f. We prove the sufficiency by contradiction. Initially, we assume that x is an eventually positive solution not converging to zero. So, Lemma 2.1 holds and z [satis](#page-4-3)fi[es an](#page-8-0)y one of two cases (i) and (ii). In Lemma 2.2, Case 1 leads to $\lim_{t\to\infty} x(t) = 0$ which is a contradiction.

For Case 2, $z(t) > 0$ is non-decreasing for $t \ge t_1$ and

implies that
\n
$$
x^{\alpha}(t) \ge z^{\alpha-\beta_2}(t) z^{\beta_2}(t) \ge z^{\alpha-\beta_2}(t_1) z^{\beta_2}(t)
$$
\n
$$
x^{\alpha}(\sigma(t)) \ge z^{\alpha-\beta_2}(t_1) z^{\beta_2}(\sigma(t)) \quad \text{for } t \ge t_2 > t_1. \tag{2.11}
$$

Using (2.4), (2.11) and $\sigma(t) \geq \sigma_0(t)$, we have

$$
r(t)\left(z'(t)\right)^{\gamma} \geq z^{\alpha-\beta_2}(t_1) \left[\int\limits_t^{\infty} q(\eta) \, \mathrm{d}\eta + \sum_{\lambda_k \geq t} h(\lambda_k)\right] z^{\beta_2}(\sigma_0(t)) \quad \text{for } t \geq t_2.
$$
\n
$$
(2.12)
$$

Being $r(t)(z'(t))^{\gamma}$ non-increasing and $\sigma_0(t) \leq t$, we have

$$
r(\sigma_0(t))\big(z'(\sigma_0(t))\big)^{\gamma} \ge r(t)\big(z'(t)\big)^{\gamma}.
$$

Using the last inequality in (2.12) and then dividing by $z^{\beta_2/\gamma}(\sigma_0(t)) > 0$, we get

$$
\frac{z'(\sigma_0((t))}{z^{\beta_2/\gamma}(\sigma_0(t))} \geq \left[\frac{z^{\alpha-\beta_2}(t_1)}{r(\sigma_0(t))}\left[\int_t^{\infty} q(\eta) d\eta + \sum_{\lambda_k \geq t} h(\lambda_k)\right]\right]^{1/\gamma} \quad \text{for} \quad t \geq t_2.
$$

Multiplying the left-hand side by $\sigma'_0(t)/\alpha \ge 1$ and integrating from t_1 to t ,

$$
\frac{1}{\alpha} \int_{t_1}^t \frac{z'(\sigma_0(\eta))\sigma'_0(\eta)}{z^{\beta_2/\gamma}(\sigma_0(\eta))} d\eta \ge
$$
\n
$$
z^{(\alpha-\beta_2)/\gamma}(t_1) \int_{t_1}^t \left[\frac{1}{r(\sigma_0(\eta))} \left[\int_{\eta}^{\infty} q(\zeta) d\zeta + \sum_{\eta \le \lambda_k} h(\lambda_k) \right] \right]^{1/\gamma} d\eta \quad \text{for } t \ge t_2.
$$
\n(2.13)

Since $\gamma < \beta_2$, $r(\sigma_0(\eta)) \le r(\eta)$ and

$$
\frac{1}{\alpha(1-\beta_2/\gamma)} \Big[z^{1-\beta_2/\gamma}(\sigma_0(\eta))\Big]_{\eta=t_2}^t \leq \frac{1}{\alpha(\beta_2/\gamma-1)} z^{1-\beta_2/\gamma}(\sigma_0(t_2)),
$$

then (2.13) becomes

$$
\int_{t_1}^t \left[\frac{1}{r(\eta)} \left[\int_{\eta}^{\infty} q(\zeta) \,d\zeta + \sum_{\eta \leq \lambda_k} h(\lambda_k) \right] \right]^{1/\gamma} d\eta < \infty,
$$

which is a contradiction to (2.10) . This contradiction implies that the solution x cannot be eventually positive. Eventually negative solution is similar.

To prove the necessity part, we assume that (2.10) does not hold. For given

$$
\epsilon = (2/(1-p_0))^{-\alpha/\gamma} > 0,
$$

we can find a $t_1 > 0$ such that

$$
\int_{t_1}^{\infty} \left[\frac{1}{r(\eta)} \left[\int_{\eta}^{\infty} q(\zeta) \, \mathrm{d}\zeta + \sum_{\lambda_k \ge s} h(\lambda_k) \right] \right]^{1/\gamma} \, \mathrm{d}\eta < \epsilon. \tag{2.14}
$$

Consider

$$
M = \left\{ x \in C([0, \infty)) : 1 \le x(t) \le \frac{2}{1 - p_0} \text{ for } t \ge t_1 \right\}.
$$

166

Define the operator

$$
(\Phi x)(t) = \begin{cases} 0 & \text{if } t < t_1, \\ 1 - p(t)x(\tau(t)) & \\ & + \int_{t_1}^t \left[\frac{1}{r(\eta)} \left[\int_{\eta}^{\infty} q(\zeta) x^{\alpha}(\sigma(\zeta)) d\zeta \right] + \sum_{\lambda_k \ge \eta} h(\lambda_k) x^{\alpha}(\sigma(\lambda_k)) \right] \end{cases}
$$

Indeed, $\Phi x = x$ implies that x is a solution of (1.1).

First, we estimate $(\Phi x)(t)$ from below. Let $x \in M$. Then $1 \leq x$ implies that $(\Phi x)(t) \geq 1$, on $[t_1,\infty)$. Estimating $(\Phi x)(t)$ from above. Let $x \in M$. Then $x \leq 2/(1-p_0)$ and thus $\frac{t}{f}$

$$
(\Phi x)(t) \le 1 - p(t) \frac{2}{1 - p_0} + \int_{t_1}^t \left[\frac{1}{r(\eta)} \left[\int_{\eta}^{\infty} q(\zeta) \left(\frac{2}{1 - p_0} \right)^{\alpha} d\zeta + \sum_{\lambda_k \ge \eta} h(\lambda_k) \left(\frac{2}{1 - p_0} \right)^{\alpha} \right] \right]^{1/\gamma} d\eta.
$$

Since $\sigma_0(\eta) \leq \eta$ and $r(\cdot)$ is non-decreasing, we can replace $r(\eta)$ by $r(\sigma_0(\eta))$ and the above inequality is still valid. By (2.14) and the definition of ϵ , we have

$$
(\Phi x)(t) \le 1 + \frac{2p_0}{1 - p_0} + (2/(1 - p_0))^{\alpha/\gamma} \epsilon = 1 + \frac{2p_0}{1 - p_0} + 1 = \frac{2}{1 - p_0}.
$$

Therefore Φ maps M to M .
To find a fixed point for

To find a fixed point for Φ in M , we define a sequence of functions by the surrence relation recurrence relation

$$
u_0(t) = 0 \qquad \text{for } t = 0,
$$

\n
$$
u_1(t) = (\Phi u_0)(t) = 1 \quad \text{for } t \ge t_1,
$$

\n
$$
u_{n+1}(t) = (\Phi u_n)(t) \qquad \text{for } n \ge 1, \ t \ge t_1.
$$

Note that for each fixed t, we have $u_1(t) \ge u_0(t)$. Using that f is non-decreasing
and mathematical induction, we can prove that $u_{\alpha+1}(t) \ge u_{\alpha}(t)$. Therefore $f_{\alpha+1}$ and mathematical induction, we can prove that $u_{n+1}(t) \geq u_n(t)$. Therefore $\{u_n\}$ converges pointwise to a function u in M. Then u is a fixed point of Φ and a positive solution to (1.1) that does not converge to zero. positive solution to (1.1) that does not converge to zero.

 2.2*Under the assumptions of Theorem 2.2, every unbounded solution of* (1.1) *is oscillatory if and only if* (2.10) *hold.*

Example 2.1. Consider the neutral differential equation

$$
\begin{cases}\n\left(e^{-t}((x(t)-e^{-t}x(\tau(t)))')^{11/3}\right)' + \frac{1}{t+1}(x(t-2))^{1/3} = 0, \\
\left(e^{-k}((x(k)-e^{-k}x(\tau(k)))')^{11/3}\right)' + \frac{1}{t+4}(x(k-2))^{1/3} = 0.\n\end{cases}
$$
\n(2.15)

Here for

$$
\gamma = \frac{11}{3}, \quad r(t) = e^{-t}, \quad -1 < p(t) = -e^{-t} \le 0, \quad \sigma(t) = t - 2, \quad \lambda_k = k
$$
\n
$$
k \in \mathbb{N}, \quad \Pi(t) = \int_0^t e^{5s/3} \, ds = \frac{3}{5} \left(e^{5t/3} - 1 \right), \quad \text{and} \quad \alpha = \frac{1}{3}.
$$

For $\beta_1 = \frac{7}{3}$ we have $0 < \alpha < \beta_1 < \gamma$, and $u^{\alpha-\beta_1} = u^{-2}$ which is a decreasing function.
To shock (2.5) we have To check (2.5) we have

$$
\int_{0}^{\infty} q(\eta) \Pi^{\alpha}(\sigma(\eta)) d\eta + \sum_{k=1}^{\infty} h(\lambda_k) \Pi^{\alpha}(\sigma(\lambda_k)) \ge
$$

$$
\int_{0}^{\infty} q(\eta) \Pi^{\alpha}(\sigma(\eta)) d\eta = \int_{0}^{\infty} \frac{1}{\eta + 1} \left(\frac{3}{5} \left(e^{5(\eta - 2)/3} - 1\right)\right)^{1/3} d\eta = \infty,
$$

since the integral approaches $+\infty$ as $\eta \to +\infty$. So, all the conditions of Theorem 2.1 hold, therefore, each solution of (2.15) is oscillatory or converges to zero.

Example 2.2. Consider the neutral differential equation

$$
\begin{cases}\n\left(\left(\left(x(t) - e^{-t}x(\tau(t))\right)'\right)^{1/3}\right)' + t\left(x(t-2)\right)^{7/3} = 0, \\
\left(\left(\left(x(2^k) - e^{-2^k}x(\tau(2^k))\right)'\right)^{1/3}\right)' + \frac{t}{2}\left(x(2^k - 2)\right)^{7/3} = 0.\n\end{cases}
$$
\n(2.16)

Here

$$
\gamma = \frac{1}{3}, \quad r(t) = 1, \quad \sigma(t) = t - 2 \quad \text{and} \quad \alpha = \frac{7}{3}.
$$

For $\beta_2 = \frac{5}{3}$, we have $\alpha > \beta_2 > \gamma$ and $u^{\alpha-\beta_2} = u^{2/3}$ which is a increasing functions. To check (2.10) we have

$$
\int_{t_1}^{\infty} \left[\frac{1}{r(\eta)} \left[\int_{\eta}^{\infty} q(\zeta) d\zeta + \sum_{\lambda_k \ge \eta} h(\lambda_k) \right] \right]^{1/\gamma} d\eta
$$

\n
$$
\ge \int_{t_0}^{\infty} \left[\frac{1}{r(\eta)} \left[\int_{\eta}^{\infty} q(\zeta) d\zeta \right] \right]^{1/\gamma} d\eta \ge \int_{2}^{\infty} \left[\int_{\eta}^{\infty} \zeta d\zeta \right]^{3} d\eta = \infty.
$$

So, all the conditions of of Theorem 2.2 hold. Thus, all solution of (2.16) is oscillatory or converges to zero.

Remark 2.1 Based on this work and [13–15, 21, 29–32] an open problem that arises is to establish necessary and sufficient conditions for the oscillation of the solutions of the second-order nonlinear neutral differential equation (1.1) for $p > 0$ and $-\infty < p \leq -1$.

Acknowledgement. The author would like to thank reviewers for their careful reading and valuable comments that helped to correct and improve the paper.

REFERENCES

- [1] BAINOV, D. D.—SIMEONOV, P. S.: *Systems with Impulse Effect: Stability, Theory and Applications*. Ellis Horwood, Chichester, 1989.
- [2] BAINOV, D. D.—COVACHEV, V.: *Impulsive Differential Equations with a Small Parameter*. In: *[Series on Advances in Mathematics for Applied Sciences, Vol. 24.](http://www.naturalspublishing.com/files/published/x28z4tsz4912zt.pdf)* World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
- [3] BAINOV, D.D.—SIMEONOV, P.S.: *Theory of Impulsive Differential Equations: Asymptotic Properties of the Solutions and Applications*. World Scientific Publishers, Singapore, 1995.
- [4] BAINOV, D. D.—SIMEONOV, P. S.: *Impulsive Differential Qquations: Asymptotic Properties of the Solutions. Series on Advances in Mmathematics for Applied Sciences Vol. 28,* World Scientific Publishers, Singapore, 1995.

http://www.naturalspublishing.com/files/published/x28z4tsz4912zt.pdf

- [5] BAINOV, D. D.—DIMITROVA, M. B.: Oscillatory properties of the solutions of impulsve differential equations with a deviaing argument and nonconstant coefficients, Rocky Mountain J. Math. **27** (1997), 1027–1040.
- [6] BAINOV, D. D.—DIMITROVA, M. B.—DISHLIEV,A. B.: Oscillation of the solutions of impulsive differential equations and inequalities with a retarded argument, Rocky Mountain J. Math. **28** (1998), 25–40.
- [7] BEREZANSKY, L.—BRAVERMAN, E.: Oscillation of a linear delay impulsive differential equations, Comm. Appl. Nonlinear Anal. **3** (1996), 61–77.
- [8] MING-PO CHEN, M.-P.—YU, J. S.—SHEN, J. H.: the persistence of nonoscillatory solutions of delay differential equations under impulsive perturbations, Comput. Math. Appl. **27** (1994), 1–6.
- [9] DOMOSHNITSKY, A.—-DRAKHLIN, M.: Nonoscillation of first order impulse differential equations with delay, J. Math. Anal. Appl. **206** (1997), 254–269.
- [10] DOMOSHNITSKY, A.—DRAKHLIN, M.—LITSYN, E.: On boundary value problems for N-th order functional differential equations with impulses, Adv. Math. Sci. Appl. **8** (1998), no. 2, 987–996.
- [11] DIMITROVA, M. B.—MISHEV, D.: Oscillation of the solutions of neutral impulsive differential-difference equations of first order, Electron. J. Qual. Theory Differ. Equ. **16** (2005), 1–11.
- [12] DIMITROVA, M.B.-DONEV, V.I.: Sufficient conditions for the oscillation of solutions of first-order neutral delay impulsive differential equations with constant coefficients, Nonlinear Oscil. **13** (2010), no. 1, 17–34.
- [13] DIMITROVA, M. B.—DONEV, V. I.: Oscillatory properties of the solutions of a first order neutral nonconstant delay impulsive differential equations with variable coefficients, Int. J. Pure Appl. Math, **72** (2011), no. 4, 537–554.
- [14] DIMITROVA, M. B.—DONEV, V. I.: Oscillation criteria for the solutions of a first order neutral nonconstant delay impulsive differential equations with variable coefficients, Int. J. Pure Appl. Math. **73** (2011), no. 1, 13–28.
- [15] DIMITROVA, M. B.—DONEV, V. I.: On the nonoscillation and oscillation of the solutions of a first order neutral nonconstant delay impulsive differential equations with variable or oscillating coefficients, Int. J. Pure Appl. Math. **73** (2011), no. 1, 111–128.
- [16] DOMOSHNITSKY, A.—LANDSMAN, G.—YANETZ, S.: About positivity of Green's functions for impulsive second order delay equations, Opuscula Math. **34** (2014), no. 2, 339–362.
- [17] KARPUZ, B.—SANTRA, S. S.: Oscillation theorems for second-order nonlinear delay differential equations of neutral type Hacet. J. Math. Stat. **48** (2019), no. 3, 633–643.

- [18] PINELAS, S.—SANTRA, S. S.: Necessary and sufficient condition for oscillation of nonlinear neutral first-order differential equations with several delays. J. Fixed Point Theory Appl. **20** (2018), no. 27, 1–13.
- [19] PINELAS, S.-SANTRA, S. S.: necessary and sufficient conditions for oscillation of nonlinear first order forced differential equations with several delays of neutral type, Analysis, **39** (2019), no. 3, 97–105.
- [20] SANTRA, S. S.: Oscillation analysis for nonlinear neutral differential equations of secondorder with several delays. Mathematica, **59(82)** (2017), no. 1–2, 111–123.
- [21] SANTRA, S. S.: On oscillatory second order nonlinear neutral impulsive differential systems with variable delay, Adv. Dyn. Syst. Appl. **13** (2018), no. 2, 176–192.
- [22] SANTRA, S.S.—TRIPATHY, A.K.: On oscillatory first order nonlinear neutral differential equations with nonlinear impulses, J. Appl. Math. Comput. **59** (2019), no. 1–2, 257–270.
- [23] SANTRA, S.S: Necessary and sufficient conditions for oscillation to second-order halflinear delay differential equations, J. Fixed Point Theory Appl. **21**, Article id 85, (2019), 1–10.
- [24] SANTRA, S. S: Oscillation analysis for nonlinear neutral differential equations of secondorder with several delays and forcing term, Mathematica, **61**(84) (2019), no. 1, 63–78.
- [25] SANTRA, S. S—DIX, J. G.: Necessary and sufficient conditions for the oscillation of solutions to a second-order neutral differential equation with impulses, Nonlinear Studies, **27** (2020), no. 2, 375–387.
- [26] SANTRA, S.S.: Necessary and Sufficient Condition for Oscillatory and Asymptotic Behavior of Second-order Functional Differential Equations, Krag. J. Math. **44** (2020), no. 3, 459–473.
- [27] SANTRA, S.S.: Necessary and sufficient conditions for oscillatory and asymptotic behavior of solutions to second-order nonlinear neutral differential equations with several delays, Tatra Mountain Mathematical Publication, **75** (2020), 121–134.
- [28] SANTRA, S.S.: Necessary and sufficient conditions for oscillation of second-order delay differential equations, Tatra Mountain Mathematical Publication, **75** (2020), 135–146.
- [29] A. K. Tripathy; Oscillation criteria for a class of first order neutral impulsive differentialdifference equations, J. Appl. Anal. Comput. **4** (2014), 89–101.
- [30] TRIPATHY, A. K.—SANTRA, S. S.: Necessary and sufficient conditions for oscillation of a class of first order impulsive differential equations, Funct. Differ. Equ. **22** (2015), no. 3–4, 149–167.
- [31] TRIPATHY, A. K.—SANTRA, S.S.—PINELAS, S.: Necessary and sufficient condition for asymptotic behaviour of solutions of a class of first-order impulsive systems, Adv. Dyn. Syst. Appl. **1**1 (2016), no. 2, 135–145.
- [32] TRIPATHY, A. K.—SANTRA, S.S.: Oscillation properties of a class of second order impulsive systems of neutral type, Funct. Differ. Equ. **2**3 (2016), no. 1–2, 57–71.
- [33] TRIPATHY, A. K.—SANTRA, S.S.: Characterization of a class of second order neutral impulsive systems via pulsatile constant, Differ. Equ. Appl. **9** (2017), no. 1, 87–98.

Received May 18, 2020 Department of Mathematics JIS College of Engineering Kalyani - 741235 Nadia, West Bengal INDIA E-mail: shyam01.math@gmail.com