
�

�
Mathematical Publications

DOI: 10.2478/tmmp-2020–0025
Tatra Mt. Math. Publ. 76 (2020), 157–170

NECESSARY AND SUFFICIENT CONDITIONS

FOR OSCILLATION OF SOLUTIONS

TO SECOND-ORDER NEUTRAL DIFFERENTIAL

EQUATIONS WITH IMPULSES

Shyam Sundar Santra
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ABSTRACT. In this work, necessary and sufficient conditions for oscillation
of solutions of second-order neutral impulsive differential system{(

r(t)(z′(t))γ
)′

+ q(t)xα
(
σ(t)

)
= 0, t ≥ t0, t �= λk,

Δ
(
r(λk)(z

′(λk))
γ
)
+ h(λk)x

α
(
σ(λk)

)
= 0, k ∈ N

are established, where
z(t) = x(t) + p(t)x

(
τ(t)

)
.

Under the assumption
∫∞ (

r(η)
)−1/α

dη = ∞, two cases when γ >α and γ <α

are considered. The main tool is Lebesgue’s Dominated Convergence theorem.
Examples are given to illustrate the main results, and state an open problem.

1. Introduction

Consider the neutral impulsive differential system⎧⎨
⎩
(
r(t)

(
z′(t)

)γ)′
+ q(t)xα(σ(t)) = 0, t ≥ t0, t �= λk,

Δ
(
r(λk)

(
z′(λk)

)γ)
+ h(λk)x

α(σ(λk)) = 0, k ∈ N,
(1.1)

where

z(t) = x(t) + p(t)x(τ(t)), Δx(a) = lim
s→a+

x(s)− lim
s→a−

x(s),
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the functions p, q, h, r, σ, τ are continuous that satisfy the conditions stated be-
low; and assume that the sequence {λk} satisfies 0 < λ1 < λ2 < . . . as k → ∞;
and γ and α are the quotient of two odd positive integers.

(A1) σ∈C([0,∞),R+), τ ∈C2([0,∞),R+), σ(t)<t, τ(t)<t, limt→∞ σ(t)=∞,
limt→∞ τ(t)=∞.

(A2) r ∈ C1([0,∞),R+), q, h ∈ C([0,∞),R+); 0 < r(t), 0 ≤ q(t), 0 ≤ h(t),
for all t ≥ 0; q(t) is not identically zero in any interval [b,∞).

(A3)
∞∫
0

r−1/γ(s) ds = ∞; let Π(t) =
t∫
0

r−1/γ(η) dη.

(A4) −1 < −p0 ≤ p(t) ≤ 0 for t ≥ t0.

(A5) there exists a differentiable function σ0(t) such that 0 < σ0(t) ≤ σ(t) and
σ′
0(t) ≥ α for t ≥ t∗, α > 0.

The main feature of this article is having conditions that are both necessary
and sufficient for the oscillation of all solutions to (1.1). Sufficient conditions
for the oscillation and nonoscillation of all solutions to the first and second
order neutral impulsive differential systems are provided in [12–15, 21, 29–32].
The necessary and sufficient conditions for oscillation of all solutions to the first
order neutral impulsive differential systems are discussed in [30,31]. In this work,
our main aim is to present the necessary and sufficient conditions for oscillation
of all solutions of (1.1).

In 2011, Dimitrova and Donev [13–15] considered the first order impulsive
differential system of the form{(

x(t) + p(t)x(τ(t))
)′
+ q(t)x(σ(t)) = 0, t �= λk, k ∈ N,

Δ
(
x(λk) + p(λk)x(τ(λk))

)
+ q(λk)x(σ(λk)) = 0, k ∈ N

(1.2)

and established several sufficient conditions for oscillation of the solutions
of (1.2).

In 2014, Tripathy [29] established sufficient conditions for oscillation of all
solutions of{(

x(t)+p(t)x(t−τ)
)′
+q(t)f

(
x(t−σ)

)
=0, t �=λk, k∈N,

Δ
(
x(λk) + p(λk)x(τ(λk − τ)

)
+ q(λk)f

(
x(σ(λk − σ))

)
= 0, k ∈ N.

(1.3)

In 2015, Tripathy and Santra [30] obtained the necessary and sufficient con-
ditions for oscillatory and asymptotic behavior of solutions of{(

x(t) + p(t)x(t− τ)
)′
+ q(t)f

(
x(t− σ)

)
= g(t), t �=λk, k∈N,

Δ
(
x(λk) + p(λk)x(λk − τ)

)
+ q(λk)f

(
x(λk − σ)

)
= h(λk), k ∈ N.
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In 2016, Tripathy, Santra and Pinelas [31] obtained necessary and sufficient
conditions of (1.3). In the subsequent year, Tripathy and Santra [32] established
sufficient conditions for oscillation and existence of positive solutions of{(

r(t)
(
x(t)+p(t)x(t−τ)

)′)′
+q(t)f

(
x(t−σ)

)
=0, t �=λk, k∈N,

Δ
(
r(λk)

(
x(λk) + p(λk)x(λk − τ)

)′)
+ q(λk)f

(
x(λk − σ)

)
= 0, k ∈ N.

In 2018, Santra [21] established sufficient conditions for oscillations of solu-
tions of{(

r(t)
(
x(t)+p(t)x(τ(t))

)′)′
+ q(t)f

(
x(σ(t))

)
=0, t �=λk, k∈N,

Δ
(
r(λk)

(
x(λk) + p(λk)x(τ(λk))

)′)
+ q(λk)f

(
x(σ(λk))

)
= 0, k ∈ N.

By a solution x we mean a function differentiable on [t0,∞) such that z(t)
and z′(t) are differentiable for t �= λk, and z(t) is left continuous at λk and has
right limit at λk, and x satisfies (1.1). We restrict our attention to solutions
for which supt≥b |x(t)| > 0 for every b ≥ 0. A solution is called oscillatory if it
has arbitrarily large zeros; otherwise is non-oscillatory.

To define a particular solution, we need an initial function φ(t) which is twice
differentiable for t in the interval

min
{
inf{τ(t) : t0 ≤ t}, inf{σ(t) : t0 ≤ t}} ≤ t .

Then a solution is obtained using the method of steps: When replacing x(τ(t))
by φ(τ(t)), and x(σ(t)) by φ(σ(t)) in (1.1), we obtain a second-order differ-
ential equation. We solve this equation by taking into account discrete equa-
tion of (1.1), let say on an interval [t0, t1]. Then we repeat the process starting
at t = t1.

2. Necessary and Sufficient Conditions

����� 2.1� Assume that (A1)–(A4) hold for t ≥ t0. If x is an eventually
positive solution of (1.1), then z satisfies any one of the following two cases:

(i) z(t) < 0, z′(t) > 0,
(
r(z′)γ

)′
(t) ≤ 0;

(ii) z(t) > 0, z′(t) > 0,
(
r(z′)γ

)′
(t) ≤ 0

for all sufficiently large t.

P r o o f. Let x be an eventually positive solution. Then by (A1) there exists a t∗

such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for all t ≥ t∗. From (1.1) it
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follows that (
r(t)

(
z′(t)

)γ)′
= −q(t)xα(σ(t)) ≤ 0 for t �= λk,

Δ
(
r(λk)

(
z′(λk)

)γ)
= −h(λk)x

α(σ(λk)) ≤ 0 for k ∈ N.
(2.1)

Therefore, r(t)
(
z′(t)

)γ
is non-increasing for t ≥ t∗, including jumps of disconti-

nuity. Next we show the r(t)
(
z′(t)

)γ
is positive. By contradiction assume that

r(t)
(
z′(t)

)γ ≤ 0 at a certain time t ≥ t∗. Using that q is not identically zero on
any interval [b,∞), and by (2.1), there exists t2 ≥ t∗ such that

r(t)
(
z′(t)

)γ ≤ r(t2)
(
z′(t2)

)γ
< 0 for all t ≥ t2.

Recall that γ is the quotient of two positive odd integers. Then

z′(t) ≤
(
r(t2)

r(t)

)1/γ

z′(t2) for t ≥ t2 .

Since r(λk)
(
z′(λk)

)γ ≤ r(t2)
(
z′(t2)

)γ
< 0 for all λk ≥ t2. Integrating from t2

to t, we have

z(t) ≤ z(t2) +
∑

t2≤λk<∞
z′(λk) +

(
r(t2)

)1/γ
z′(t2)

(
Π(t) −Π(t2)

)

≤ z(t2) +
(
r(t2)

)1/γ
z′(t2)

(
Π(t)−Π(t2)

) → −∞
as t → ∞ due to (A3). Now, we consider the following two possibilities.

If x is unbounded, then there exists a sequence {ηk} → ∞ such that

x(ηk) = sup{x(η) : η ≤ ηk}.
By τ(ηk) ≤ ηk, we have x(τ(ηk)) ≤ x(ηk) and hence

z(ηk) = x(ηk) + p(ηk)x(τ(ηk)) ≥ (1 + p(ηk))x(ηk) ≥ (1− p0))x(ηk) ≥ 0 ,

which contradicts limk→∞ z(t) = −∞. Recall that {λk} is the sequence of points
for t ≥ λk, then by similar argument we can show that z(λk) ≥ 0 to get a

contradiction to limk→∞ z(t) = −∞. Therefore r(t)
(
z′(t)

)γ
> 0 for all t ≥ t∗.

If x is bounded, then z is also bounded, which is a contradiction to

lim
k→∞

z(t) = −∞.

From r(t)
(
z′(t)

)γ
> 0 and r(t) > 0, it follows that z′(t) > 0. Then there is

t1 ≥ t∗ such that z satisfies only one of two cases (i) and (ii). This completes
the proof. �
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����� 2.2� Assume that (A1)–(A4) hold. If x is an eventually positive solution
of (1.1), then any one of following two cases exists:

(1) if z satisfies (i), limt→∞ x(t) = 0;

(2) if z satisfies (ii), there exist t1 ≥ t0 and δ > 0 such that

0 < z(t) ≤ δΠ(t), (2.2)

(
Π(t)−Π(t1)

) ⎡⎣ ∞∫
t

q(ζ)xα(σ(ζ)) dζ +
∑
λk≥t

h(λk)x
α(σ(λk))

⎤
⎦
1/γ

≤ z(t) ≤ x(t) , for all t ≥ t1. (2.3)

P r o o f. Let x be an eventually positive solution. Then by (A1) there exist t∗

such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for all t ≥ t∗. Then Lemma 2.1
holds and we have following two possible cases.

Case 1: Let z satisfies (i) for all t≥ t1. Note that limt→∞ z(t) exists and by (A1),
lim supt→∞ x(t)=lim supt→∞ x(τ(t)). Then 0 > z(t)≥x(t)−p0x(τ(t)) implies

0 ≥ lim
t→∞ z(t) ≥ lim

t→∞
[
x(t)− p0x(τ(t))

] ≥ (1− p0) lim sup
t→∞

x(t) .

Since (1 − p0) > 0, it follows that lim supt→∞ x(t) = 0; hence limt→∞ x(t) = 0
for t �= λk, k ∈ N. We may note that {x(λk − 0)}k∈N and {x(λk + 0)}k∈N are
sequences of real numbers, and because of continuity of x

lim
k→∞

x(λk − 0) = 0 = lim
k→∞

x(λk + 0)

due to lim inft→∞ x(t) = 0 = lim supt→∞ x(t). Hence, limt→∞ x(t) = 0 for all t
and λk, k ∈ N.

Case 2: Let z satisfies (ii) for all t ≥ t1. Note that x(t) ≥ z(t) and z is posi-

tive and increasing so x cannot converge to zero. From r(t)
(
z′(t)

)γ
being non-

increasing, there exist a constant δ > 0 and t ≥ t1 such that
(
r(t)

)1/γ
z′(t) ≤ δ,

and hence z(t) ≤ δΠ(t) for t ≥ t1.

Since r(t)
(
z′(t)

)γ
is positive and non-increasing, limt→∞ r(t)

(
z′(t)

)γ
, exists

and is non-negative. Integrating (1.1) from t to a, we have

r(a)
(
z′(a)

)γ − r(t)
(
z′(t)

)γ
= −

a∫
t

q(η)xα(σ(η)) dη +
∑

t≤λk<a

Δ
(
r(λk)z

′(λk)
)γ
.

Computing the limit as a → ∞,

r(t)
(
z′(t)

)γ ≥
∞∫
t

q(η)xα(σ(η)) dη +
∑
λk≥t

h(λk)x
α(σ(λk)). (2.4)
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Then

z′(t) ≥
⎡
⎣ 1

r(t)

⎡
⎣∫ ∞

t

q(η)xα(σ(η)) dη +
∑
t≤λk

h(λk)x
α(σ(λk))

⎤
⎦
⎤
⎦
1/γ

.

Since z(t1) > 0, integrating the above inequality yields

z(t) ≥
t∫

t1

⎡
⎣ 1

r(η)

⎡
⎣ ∞∫

η

q(ζ)xα(σ(ζ)) dζ +
∑
η≤λk

h(λk)x
α(σ(λk))

⎤
⎦
⎤
⎦
1/γ

dη .

Since the integrand is positive, we can increase the lower limit of integration
from s to t, and then use the definition of Π(t) to obtain

z(t) ≥ (
Π(t) −Π(t1)

)⎡⎣ ∞∫
t

q(ζ)xα(σ(ζ)) dζ +
∑
t≤λk

h(λk)x
α(σ(λk))

⎤
⎦
1/γ

,

which yields (2.3). �

2.1. The Case α < γ.

In this subsection, we assume that there exists a constant β1, the quotient
of two positive odd integers such that 0 < α < β1 < γ.

����	�� 2.1� Under assumptions (A1)–(A4), each solution of (1.1) is either
oscillatory or converges to zero if and only if

∞∫
0

q(η)Πα(σ(η)) dη +

∞∑
k=1

h(λk)Π
α(σ(λk)) = ∞ . (2.5)

P r o o f. We prove the sufficiency by contradiction. Initially, we assume that a
solution x is eventually positive which does not converge to zero. So, Lemma 2.1
holds and z satisfies any one of two cases (i) and (ii). In Lemma 2.2, Case 1
leads to limt→∞ x(t) = 0 which is a contradiction.

For Case 2, we can find t1 > 0 such that

x(t) ≥ z(t) ≥ (
Π(t)− Π(t1)

)
w1/γ(t) ≥ 0 for t ≥ t1 ,

where

w(t) =

∞∫
t

q(ζ)xα(σ(ζ)) dζ +
∑
λk≥t

h(λk)x
α(σ(λk)) ≥ 0 .

As limt→∞ Π(t) = ∞, there exists t2 ≥ t1, such that Π(t) − Π(t1) ≥ 1
2R(t)

for t ≥ t2 and hence

z(t) ≥ 1

2
Π(t)w1/γ(t) . (2.6)
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Note that w is left continuous at λk,

w′(t) = −q(t)xα(σ(t)) for t �= λk,

Δw(λk) = −h(λk)x
α(σ(λk)) ≤ 0 .

Thus w is non-negative and non-increasing for t ≥ t2. Using (2.2), α − β1 < 0
and (2.6), we have

xα(t) ≥ zα−β1(t)zβ1(t) ≥ (δΠ(t))α−β1zβ1(t)

≥ (
δΠ(t)

)α−β1

(
Π(t)w1/γ(t)

2

)β1

=
δα−β1

2β1
Πα(t)wβ1/γ(t) for t ≥ t2 .

Since w is non-increasing, β1/γ > 0, and σ(η) < η, it follows that

xα(σ(η)) ≥ δα−β1

2β1
Πα(σ(η))wβ1/γ(σ(η)) ≥ δα−β1

2β1
Πα(σ(η))wβ1/γ(η) .

Now, we have(
w1−β1/γ(t)

)′
=

(
1− β1

γ

)
w−β1/γ(t)

(
− q(t)xα(σ(t))

)
for t �= λk . (2.7)

To estimate the discontinuities of w1−β1/γ we use a Taylor polynomial of order
1 for the function h(x) = x1−β1/γ , with 0 < β1 < γ, about x = a:

b1−β1/γ − a1−β1/γ ≤
(
1− β1

γ

)
a−β1/γ(b− a) .

Then Δw1−β1/γ(λk) ≤
(
1− β1

γ

)
w−β1/γ(λk)Δw(λk). Integrating (2.7) from t2 to

t, we have

w1−β1/γ(t2) ≥
(
1− β1

γ

)⎡⎣−
t∫

t2

w−β1/γ(η)w′(η) dη −
∑

t2≤λk<t

w−β1/γ(λk)Δw(λk)

⎤
⎦

=
(
1− β1

γ

)⎡⎣ t∫
t2

w−β1/γ(η)
(
q(η)xα(σ(η))

)
dη

+
∑

t2≤λk<t

w−β1/γ(λk)h(λk)x
α(σ(λk))

⎤
⎦

≥
(
1− β1

γ

)
2β1δ(β1−α)

⎡
⎣ t∫

t2

q(η)Πα(σ(η)) dη +
∑

t2≤λk<t

h(λk)Π
α(σ(λk))

⎤
⎦ .

which contradicts (2.5) as t → ∞ and completes the proof of sufficiency for
eventually positive solutions. For an eventually negative solution x, we introduce
the variables y = −x so that we can apply the above process for the solution y.
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For an eventually negative solution x, we introduce the variables y = −x so
that we can apply the above process for the solution y.

Next, we show the necessity part by a contrapositive argument. Let (2.5) do
not hold. Then, it is possible to find t1 > 0 such that

∞∫
η

q(ζ)Πα(σ(ζ)) dζ +
∑
λk≥η

h(λk)Π
α(σ(λk)) ≤ ε/δα (2.8)

for all η ≥ t1 and δ, ε > 0 satisfying the relation

(2ε)1/γ = (1− p0)δ , (2.9)

so that 0 < ε1/γ ≤ (1− p0)δ/2
1/γ < δ. Define the set of continuous functions

M = {x ∈ C([0,∞)) : ε1/γ
(
Π(t)−Π(t1)

) ≤ x(t) ≤ δ
(
Π(t) −Π(t1)

)
, t ≥ t1}

and define an operator Φ on M by

(Φx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if t ≤ t1,

−p(t)x(τ(t)) +
t∫

t1

[
1

r(η)

[
ε+

∞∫
η

q(ζ)xα(σ(ζ)) dζ +

∑
λk≥η

h(λk)x
α(σ(λk))

]]1/γ
dη if t > t1 .

We need to show that if x is a fixed point of Φ, i.e. Φx = x, then x is a solution
of (1.1).

First we estimate (Φx)(t) from below. For x ∈ M , we have 0 ≤ ε1/γ
(
Π(t) −

Π(t1)
) ≤ x(t) and by (A2) and (A3) we have

(Φx)(t) ≥ 0 +

t∫
t1

[
1

r(η)
[ε+ 0 + 0]

]1/γ
dη = ε1/γ

(
Π(t)− Π(t1)

)
.

Now we estimate (Φx)(t) from above. For x in M, by definition of the set M,

we have xα(σ(η)) ≤ (
δΠ(σ(η))

)α
. Therefore, by (2.8),

(Φx)(t) ≤ p0δ
(
Π(t)−Π(t1)

)

+

t∫
t1

⎡
⎣ 1

r(η)

[
ε+δα

∞∫
η

q(ζ)Πα(σ(ζ)) dζ+δα
∑
λk≥η

h(λk)Π
α(σ(λk))

]⎤
⎦
1/γ

dη

≤ p0δ
(
Π(t)−Π(t1)

)
+ (2ε)1/γ

(
Π(t)−Π(t1)

)
= δ

(
Π(t)− Π(t1)

)
.

Therefore, Φ maps M to M.
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To find a fixed point for Φ in M , let us define a sequence of functions in M
by the recurrence relation

u0(t) = 0 for t = 0,

u1(t) = (Φu0)(t) =

{
0 if t < t1,

ε1/γ
(
Π(t) −Π(t1)

)
if t ≥ t1,

un+1(t) = (Φun)(t) for n ≥ 1, t ≥ t1 .

Note that for each fixed t, we have u1(t) ≥ u0(t). Using mathematical induction,
we can show that un+1(t) ≥ un(t). Therefore, the sequence {un} converges
pointwise to a function u. Using the Lebesgue dominated convergence theorem,
we can show that u is a fixed point of Φ inM . This shows under assumption (2.8),
there a non-oscillatory solution that does not converge to zero. �

�	����	� 2.1� Under the assumptions of Theorem 2.1, every unbounded
solution of (1.1) is oscillatory if and only if (2.5) holds.

P r o o f. The proof of the corollary is an immediate consequence of Theorem 2.1.
�

2.2. The Case α > γ.

In this subsection, we assume that there exists a constant β2, the quotient
of two positive odd integers such that γ < β2 < α.

����	�� 2.2� Under assumptions (A1)–(A5) and r(t) is non-decreasing, every
solution of (1.1) is either oscillatory or converges to zero if and only if

∞∫
0

⎡
⎣ 1

r(η)

⎡
⎣ ∞∫

η

q(ζ) dζ +

∞∑
k=1

h(λk)

⎤
⎦
⎤
⎦
1/γ

dη = ∞ . (2.10)

P r o o f. We prove the sufficiency by contradiction. Initially, we assume that x
is an eventually positive solution not converging to zero. So, Lemma 2.1 holds
and z satisfies any one of two cases (i) and (ii). In Lemma 2.2, Case 1 leads
to limt→∞ x(t) = 0 which is a contradiction.

For Case 2, z(t) > 0 is non-decreasing for t ≥ t1 and

xα(t) ≥ zα(t) ≥ zα−β2(t)zβ2(t) ≥ zα−β2(t1)z
β2(t)

implies that
xα(σ(t)) ≥ zα−β2(t1)z

β2(σ(t)) for t ≥ t2 > t1 . (2.11)

Using (2.4), (2.11) and σ(t) ≥ σ0(t), we have

r(t)
(
z′(t)

)γ ≥ zα−β2(t1)

⎡
⎣ ∞∫

t

q(η) dη +
∑
λk≥t

h(λk)

⎤
⎦ zβ2(σ0(t)) for t ≥ t2.

(2.12)
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Being r(t)
(
z′(t)

)γ
non-increasing and σ0(t) ≤ t, we have

r(σ0(t))
(
z′(σ0(t))

)γ ≥ r(t)
(
z′(t)

)γ
.

Using the last inequality in (2.12) and then dividing by zβ2/γ(σ0(t)) > 0, we get

z′(σ0((t))

zβ2/γ(σ0(t))
≥
⎡
⎣zα−β2(t1)

r(σ0(t))

⎡
⎣ ∞∫

t

q(η) dη +
∑
λk≥t

h(λk)

⎤
⎦
⎤
⎦
1/γ

for t ≥ t2.

Multiplying the left-hand side by σ′
0(t)/α ≥ 1 and integrating from t1 to t,

1

α

t∫
t1

z′(σ0(η))σ
′
0(η)

zβ2/γ(σ0(η))
dη ≥

z(α−β2)/γ(t1)

t∫
t1

⎡
⎣ 1

r(σ0(η))

⎡
⎣ ∞∫

η

q(ζ) dζ +
∑
η≤λk

h(λk)

⎤
⎦
⎤
⎦
1/γ

dη for t ≥ t2 .

(2.13)

Since γ < β2, r(σ0(η)) ≤ r(η) and

1

α(1− β2/γ)

[
z1−β2/γ(σ0(η))

]t
η=t2

≤ 1

α(β2/γ − 1)
z1−β2/γ(σ0(t2)) ,

then (2.13) becomes

t∫
t1

⎡
⎣ 1

r(η)

⎡
⎣ ∞∫

η

q(ζ) dζ +
∑
η≤λk

h(λk)

⎤
⎦
⎤
⎦
1/γ

dη < ∞,

which is a contradiction to (2.10). This contradiction implies that the solution
x cannot be eventually positive. Eventually negative solution is similar.

To prove the necessity part, we assume that (2.10) does not hold. For given

ε =
(
2/(1− p0)

)−α/γ
> 0,

we can find a t1 > 0 such that

∞∫
t1

⎡
⎣ 1

r(η)

⎡
⎣ ∞∫

η

q(ζ) dζ +
∑
λk≥s

h(λk)

⎤
⎦
⎤
⎦
1/γ

dη < ε . (2.14)

Consider
M =

{
x ∈ C([0,∞)) : 1 ≤ x(t) ≤ 2

1− p0
for t ≥ t1

}
.
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Define the operator

(Φx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t < t1,

1− p(t)x(τ(t))

+
t∫

t1

[
1

r(η)

[
∞∫
η

q(ζ)xα(σ(ζ)) dζ

+
∑

λk≥η

h(λk)x
α(σ(λk))

]]1/γ
dη if t ≥ t1 .

Indeed, Φx = x implies that x is a solution of (1.1).

First, we estimate (Φx)(t) from below. Let x ∈ M . Then 1 ≤ x implies
that (Φx)(t) ≥ 1, on [t1,∞). Estimating (Φx)(t) from above. Let x ∈ M .
Then x ≤ 2/(1− p0) and thus

(Φx)(t) ≤ 1− p(t)
2

1 − p0
+

t∫
t1

⎡
⎣ 1

r(η)

⎡
⎣ ∞∫

η

q(ζ)
( 2

1− p0

)α
dζ

+
∑
λk≥η

h(λk)
( 2

1− p0

)α⎤⎦
⎤
⎦
1/γ

dη .

Since σ0(η) ≤ η and r(·) is non-decreasing, we can replace r(η) by r(σ0(η) and
the above inequality is still valid. By (2.14) and the definition of ε, we have

(Φx)(t) ≤ 1 +
2p0

1− p0
+
(
2/(1− p0)

)α/γ
ε = 1 +

2p0
1− p0

+ 1 =
2

1− p0
.

Therefore Φ maps M to M .

To find a fixed point for Φ in M , we define a sequence of functions by the
recurrence relation

u0(t) = 0 for t = 0,

u1(t) = (Φu0)(t) = 1 for t ≥ t1,

un+1(t) = (Φun)(t) for n ≥ 1, t ≥ t1 .

Note that for each fixed t, we have u1(t) ≥ u0(t). Using that f is non-decreasing
and mathematical induction, we can prove that un+1(t) ≥ un(t). Therefore {un}
converges pointwise to a function u in M . Then u is a fixed point of Φ and a
positive solution to (1.1) that does not converge to zero. �


�	����	� 2.2� Under the assumptions of Theorem 2.2, every unbounded so-
lution of (1.1) is oscillatory if and only if (2.10) hold.

Example 2.1. Consider the neutral differential equation⎧⎨
⎩
(
e−t

((
x(t)− e−tx(τ(t))

)′)11/3)′
+ 1

t+1

(
x(t− 2)

)1/3
= 0,(

e−k
((
x(k)− e−kx(τ(k))

)′)11/3)′
+ 1

t+4

(
x(k − 2)

)1/3
= 0.

(2.15)
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Here
γ= 11

3 , r(t)=e−t, −1 < p(t)=−e−t ≤ 0, σ(t)= t− 2, λk=k
for

k ∈ N, Π(t) =

t∫
0

e5s/3 ds= 3
5

(
e5t/3−1

)
, and α= 1

3 .

For β1=
7
3 we have 0<α<β1<γ, and uα−β1 =u−2 which is a decreasing function.

To check (2.5) we have
∞∫
0

q(η)Πα(σ(η)) dη +

∞∑
k=1

h(λk)Π
α(σ(λk)) ≥

∞∫
0

q(η)Πα(σ(η)) dη =

∞∫
0

1

η + 1

(3
5

(
e5(η−2)/3 − 1

))1/3
dη = ∞,

since the integral approaches +∞ as η → +∞. So, all the conditions of Theo-
rem 2.1 hold, therefore, each solution of (2.15) is oscillatory or converges to zero.

Example 2.2. Consider the neutral differential equation⎧⎨
⎩

(((
x(t)− e−tx(τ(t))

)′)1/3)′
+ t

(
x(t− 2)

)7/3
= 0 ,(((

x(2k)− e−2k

x(τ(2k))
)′)1/3)′

+ t
2

(
x(2k − 2)

)7/3
= 0 .

(2.16)

Here
γ = 1

3 , r(t) = 1, σ(t) = t− 2 and α = 7
3 .

For β2=
5
3 , we have α>β2>γ and uα−β2 =u2/3 which is a increasing functions.

To check (2.10) we have
∞∫

t1

⎡
⎣ 1

r(η)

⎡
⎣ ∞∫

η

q(ζ) dζ +
∑
λk≥η

h(λk)

⎤
⎦
⎤
⎦
1/γ

dη

≥
∞∫

t0

⎡
⎣ 1

r(η)

⎡
⎣ ∞∫

η

q(ζ) dζ

⎤
⎦
⎤
⎦
1/γ

dη ≥
∞∫
2

⎡
⎣ ∞∫

η

ζ dζ

⎤
⎦
3

dη = ∞.

So, all the conditions of of Theorem 2.2 hold. Thus, all solution of (2.16) is
oscillatory or converges to zero.

Remark 2.1� Based on this work and [13–15, 21, 29–32] an open problem
that arises is to establish necessary and sufficient conditions for the oscillation
of the solutions of the second-order nonlinear neutral differential equation (1.1)
for p > 0 and −∞ < p ≤ −1.
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