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ABSTRACT. If R is a relation on X to Y , U is a relation on P (X) to Y ,
and V is a relation on P (X) to P (Y ) , then we say that R is an ordinary
relation, U is a super relation, and V is a hyper relation on X to Y .

Motivated by an ingenious idea of Emilia Przemska on a unified treatment of
open- and closed-like sets, we shall introduce and investigate here four reasonable
notions of product relations for super relations.

In particular, for any two super relations U and V on X, we define two
super relations U � V and U ∗ V , and two hyper relations U ��������� V and U � V
on X such that :

(U � V ) (A) =
(
A ∪ U (A)

) ∩ V (A) ,

(U ∗ V ) (A) =
(
A ∩ V (A)

) ∪ U (A)

and

(U ��������� V ) (A) =
{
B ⊆ X : (U � V ) (A) ⊆ B ⊆ (U ∗ V ) (A)

}
,

(U � V ) (A) =
{
B ⊆ X : (U ∩ V ) (A) ⊆ B ⊆ (U ∪ V ) (A)

}

for all A ⊆ X.

By using the distributivity of the operation ∩ over ∪ , we can at once see that
U�V ⊆ U ∗V . Moreover, if U ⊆ V , then we can also see that U�V = U ∗V . The
most simple case is when U is an interior relation on X and V is the associated
closure relation defined such that V (A) = U (Ac)c for all A ⊆ X.
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1. Introduction

A subset R of a product set X×Y is called a relation on X to Y . In
particular, a relation on X to itself is called a relation on X. Thus, a relation
on X to Y is also a relation on X ∪ Y .

If R is a relation on X to Y , U is a relation on P (X) to Y , and V is a
relation on P (X) to P (Y ) , then we say that R is an ordinary relation, U is
a super relation, and V is a hyper relation on X to Y .

For any fixed x ∈ X and A ⊆ X, the sets R (x) = {y ∈ Y : (x, y) ∈ R}
and R [A ] =

⋃
x∈A R (x) will be called the images or neighbourhoods of x

and A under R , respectively.

The super relation U will be called quasi-increasing if U
(
{x}

)
⊆ U (A) for

all x ∈ A ⊆ X. Moreover, the super relation U will be called union-preserving
if U

(⋃
A
)
=

⋃
A∈A U (A) for all A ⊆ P (X ) .

It will be shown that the super relation U is union-preserving if and only
if U (A) =

⋃
x∈A U

(
{x}

)
for all A ⊆ X. Thus, the usual hull and closure

relations, used in algebra and topology, are not union-preserving.

For the ordinary relation R , we define a super relation R � on X to Y such
that R �(A) = R [A ] for all A ⊆ X. While, for the super relation U , we define
an ordinary relation U � on X to Y such that U �(x) = U

(
{x}

)
for all x ∈ X.

Thus, the mappings � and � establish a partial Galois connection between
ordinary and super relations in the sense that, for any ordinary relation R and
quasi-increasing super relation U on X to Y , we have R � ⊆ U ⇐⇒ R ⊆ U � .

By using this Galois connection, for any super relation U on X to Y , we can
at once define two closely related, union-preserving super relations U ◦ = U � �

and U−1−1−1 = U �−1 � . This greatly differs from the ordinary inverse U−1 of U .

Super relations on X to Y are more general objects than the ordinary rela-
tions on X to Y . Namely, by using the map � , the ordinary relations can only
be identified with the union-preserving super relations.

While, hyper relations on X to Y are more general objects than the super
relations on X to Y . Namely, by using the usual identification of relations with
set-valued functions, super relations can only be identified with hyper functions.

For a hyper relation V on X to Y , we may naturally define a super relation
V ��� on X to Y such that V ���(A) = {y ∈ Y : {y} ∈ V (A)} . However, hyper
relations can be derived from super relations in several natural ways [42,43] .

Motivated by an ingenious idea of Przemska [31,32] on a unified treatment
of open- and closed-like sets, we shall introduce and investigate here four rea-
sonable notions of product relations for super relations.
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For any two super relations U and V on X, we define two super relations
U �V and U ∗V , and two hyper relations U ��������� V and U �V on X such that :

(U � V ) (A) =
(
A ∪ U (A)

)
∩ V (A) ,

(U ∗ V ) (A) =
(
A ∩ V (A)

)
∪ U (A)

and

(U ��������� V ) (A) =
{
B ⊆ X : (U � V ) (A) ⊆ B ⊆ (U ∗ V ) (A)

}
,

(U � V ) (A) =
{
B ⊆ X : (U ∩ V ) (A) ⊆ B ⊆ (U ∪ V ) (A)

}

for all A ⊆ X.

Thus, we shall show that the above operations are idempotent, and

U � V ⊆ U ∗ V and U ��������� V ⊆ U � V .

Moreover, the inclusions U � V ⊆ V and U ⊆ U ∗ V are also always true.

By using the dual super relation U � , defined such that U �(A) = U (Ac)c

for all A ⊆ X, we shall also show that U ∗ V =
(
V � � U �

)�
. Therefore,

the properties of the operation ∗ can actually be derived from those of the
operations � .

If in particular U ⊆ V , then we shall show that U ��������� V = U � V = U ∗ V .
Moreover, in this case, we can note that

(U � V )(A) =
{
B ⊆ X : U (A) ⊆ B ⊆ V (A)

}

for all A ⊆ X.

Finally, we shall show that the super relations U and U � and the hyper
relations U � V and (U � V )−1 can be used to treat the various generalized
open sets in a general unified framework.

Generalized open sets in topological and closure spaces, and their immediate
generalizations, have been investigated by a great number of topologists. See,
for instance, [1–3,6,8,12,19,20,24,29,38] .

2. A few basic facts on relations and functions

A subset R of a product set X ×Y is called a relation on X to Y . In
particular, a relation on X to itself is called a relation on X. And, ΔX =
{(x, x) : x ∈ X} is called the identity relation of X.

If R is a relation on X to Y , then by the above definitions we may also say
that R is a relation on X∪Y . However, the latter view of the relation R would
be quite unnatural for several purposes.
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If R is a relation on X to Y , then for any x ∈ X and A ⊆ X the sets
R (x) = { y ∈ Y : (x, y) ∈ R} and R [A ] =

⋃
x∈A R (x) are called the images

or neighbourhoods of x and A under R , respectively.

If (x, y) ∈ R , then instead of y ∈ R (x) , we may also write x Ry . How-
ever, instead of R [A ] , we cannot write R (A) . Namely, it may occur that,
in addition to A ⊆ X, we also have A ∈ X.

The sets DR = {x ∈ X : R(x) 	= ∅} and R [X ] are called the domain and
range of R , respectively. If in particular DR = X, then we say that R is a
relation of X to Y , or that R is a non-partial relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f(x) = y instead of f(x) = {y} .

A function � of X to itself is called a unary operation on X. While, a
function ∗ of X 2 to X is called a binary operation on X. For any x, y ∈ X,
we usually write x� and x ∗ y instead of �(x) and ∗

(
(x, y)

)
, respectively.

For a relation R on X to Y , we may naturally define two set-valued functions
ϕR of X to P (Y ) and ΦR of P (X ) to P (Y ) such that ϕR(x) = R (x) for all
x ∈ X and ΦR(A ) = R [A ] for all A ⊆ X.

Functions of X to P (Y ) can be naturally identified with relations onX to Y .
While, functions of P (X ) to P (Y ) are more general objects than relations on
X to Y . In [50,54,55] , they were briefly called corelations on X to Y .

However, if R is a relation on X to Y , U is a relation on P (X) to Y ,
and V is a relation on P (X) to P (Y ) , then it is better to say that R is an
ordinary relation, U is a super relation, and V is a hyper relation on X to Y .

If R is a relation on X to Y , then R =
⋃

x∈X {x}×R(x). Therefore, the
images R(x) , where x ∈ X, uniquely determine R . Thus, a relation R on X
to Y can also be naturally defined by specifying R(x) for all x ∈ X.

For instance, the complement R c and the inverse R−1 can be defined such
that R c(x) = R (x)c for all x ∈ X and R−1(y) = {x ∈ X : y ∈ R (x)} for all
y ∈ Y . Thus we also have R c = X×Y \ R and R−1= {(y, x) : (x, y) ∈ R}.

Moreover, if in addition S is a relation on Y to Z, then the composition
S ◦R can be defined such that (S ◦R )(x) = S [R(x) ] for all x ∈ X. Thus, it
can be easily seen that (S ◦R )[A ] = S

[
R [A ]

]
also holds for all A ⊆ X.

While, if S is a relation on Z to W , then the box product R � S can be
defined such that (R � S)(x, z) = R(x) × S(z) for all x ∈ X and z ∈ Z .
Thus, it can be shown that (R� S)[A ] = S ◦A ◦R−1 for all A ⊆ X×Z [49] .

Hence, by taking A = {(x, z)} , and A = ΔY if Y = Z , one can at once see
that the box and composition products are actually equivalent tools. However,
the box product can be immediately defined for any family of relations.
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Now, a relation R on X may be briefly defined to be reflexive on X if
ΔX ⊆ R , and transitive if R ◦R ⊆ R . Moreover, R may be briefly defined to
be symmetric if R−1 ⊆ R , and antisymmetric if R ∩ R−1 ⊆ ΔX .

Thus, a reflexive and transitive (symmetric) relation may be called a preorder
(tolerance) relation. And, a symmetric (antisymmetric) preorder relation may
be called an equivalence (partial order) relation.

For any relation R on X, we may also define R 0 = ΔX and Rn = R◦R n−1

if n ∈ N . Moreover, we may also define R∞ =
⋃∞

n=0 Rn . Thus, it can be shown
that R∞ is the smallest preorder relation on X containing R [17] .

For A ⊆ X, the Pervin relation RA = A2 ∪Ac×X is a preorder on X [30].
While, for a pseudometric d on X, the Weil surrounding Br = {(x, y) ∈ X 2 :
d(x, y) < r} , with r > 0 , is a tolerance on X [60] .

Note that SA = RA∩R−1
A = RA∩RAc = A2∩

(
Ac)2 is already an equivalence

relation on X. And, more generally, if A is a cover (partition) of X, then
SA =

⋃
A∈A A2 is a tolerance (equivalence) relation on X.

As an important generalization of the Pervin relation RA , for any A ⊆ X
and B ⊆ Y , we may also naturally consider the Hunsaker-Lindgren relation
R(A,B) = A×B ∩ Ac×Y [18] . Namely, thus we evidently have RA = R(A,A) .

The Pervin relations RA and the Hunsaker-Lindgren relations R(A,B) were
actually first used by Davis [11] and Császár [7, pp. 42 and 351] in some less
explicit and convenient forms, respectively.

3. Some basic properties of super relations

�������� 3.1� In this section, we shall assume that U is a super relation on
X to Y .

Remark 3.2� Thus, by our former definitions, U is actually an ordinary relation
on P (X) to Y , i. e. , it is an arbitrary subset of P (X)×Y .

Moreover, U can be identified with the set-valued function ϕU , defined
by ϕU (A) = U (A) for all A ⊆ X, which is a particular subset of P (X)×P (Y ) .

Thus, several properties of the super relation U can be easily defined with
the help of the set-valued function ϕU . For instance, we may naturally introduce

�	
������� 3.3� The super relation U will be called

1) increasing if U (A) ⊆ U (B) for all A ⊆ B ⊆ X ;

2) quasi-increasing if U
(
{x}

)
⊆ U (A) for all x ∈ A ⊆ X ;

3) union-preserving if U
(⋃

A
)
=

⋃
A∈A U (A) for all A ⊆ P (X ) .
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ÁRPÁD SZÁZ

Thus, we can at once state the following two theorems.

��	�
	� 3.4� The following assertions are equivalent :

1) U is quasi-increasing ;

2)
⋃

x∈A U
(
{x}

)
⊆ U (A) for all A ⊆ X .

��	�
	� 3.5� The following assertions are equivalent :

1) U is increasing ;

2) U
(⋂

A
)
⊆

⋂
A∈A U (A) for all A ⊆ P (X ) ;

3)
⋃

A∈A U (A) ⊆ U
(⋃

A
)

for all A ⊆ P (X ) .

P r o o f. If A1 ⊆ A2 ⊆ X, then by using a particular case of 3) we can see that

U (A1) ⊆ U (A1) ∪ U (A2) ⊆ U (A1 ∪ A2) = U (A2) ,

and thus 1) also holds. �

Moreover, by using Definition 3.3 and Theorem 3.5, we can also easily prove

��	�
	� 3.6� The following assertions are equivalent :

1) U is union-preserving ;

2) U (A) =
⋃

x∈A U
(
{x}

)
for all A ⊆ X.

P r o o f. Since A =
⋃

x∈A {x} for all A ⊆ X, it is clear that 1) implies 2).

While, if 2) holds, then we can at once see that U is increasing. Thus, by The-
orem 3.5, we have

⋃
A∈A U (A) ⊆ U

(⋃
A
)

for all A ⊆ P (X ) . Therefore, to
obtain 1), we need only prove the converse inclusion.

For this, note that if A ⊆ P (X ) , then by 2) we have

U
(⋃

A
)
=

⋃
x∈ ⋃ A U

(
{x}

)
.

Therefore, if y ∈ U
(⋃

A
)
, then there exists x ∈

⋃
A such that y ∈ U

(
{x}

)
.

Thus, in particular, there exists A0 ∈ A such that x ∈ A0 , and so, {x} ⊆ A0 .
Hence, by using the increasingness of U , we can already see that

y ∈ U
(
{x}

)
⊆ U (A0) ⊆

⋃
A∈A U (A) .

Therefore, U
(⋃

A
)
⊆

⋃
A∈A U (A) also holds. �

Remark 3.7� In particular, a super relation U on X to itself may be simply
called a super relation on X.
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Thus, a super relation U on X may be called extensive, intensive, involutive
and idempotent if A ⊆ U (A) , U (A) ⊆ A , U

(
U (A)

)
= A and U

(
U (A)

)
=

U (A) for all A ⊆ X, respectively.

Moreover, an increasing involutive (idempotent) super relation may be called
an involution (projection) relation. While, an extensive (intensive) projection
relation may be called a closure (interior) relation.

4. Relationships between ordinary and super relations

�������� 4.1� In this and the next two sections, we shall assume that R and
S are ordinary relations, and U and V are super relations on X to Y .

In [54] , having in mind Galois connections [10,48] , we have introduced

�	
������� 4.2� For the ordinary relation R , we define a super relation R �

on X to Y such that

R �(A) = R [A ] for all A ⊆ X.

While, for the super relation U , we define an ordinary relation U � on X to
Y such that

U �(x) = U
(
{x}

)
for all x ∈ X.

The appropriateness of the above definitions is apparent from the following
two theorems whose proofs are included here only for the reader’s convenience.

��	�
	� 4.3� R � ⊆ U implies R ⊆ U � .

P r o o f. If R � ⊆ U , then, in particular, we have

R (x) = R
[
{x}

]
= R �

(
{x}

)
⊆ U

(
{x}

)
= U �(x)

for all x ∈ X. Therefore, R ⊆ U � also holds. �

Remark 4.4� For the latter inclusion, we have only needed that R �� ⊆ U � .
However, later we shall see that R �� = R , and thus R ⊆ U � is actually
equivalent to R �� ⊆ U � .

��	�
	� 4.5� The following assertions are equivalent :

1) U is quasi-increasing ;

2) R ⊆ U � implies R � ⊆ U for any relation R on X to Y .

91
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P r o o f. If R ⊆ U � and 1) holds, then

R �(A) = R [A ] =
⋃

x∈A

R (x) ⊆
⋃

x∈A

U �(x) =
⋃

x∈A

U
(
{x}

)
⊆ U (A)

for all A ⊆ X. Therefore, R � ⊆ U , and thus 2) also holds.

While, if 2) holds, then because of U � ⊆ U � we have U � � = (U �)� ⊆ U .
Therefore, for any A ⊆ X, we have U � �(A) ⊆ U (A). Moreover, by using the
corresponding definitions, we can see that

U � �(A) =
(
U �

)�
(A) = U � [A ] =

⋃
x∈A

U �(x) =
⋃

x∈A

U
(
{x}

)
.

Therefore,
⋃

x∈A U
(
{x}

)
⊆ U (A) , and thus assertion 1) also holds. �

Now, as an immediate consequence of the above two theorems, we can also
state

��
����
� 4.6� If U is quasi-increasing, then

R � ⊆ U ⇐⇒ R ⊆ U � .

Remark 4.7� This shows that the operations � and � establish a partial Galois
connection between the power sets P (X× Y ) and P

(
P (X)× Y

)
.

Therefore, we may also naturally introduce the following

�	
������� 4.8� The super relation

U ◦ = U � �

will be called the Galois interior of U .

Thus, by the proof of Theorem 4.5, we can at once state the following

��	�
	� 4.9� We have

U ◦(A)
=

⋃
x∈A

U
(
{x}

)
.

for all A ⊆ X.

Hence, it is clear that, in particular, we also have

��
����
� 4.10� We have U ◦({x}) = U
(
{x}

)
for all x ∈ X.

Example 4.11. If in particular U (A) = Ac for all A ⊆ X, then for any A ⊆ X
we have

U ◦(A) =

⎧⎪⎨
⎪⎩

∅ if card (A) = 0 ,

Ac if card (A) = 1 ,

X if card (A) > 1 .
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Namely, by Theorem 4.9 and De Morgan’s law, we have

U ◦(A)
=

⋃
x∈A

U
(
{x}

)
=

⋃
x∈A

{x}c =
( ⋂

x∈A

{x}
)c

,

whence the required equalities immediately follow.

5. Further theorems on the operations � , � and ◦

Several properties of the operations � , � and ◦ can be immediately derived
from the general theory of Galois and Pataki connections [57] .

However, because of the simplicity of Definition 4.2, it is now more convenient
to use some direct proofs to establish the following four theorems.

��	�
	� 5.1� The operations � , � and ◦ are increasing.

P r o o f. For instance, if U ⊆ V , then U (A) ⊆ V (A) for all A ⊆ X. Thus, in
particular, we also have

U �(x) = U
(
{x}

)
⊆ V

(
{x}

)
= V �(x)

for all X ∈ X. Therefore, U � ⊆ V � also holds. �

��	�
	� 5.2� R � is a union-preserving super relation on X to Y such that

1) R �� = R ; 2) R �◦ = R � .

P r o o f. By the corresponding definitions, we have

R �(A) = R [A ] =
⋃

x∈A

R (x) =
⋃

x∈A

R
[
{x}

]
=

⋃
x∈A

R �
(
{x}

)

for all A ⊆ X. Thus, by Theorem 3.6, the super relation R� is union-preserving.

Moreover, we can easily see that

R ��(x) =
(
R �

)�
(x) = R �

(
{x}

)
= R

[
{x}

]
= R(x)

for all x ∈ X. Thus, assertion (1) is also true.

Now, by using Definition 4.8 and assertion (1), we can also easily see that

R �◦ =
(
R �

)◦
=

(
R �

)� �
=

(
R ��

)�
= R � .

�
��
����
� 5.3� We have R ⊆ S if and only if R � ⊆ S � .

��	�
	� 5.4� U ◦ is a union-preserving super relation on X to Y such that

1) U ◦� = U � ; 2) U ◦◦ = U ◦ .
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P r o o f. From Definition 4.8, by using Theorem 5.2, we can see that U ◦ is
union-preserving and

U ◦� =
(
U ◦)� =

(
U � �

)�
=

(
U �

)��
= U � .

Assertion 1) is also an immediate consequence of Definition 4.2 and Corol-
lary 4.10.

Moreover, by using Theorem 4.9 and its corollary, we can easily see that

U ◦◦(A) =
(
U ◦)◦(A) =

⋃
x∈A

U ◦({x}) = ⋃
x∈A

U
(
{x}

)
= U ◦(A)

for all A ⊆ X. Therefore, assertion 2) is also true. �

��	�
	� 5.5� The following assertions are equivalent :

1) U ◦ = U ; 2) U is union-preserving ;

3) U = R � for some relation R on X to Y .

P r o o f. If 2) holds, then by Theorems 4.9 and 3.6 we can see that

U ◦(A) =
⋃

x∈A

U
(
{x}

)
= U (A)

for all A ⊆ X. Therefore, 1) also holds.

Now, since 1) trivially implies 3), we need only note that if 3) holds, then
by Theorem 5.2 assertion 2) also holds. �

��
����
� 5.6� If U and V are union-preserving, then U ⊆ V if and only
if U � ⊆ V �.

Finally, we note that, by using our former results, the following four theorems
can also be proved.

��	�
	� 5.7� We have

1) U ⊆ U ◦ ⇐⇒ U (A) ⊆ U � [A ] for all A ⊆ X;

2) U ◦ ⊆ U ⇐⇒ U is quasi-increasing ⇐⇒ U � [A ] ⊆ U (A) for all
A ⊆ X;

3) U ◦ = U ⇐⇒ U is union-preserving ⇐⇒ U (A) = U � [A ] for all
A ⊆ X.

��	�
	� 5.8� We have

1) U ◦ ⊆ V =⇒ U ◦ ⊆ V ◦ ⇐⇒ U � ⊆ V � ;

2) U ◦ ⊆ V ◦ =⇒ U ◦ ⊆ V if V is quasi-increasing ;

3) U ⊆ V ⇐⇒ U ◦ ⊆ V ◦ if U and V are union-preserving .
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��	�
	� 5.9� If U = R �, then

1) U is an union-preserving super relation on X to Y such that U � = R ;

2) U is the smallest quasi-increasing super relation on X to Y such that
R ⊆ U � ;

3) U is the largest union-preserving super relation on X to Y such that
U � ⊆ R .

��	�
	� 5.10� If R = U � , then

1) R � ⊆ U if and only if U is quasi-increasing ;

2) R � = U if and only if U is union-preserving ;

3) if U is quasi-increasing, then R is the largest relation on X to Y such
that R � ⊆ U ;

4) if U is union-preserving, then R is the smallest relation on X to Y
such that U ⊆ R � .

6. Relationally defined inverses of super relations

Because of Remark 4.7, we may also naturally introduce the following

�	
������� 6.1� The super relation

U−1−1−1 = U �−1 �

will be called the relationally defined inverse of U .

Remark 6.2� To feel the necessity of this bold inverse U−1−1−1 , note that the
ordinary inverse U−1 of U is not a super relation.

While, the ordinary inverse ϕ−1
U of the associated set-valued function ϕU ,

which can be identified with U , is usually a hyper relation.

Now, using the corresponding definitions and Theorem 5.2, we can easily
prove the following three theorems.

��	�
	� 6.3� We have

1) R �−1−1−1 = R−1 � ; 2) R �−1−1−1 � = R−1 .

P r o o f. By Definition 6.1 and Theorem 5.2, we have

R �−1−1−1 = R � �−1 � = R−1 � , and thus also R �−1−1−1 � = R−1 � � = R−1 . �
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ÁRPÁD SZÁZ

��	�
	� 6.4� U−1−1−1 is a union-preserving super relation on Y to X such that

1) U−1−1−1 � = U �−1 ; 2) U ◦−1−1−1 = U−1−1−1 .

P r o o f. By Definitions 6.1 and 4.8 and Theorem 5.2 we have

U−1−1−1 � = U �−1 � � = U �−1 and U ◦−1−1−1= U � � �−1 � = U �−1 � = U−1−1−1 . �

Remark 6.5� Note that if U � is symmetric, then U−1−1−1 = U �−1 � = U � � = U ◦ .
Thus, if in addition U is union-preserving, then U−1−1−1 = U .

In this respect, it is also worth noticing that if, in particular, U is as in Ex-
ample 4.11, then U � is symmetric. Thus, by the above observation,

U−1−1−1 = U ◦ .

��	�
	� 6.6� We have
(
U−1−1−1

)−1−1−1
= U ◦ .

P r o o f. By the corresponding definitions and Theorem 5.2, we have

(
U−1−1−1

)−1−1−1
= U �−1 � �−1 � = U �−1−1 � = U � � = U ◦ . �

Hence, by using Theorem 5.5, we can immediately derive

��
����
� 6.7� The following assertions are equivalent :

1) U =
(
U−1−1−1

)−1−1−1
; 2) U is union-preserving .

Moreover, as a counterpart of Theorem 4.9, we can also prove the following

��	�
	� 6.8� For any B ⊆ Y , we have

U−1−1−1 (B) =
{
x ∈ X : U ({x}) ∩ B 	= ∅

}
.

P r o o f. By the corresponding definitions, we have

U−1−1−1(B) =
(
U �−1 �

)
(A) = U �−1 [B ] .

Moreover, it is clear that, for any x ∈ X, we have

x ∈ U �−1 [B ] ⇐⇒ U �(x) ∩ B 	= ∅ ⇐⇒ U
(
{x}

)
∩ B 	= ∅ .

Therefore, the required equality is true. �

Remark 6.9� From the above proof, by Theorem 6.4, we can also see that

U−1−1−1 (B) = U �−1 [B ] = U−1−1−1 � [B ] .
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7. Functionally and relationally defined compositions
of super relations

�������� 7.1� In this section, we shall assume that R is an ordinary relation
and U is super relation on X to Y .

Moreover, we shall also assume that S is an ordinary relation and V is super
relation on Y to Z .

By the usual identification of U with ϕU , we may also naturally introduce

�	
������� 7.2� The super relation V ◦◦◦ U , defined such that

(V ◦◦◦ U )(A) = V
(
U (A)

)

for all A ⊆ X, will be called the functionally defined composition of V and U .

Remark 7.3� Namely, thus we have

ϕV◦◦◦U (A) = (V ◦◦◦ U )(A) = V
(
U (A)

)
= ϕV

(
ϕU(A)

)
= (ϕV ◦ ϕU )(A)

for all A ⊆ X, and thus ϕV◦◦◦U = ϕV ◦ ϕU .

The appropriateness of Definition 7.2 is also quite obvious from the following
three simple theorems and their corollaries.

��	�
	� 7.4� We have
(
S ◦R

)�
= S � ◦◦◦ R � .

��
����
� 7.5� We have

1) (S ◦ U �)
�
= S �◦◦◦ U if U is union-preserving ;

2) (V �◦ R )
�
= V ◦◦◦R � if V is union-preserving .

��	�
	� 7.6� If V is union-preserving, then
(
V ◦◦◦ U

)�
= V � ◦ U � .

P r o o f. By the corresponding definitions and Theorem 5.5, we have

(V ◦◦◦ U )�(x) =
(
V ◦◦◦ U )

(
{x}

)
= V

(
U
(
{x}

))
= V

(
U �(x)

)
=

V ◦(U �(x)
)
= V � �

(
U �(x)

)
= V �

[
U �(x)

]
=

(
V � ◦ U �

)
(x)

for all x ∈ X. Therefore, the required equality is also true. �

��
����
� 7.7� We have

1) (S � ◦◦◦ U )
�
= S ◦ U � ;

2) (V ◦◦◦R �)
�
= V �◦ R if V is union-preserving .

��	�
	� 7.8� If V is union-preserving, then (V ◦◦◦ U )−1−1−1 = U−1−1−1 ◦◦◦ V −1−1−1 .

97
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P r o o f. By Definition 6.1 and Theorems 7.6, and 7.4, we have

(V ◦◦◦ U )−1−1−1 = (V ◦◦◦ U )�−1 � = (V � ◦ U �)−1 � =
(
U �−1 ◦ V �−1

)�
= U �−1 � ◦◦◦ V �−1 � = U−1−1−1 ◦◦◦ V −1−1−1 . �

��
����
� 7.9� We have (S �◦◦◦ U )−1−1−1 = U−1−1−1 ◦◦◦ S−1� .

Remark 7.10� By using Definition 7.2, it can also be easily seen that the
functionally defined composition of super relations is associative.

Now, analogously to Definition 6.1, we may also naturally introduce

�	
������� 7.11� The super relation

V • U = (V � ◦ U �)
�

will be called the relationally defined composition of V and U .

The appropriateness of this definition is apparent from the following theorems.

��	�
	� 7.12� We have

1) S� • R � =
(
S ◦R

)�
; 2) (S� • R � )

�
= S ◦R .

��	�
	� 7.13� V • U is a union-preserving super relation such that

V • U = V ◦ ◦◦◦ U ◦ .

P r o o f. From Definition 7.11, by Theorem 5.2, it is clear that V •U is a union-
preserving. Moreover, by using Theorem 7.4 and Definition 4.8, we can see that

V • U = (V � ◦ U �)
�
= V � � ◦◦◦ U � � = V ◦ ◦◦◦ U ◦ . �

Thus, in particular, by Theorem 5.5, we can also state the following

��
����
� 7.14� If both U and V are union-preserving, then V •U = V ◦◦◦U .

Remark 7.15� From Theorem 7.13, by using Theorems 4.9 and 5.4, we can
also infer that (

V • U
)
(A) =

⋃
x∈A

⋃
y∈U({x})

V
(
{y}

)

for all A ⊆ X.

Now, by using our former results, we can also prove the following

��	�
	� 7.16� We have (
V • U

)−1−1−1
= U−1−1−1◦◦◦ V −1−1−1 .

P r o o f. By Theorems 7.13, 5.4, 7.8 and 6.4, it is clear that
(
V • U

)−1−1−1
= (V ◦ ◦◦◦ U ◦)−1−1−1

= U ◦−1−1−1◦◦◦ V ◦−1−1−1 = U−1−1−1◦◦◦ V −1−1−1 . �
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Remark 7.17� Moreover, by using Theorem 7.13 and Remark 7.10, it can be
easily seen that the relationally defined composition of super relations is also
associative.

8. Lower and upper super products of super relations

�������� 8.1� In this and the next six sections, we shall assume that U ,
V and W are super relations on X.

Motivated by an ingenious idea of Przemska [31, 32] , we may naturally
introduce the following

�	
������� 8.2� We define two super relations U � V and U ∗ V on X such
that

(U � V )(A) =
(
A ∪ U (A)

)
∩ V (A)

and
(U ∗ V )(A) =

(
A ∩ V (A)

)
∪ U (A)

for all A ⊆ X.

Thus, in particular, we can easily establish the following

��	�
	� 8.3� We have

1) U � U = U ; 2) U ∗ U = U .

P r o o f. By the corresponding definitions, it is clear that

(U � U )(A) =
(
A ∪ U (A)

)
∩ U (A) = U (A)

and
(U ∗ U )(A) =

(
A ∩ U (A)

)
∪ U (A) = U (A)

for all A ⊆ X, and thus the required equalities are true. �
Remark 8.4� This theorem shows that the above binary operations � and ∗
are idempotent.

By the distributivity of the operations ∩ and ∪ , we evidently have the
following

��	�
	� 8.5� For any A ⊆ X, we have

1) (U � V )(A) =
(
A ∩ V (A)

)
∪
(
U (A) ∩ V (A)

)
;

2) (U ∗ V )(A) =
(
A ∪ U (A)

)
∩
(
U (A) ∪ V (A)

)
.

Hence, it is clear that, in particular, we can also state
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��
����
� 8.6� For any A ⊆ X, we have

1) (U � V )(A) = (V � U )(A) if A ∩ U (A) = A ∩ V (A);

2) (U ∗ V )(A) = (V ∗ U )(A) if A ∪ U (A) = A ∪ V (A) .

P r o o f. For instance, if A ∩ U (A) = A ∩ V (A) , then by using Theorem 8.5
we can see that

(U � V )(A) =
(
A ∩ V (A)

)
∪
(
U (A) ∩ V (A)

)
=(

A ∩ U (A)
)
∪
(
V (A) ∩ U (A)

)
= (V � U )(A) . �

Remark 8.7� Note that if for instance A ⊆ U (A) , then by the corresponding
definitions we have

(U � V )(A) =
(
A ∪ U (A)

)
∩ V (A) = U (A) ∩ V (A) .

Therefore, if A ⊆ U (A) ∩ V (A) , then we also have

(U � V )(A) = U (A) ∩ V (A) = V (A) ∩ U (A) = (V � U )(A) .

However, it is now more important to note that, by using Theorem 8.5, we
can also easily prove the following

��	�
	� 8.8� We have

1) U � V ⊆ U ∗ V ; 2) U � V ⊆ V ; 3) U ⊆ U ∗ V .

P r o o f. By using Theorem 8.5, we can see that

(U � V )(A) ⊆
(
A ∩ V (A)

)
∪ U (A) = (U ∗ V )(A) ,

and quite similarly

(U � V )(A) ⊆
(
A ∩ V (A)

)
∪ V (A) = V (A) ,

U (A) =
(
A ∪ U (A)

)
∩ U (A) ⊆ (U ∗ V )(A)

for all A ⊆ X. Thus, the required inclusions are true. �

Remark 8.9� Because of inclusion 1), the super relations U �V and U ∗V may
be naturally called the lower and upper super products of the super relations U
and V , respectively.

9. An illustrating example and two general theorems

The following example shows that the operations � and ∗ are not, in general,
equal and commutative.
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Example 9.1. If in particular

U (A) = A and V (A) = Ac

for all A ⊆ X, then

(U � V )(A) =
(
A ∪ U (A)

)
∩ V (A) = (A ∪A ) ∩ Ac = A ∩ Ac = ∅ ,

(V � U )(A) =
(
A ∪ V (A)

)
∩ U (A) = (A ∪Ac) ∩ A = X ∩A = A ,

(U ∗ V )(A) =
(
A ∩ V (A)

)
∪ U (A) = (A ∩Ac) ∪ A = ∅ ∪ A = A ,

(V ∗ U )(A) =
(
A ∩ U (A)

)
∪ V (A) = (A ∩A) ∪ Ac = A ∪ Ac = X

for all A ⊆ X.

Thus, if card (X) > 1 , then we have

U � V 	= V � U , U � V 	= U ∗ V , U ∗ V 	= V ∗ U ,

despite that U = Δ , V � U = Δ and U ∗ V = Δ , and moreover U � V and
V ∗ U are also very particular.

However, by using Theorem 8.5, we can also prove the following

��	�
	� 9.2� If U ⊆ V , then

U � V = U ∗ V .

P r o o f. Since U ⊆ V , we have U (A) ⊆ V (A) , and thus U (A) ∩ V (A) =
U (A) for all A ⊆ X.

Hence, by Theorem 8.5, we can see that

(U �V )(A) =
(
A∩V (A)

)
∪
(
U (A)∩V (A)

)
=

(
A∩V (A)

)
∪U (A) = (U ∗V )(A)

for all A ⊆ X, and thus the required equality is true. �

Analogously to this theorem, we can also prove the following

��	�
	� 9.3� If V ⊆ U , then

1) U � V = V ; 2) U ∗ V = U .

P r o o f. Since V ⊆ U , we have V (A) ⊆ U (A) , and thus

U (A) ∩ V (A) = V (A) and U (A) ∪ V (A) = U (A)

for all A ⊆ X.

Hence, by Theorem 8.5, we can see that

(U � V )(A) =
(
A ∩ V (A)

)
∪
(
U (A) ∩ V (A)

)
=

(
A ∩ V (A)

)
∪ V (A) = V (A)

and

(U ∗ V )(A) =
(
A ∪ U (A)

)
∩
(
U (A) ∪ V (A)

)
=

(
A ∪ U (A)

)
∩ U (A) = U (A)

for all A ⊆ X. Therefore, the required equalities are true. �
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Remark 9.4� Note that U ⊆ U , and thus Theorem 8.3 can be derived from
Theorem 9.3.

From Theorems 9.2 and 9.3, we can also derive the following two corollaries.

��
����
� 9.5� If U is intensive, then

1) U �Δ = U ∗Δ ; 2) Δ � U = U ; 3) Δ ∗ U = Δ .

��
����
� 9.6� If U is extensive, then

1) Δ � U = Δ ∗ U ; 2) U �Δ = Δ ; 3) U ∗Δ = U .

10. Some further theorems
on intensive and extensive super relations

Remark 10.1� By using that Δ (A) = A and

(U ∪ V )(A) = U (A) ∪ V (A) and (U ∩ V )(A) = U (A) ∩ V (A)

for all A ⊆ X, Definition 8.2 and Theorem 8.5 can be reformulated in some
more concise forms.

Moreover, concerning the operations � and ∗ , we can also prove the following
two theorems.

��	�
	� 10.2� We have

1) U � V = Δ ∩ V if U is intensive ;

2) U � V = U ∩ V if U is extensive .

P r o o f. If U is intensive, then U (A) ⊆ A , and thus A ∪ U (A) = A for all
A ⊆ X. Hence, we can see that

(U �V )(A) =
(
A∪U (A)

)
∩ V (A) = A∩V (A) = Δ (A)∩V (A) = (Δ∩V )A) ,

for all A ⊆ X, and thus (1) is true.

While, if U is extensive, then A ⊆ U (A) , and thus A ∪ U (A) = U (A)
for all A ⊆ X. Hence, we can see that

(U � V )(A) =
(
A ∪ U (A)

)
∩ V (A) = U (A) ∩ V (A) = (U ∩ V )A) ,

for all A ⊆ X, and thus 2) is also true. �
��	�
	� 10.3� We have

1) U ∗ V = U ∪ V if V is intensive ;

2) U ∗ V = U ∪Δ if V is extensive .
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P r o o f. If V is intensive, then V (A) ⊆ A , and thus A ∩ V (A) = V (A)
for all A ⊆ X. Hence, we can see that

(U ∗ V )(A) =
(
A ∩ V (A)

)
∪ U (A) = V (A) ∪ U (A) = (U ∪ V )A) ,

for all A ⊆ X, and thus 1) is true.

While, if V is extensive, then A ⊆ V (A) , and thus A ∩ V (A) = A for all
A ⊆ X. Hence, we can see that

(U ∗ V )(A) =
(
A∩ V (A)

)
∪ U (A) = A∪U (A) = U (A)∪Δ(A) = (U ∪Δ)(A)

for all A ⊆ X, and thus 2) is also true. �

Remark 10.4� From the above two theorems, we can see that

1) U � V = V � U if both U and V are extensive;

2) U ∗ V = V ∗ U if both U and V are intensive .

From Theorems 10.2 and 10.3, by using that Δ ⊆ Δ, we can also derive

��
����
� 10.5� We have

1) Δ � U = Δ ∩ U ; 2) U ∗Δ = U ∪Δ .

Moreover, by using Theorems 10.2 and 9.2, we can easily prove the following

��	�
	� 10.6� If U is intensive and V is extensive, then

1) U � V = Δ ; 2) U ∗ V = Δ .

P r o o f. By Theorem 10.2, for any A ⊆ X, we have

(U � V )(A) =
(
Δ ∩ V )(A) = Δ (A) ∩ V (A) = A ∩ V (A) = A = Δ(A) .

Therefore, 1) is true. Thus, by Theorem 9.2, assertion 2) is also true. �

11. Associativity properties of the operations � and ∗

By using Theorem 8.5 and the distributivity properties of ∩ and ∪ , we can
prove the following two theorems

��	�
	� 11.1� We have

1) (U � V ) � W = U � (V �W ) ;

2)
(
(U � V ) � W

)
(A) =

(
A ∩W (A)

)
∪
(
U (A) ∩ V (A) ∩ W (A)

)
for all

A ⊆ X.
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P r o o f. For any A ⊆ X, we have
(
(U � V ) � W

)
(A) =

(
A ∩W (A)

)
∪
(
(U � V )(A) ∩ W (A)

)

and

(U � V )(A) ∩ W (A) =
((

A ∩ V (A)
)
∪
(
U (A) ∩ V (A)

))
∩ W (A)

)
=

(
A ∩ V (A) ∩ W (A)

)
∪
(
U (A) ∩ V (A) ∩ W (A)

)
.

Therefore,

(
(U � V ) � W

)
(A) =(

A ∩W (A)
)
∪
(
A ∩ V (A) ∩ W (A)

)
∪
(
U (A) ∩ V (A) ∩ W (A)

)
=(

A ∩W (A)
)
∪
(
U (A) ∩ V (A) ∩ W (A)

)

For any A ⊆ X, we also have
(
U � (V �W )

)
(A) =

(
A ∩ (V �W ) (A)

)
∪
(
U (A) ∩ (V �W )(A)

)
,

and moreover,

A ∩ (V �W ) (A) = A ∩
((

A ∩ W (A)
)
∪
(
V (A) ∩ W (A)

))
=

(
A ∩ W (A)

)
∪
(
A ∩ V (A) ∩ W (A)

)
= A ∩ W (A)

and

(
U (A) ∩ (V �W )(A)

)
= U (A) ∩

((
A ∩ W (A)

)
∪
(
V (A) ∩ W (A)

))
=

(
U (A) ∩ A ∩ W (A)

)
∪
(
U (A) ∩ V (A) ∩ W (A)

)
.

Therefore,

(
U � (V �W )

)
(A) =(

A ∩ W (A)
)
∪
(
U (A) ∩ A ∩ W (A)

)
∪
(
U (A) ∩ V (A) ∩ W (A)

)
=(

A ∩ W (A)
)
∪
(
U (A) ∩ V (A) ∩ W (A)

)
.

Thus, the required assertions are true. �

��	�
	� 11.2� We have

1) (U ∗ V ) ∗ W = U ∗ (V ∗W ) ;

2)
(
(U ∗ V ) ∗ W

)
(A) =

(
A ∪ U (A)

)
∩
(
U (A) ∪ V (A) ∪ W (A)

)
for all

A ⊆ X.
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P r o o f. For any A ⊆ X, we have(
(U ∗ V ) ∗ W

)
(A) =

(
A ∪ (U ∗ V )(A)

)
∩
(
(U ∗ V )(A) ∪ W (A)

)
,

and moreover,

A ∪ (U ∗ V )(A) = A ∪
((

A ∪ U (A)
)
∩
(
U (A) ∪ V (A)

))
=

(
A ∪ U (A)

)
∩
(
A ∪ U (A) ∪ V (A)

)
= A ∪ U (A)

and

(U ∗ V )(A) ∪ W (A) =
((

A ∪ U (A)
)
∩
(
U (A) ∪ V (A)

))
∪ W (A) =

(
A ∪ U (A) ∪W (A)

)
∩
(
U (A) ∪ V (A) ∪ W (A)

)
.

Therefore,
(
(U ∗ V ) ∗ W

)
(A) =(

A ∪ U (A)
)
∩
(
A ∪ U (A) ∪W (A)

)
∩
(
U (A) ∪ V (A) ∪ W (A)

)
=(

A ∪ U (A)
)
∩
(
U (A) ∪ V (A) ∪ W (A)

)
.

For any A ⊆ X, we also have(
U ∗ (V ∗W )

)
(A) =

(
A ∪ U (A)

)
∩
(
U (A) ∪ (V ∗W )(A)

)

and

U (A) ∪ (V ∗W )(A) =
(
U (A) ∪

(
A ∪ V (A)

)
∩
(
V (A) ∪ W (A)

))
=

(
U (A) ∪ A ∪ V (A)

)
∩
(
U (A) ∪ V (A) ∪ W (A)

)
.

Therefore,
(
U ∗ (V ∗W )

)
(A) =(

A ∪ U (A)
)
∩
(
U (A) ∪ A ∪ V (A)

)
∩
(
U (A) ∪ V (A) ∪ W (A)

)
=(

A ∪ U (A)
)
∩
(
U (A) ∪ V (A) ∪ W (A)

)
.

Thus, the required assertions are true. �

Remark 11.3� In addition to the above associativity properties, we can easily
establish some increasingness properties of the operations � and ∗ .

For instance, if U ⊆ V , then by using Definition 8.2 we can at once see that

(U �W )(A) =
(
A ∪ U (A)

)
∩W (A) ⊆

(
A ∪ V (A)

)
∩W (A) = (V �W )(A)

for all A ⊆ X, and thus U �W ⊆ V �W .

Remark 11.4� However, we could neither prove nor disprove the distributivity
properties of the operations � and ∗ over each other.
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12. Subsets and supersets of the sets
(U � V )(A) and (U ∗ V )(A)

Now, by extending an argument of Przemska [31,32] , we can also prove the
following two theorems and their corollaries.

��	�
	� 12.1� For any A, B ⊆ X, we have

1) B ⊆ (U � V )(A) if and only if B ⊆ A ∪ U (A) and B ⊆ V (A) ;

2) (U � V )(A) ⊆ B if and only if A ∩ V (A) ⊆ B and U (A)∩ V (A) ⊆ B .

P r o o f. By Definition 8.2 and Theorem 8.5, we have

B ⊆ (U�V )(A) ⇐⇒ B ⊆
(
A∪U (A)

)
∩V (A) ⇐⇒ B ⊆ A∪U (A), B ⊆ V (A)

and

(U � V )(A) ⊆ B ⇐⇒
(
A ∩ V (A)

)
∪
(
U (A) ∩ V (A)

)
⊆ B

⇐⇒ A ∩ V (A) ⊆ B , U (A) ∩ V (A) ⊆ B .

Therefore, assertions 1) and 2) are true. �

��
����
� 12.2� For any A ⊆ X, we have

1) A ⊆ (U � V )(A) if and only if A ⊆ V (A) ;

2) (U � V )(A) ⊆ A if and only if U (A) ∩ V (A) ⊆ A .

��
����
� 12.3� For any A ⊆ X, we have

A = (U � V )(A) ⇐⇒ U (A) ∩ V (A) ⊆ A ⊆ V (A) .

��	�
	� 12.4� For any A, B ⊆ X, we have

1) (U ∗ V )(A) ⊆ B if and only if A ∩ V (A) ⊆ B and U (A) ⊆ B ;

2) B ⊆ (U ∗ V )(A) if and only if B ⊆ A∪U (A) and B ⊆ U (A)∪ V (A).

P r o o f. By Definition 8.2 and Theorem 8.5, we have

(U ∗V )(A) ⊆ B ⇐⇒
(
A∩V (A)

)
∪U (A) ⊆ B ⇐⇒ A∩V (A) ⊆ B, U (A) ⊆ B

and

B ⊆ (U ∗ V )(A) ⇐⇒ B ⊆
(
A ∪ U (A)

)
∩
(
U (A) ∪ V (A)

)
⇐⇒

B ⊆ A ∪ U (A) , B ⊆ U (A) ∪ V (A) .

Therefore, assertions 1) and 2) are true. �
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��
����
� 12.5� For any A ⊆ X, we have

1) (U ∗ V )(A) ⊆ A if and only if U (A) ⊆ A ;

2) A ⊆ (U ∗ V )(A) if and only if A ⊆ U (A) ∪ V (A) .

��
����
� 12.6� For any A ⊆ X, we have

A = (U ∗ V )(A) ⇐⇒ U (A) ⊆ A ⊆ U (A) ∪ V (A) .

Now, by Corollaries 12.3 and 12.6, we can also state the following two theo-
rems.

��	�
	� 12.7� If V ⊆ U , then for any A ⊆ X we have

1) A = (U � V )(A) if and only if A = V (A);

2) A = (U ∗ V )(A) if and only if A = U (A) .

��	�
	� 12.8� If U ⊆ V , then for any A ⊆ X the following assertions are
equivalent :

1) A = (U � V )(A) ; 2) A = (U ∗ V )(A) ; 3) U (A) ⊆ A ⊆ V (A) .

Remark 12.9� By using Corollaries 12.3 and 12.6 and Theorems 12.7 and 12.8,
the fixed points of the super relations U �V and U ∗V can be easily determined.

13. Lower and upper hyper products of super relations

Because of our former results and some closely related definitions of
Levine [24] , Corson and Michael [6] and Andrijević [2] , we may also naturally
introduce

�	
������� 13.1� We define two hyper relations U���������V and U �V on X such
that

(U ��������� V )(A) =
{
B ⊆ X : (U � V )(A) ⊆ B ⊆ (U ∗ V )(A)

}

and

(U � V )(A) =
{
B ⊆ X : (U ∩∩∩ V )(A) ⊆ B ⊆ (U ∪∪∪ V )(A)

}

for all A ⊆ X.

Thus, by the above definition and Theorem 8.3, we can at once state

��	�
	� 13.2� We have

1) U ��������� U = U ; 2) U � U = U .
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ÁRPÁD SZÁZ

P r o o f. By Theorem 8.3, for any A ⊆ X, we have

(U � U )(A) = U (A) = (U ∗ U )(A) .

Hence, by using Definition 13.1, we can infer that

(U ��������� U )(A) =
{
U (A)

}
.

Thus, U ��������� U is actually a function of P (X) such that (U ��������� U )(A) = U (A)
for all A ⊆ X.

Therefore, by the usual identification of relations with set-valued functions,
equality 1) can be stated without any danger of confusions. �

Remark 13.3� This theorem shows that the above binary operations ��������� and �

are, in a certain sense, also idempotent.

Moreover, from Definition 13.1, we can see that, in contrast to the operations
� , ∗ and ��������� , the operation � is commutative.

By using Theorem 8.5, we can easily prove the following

��	�
	� 13.4� We have

U ��������� V ⊆ U � V .

P r o o f. If A ⊆ X and B ∈ (U ��������� V )(A) , then by Definition 13.1 we have

(U � V )(A) ⊆ B ⊆ (U ∗ V )(A) .

Hence, by using Theorem 8.5, we can infer that
(
A ∩ V (A)

)
∪ (U ∩∩∩ V )(A) ⊆ B ⊆

(
A ∪ U (A)

)
∩ (U ∪∪∪ V )(A) .

This implies that
(U ∩∩∩ V )(A) ⊆ B ⊆ (U ∪∪∪ V )(A)

and thus by Definition 13.1 we also have B ∈ (U � V )(A) .

Therefore, (U ��������� V )(A) ⊆ (U � V )(A) for all A ⊆ X, and thus the required
inclusion is also true. �

Remark 13.5� Because of this theorem, the hyper relations U ��������� V and U � V
may be naturally called the lower and upper hyper products of the super relations
U and V , respectively.

Now, by using Example 9.1 and Definition 13.1, we can also easily establish

Example 13.6. If U and V are as in Example 9.1, then for any A ⊆ X we
have

(U ��������� V )(A) = P (A) , (V ��������� U )(A) = P−1 (A) and (U � V )(A) = P (X) .
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To prove the second equality, note that by Definition 13.1 and Example 9.1,
for any B ⊆ X, we have

B ∈ (V ��������� U )(A) ⇐⇒ (V � U )(A) ⊆ B ⊆ (V ∗ U )(A) ⇐⇒
A ⊆ B ⊆ X ⇐⇒ A ∈ P (B) ⇐⇒ B ∈ P−1(A) .

Moreover, by using Definition 13.1 and Theorems 9.2 and 9.3, we can easily
establish the following two theorems.

��	�
	� 13.7� If U ⊆ V , then we have

1) U ��������� V = U � V = U ∗ V ;

2) (U � V )(A) =
{
B ⊆ X : U (A) ⊆ B ⊆ V (A)

}
for all A ⊆ X.

��	�
	� 13.8� If V ⊆ U , then we have

1) U ��������� V = V � U ;

2) (V � U )(A) =
{
B ⊆ X : V (A) ⊆ B ⊆ U (A)

}
for all A ⊆ X.

Remark 13.9� Note that U ⊆ U , and thus Theorem 13.2 can be derived from
Theorem 13.8.

14. Some further theorems on the operations ��������� and �

By using Definition 13.1 and Corollaries 9.5 and 9.6, we can easily establish
the following two theorems.

��	�
	� 14.1� If U is intensive, then

1) U ���������Δ = U �Δ = U ∗Δ ; 2) Δ��������� U = U �Δ ;

3) (U �Δ)(A) =
{
B ⊆ X : U (A) ⊆ B ⊆ A} for all A ⊆ X.

��	�
	� 14.2� If U is extensive, then

1) Δ��������� U = Δ � U = Δ ∗ U ; 2) U ���������Δ = Δ� U ;

3) (Δ� U ) (A) =
{
B ⊆ X : A ⊆ B ⊆ U (A)

}
for all A ⊆ X.

Moreover, by Definition 13.1 and Theorem 10.6, we can also state

��	�
	� 14.3� If U is intensive and V is extensive, then

1) U ��������� V = Δ ;

2) (U � V ) (A) =
{
B ⊆ X : U (A) ⊆ B ⊆ V (A)

}
for all A ⊆ X.
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Now, as an immediate consequence of Definition 13.1 and Theorems 12.8 and
13.7, we can also state

��	�
	� 14.4� If U ⊆ V , then for any A ⊆ X the following assertions are
equivalent :

1) A = (U � V )(A) ; 2) A = (U ∗ V )(A) ;

3) A = (U ��������� V )(A) ; 4) A ∈ (U � V )(A) ;

5) U (A) ⊆ A ⊆ V (A) .

Thus, in particular, we can also state

��
����
� 14.5� If U ⊆ V , then the following assertions are equivalent :

1) U � V = Δ ; 2) U ∗ V = Δ ;

3) U ��������� V = Δ ; 4) U � V is reflexive ;

5) U is intensive and V is extensive .

In this respect, it is also worth proving the following

��	�
	� 14.6� If U ⊆ V and

1) U is extensive or increasing and lower semi-idempotent ;

2) V is intensive or increasing and upper semi-idempotent ;

then U � V is transitive.

P r o o f. If A, B, C ⊆ X such that

B ∈ (U � V )(A) and C ∈ (U � V )(B) ,

then by Theorem 13.7 we have

U (A) ⊆ B ⊆ V (A) and U (B) ⊆ C ⊆ V (B) .

Hence, if, for instance, U is extensive, we can infer that

U (A) ⊆ B ⊆ U (B) ⊆ C .

Moreover, if, for instance, V is increasing and upper semi-idempotent, then we
can also note that

C ⊆ V (B) ⊆ V
(
V (A)

)
⊆ V (A) .

Therefore,

U (A) ⊆ C ⊆ V (A) , and thus C ∈ (U � V )(A) .

Consequently, in this particular case, U � V is transitive. �
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15. The duals of super and hyper relations

Having in mind the relationship between the usual closure and interior oper-
ations, we may naturally introduce the following

�	
������� 15.1� For a super relation U on X to Y , we define a dual super
relation U � on X to Y such that

U �(A) = U (Ac) c

for all A ⊆ X.

Thus, we can easily prove the following four theorems.

��	�
	� 15.2� If U and V are super relations on X to Y , then

1) U = U �� ; 2) U ⊆ V implies V � ⊆ U � .

P r o o f. To prove 2), note that if U ⊆ V , then U (Ac) ⊆ V (Ac) , and thus

V �(A) = V (Ac)c ⊆ U (Ac)c = U �(A)

for all A ⊆ X. Therefore, V � ⊆ U � also holds. �
��	�
	� 15.3� If U is a super relation on X to Y , then

1) U � is increasing if and only if U is increasing ;

2) U � is union-preserving if and only if U is intersection-preserving ;

3) U � is intersection-preserving if and only if U is union-preserving .

P r o o f. If, for instance, U is union-preserving, then by the corresponding def-
initions and De Morgan’s law we have

U �
(⋂

A∈A A
)
= U

((⋂
A∈A A

)c)c

= U
(⋃

A∈A Ac
)c

=
(⋃

A∈A U (Ac)
)c

=
⋂

A∈A U (Ac)c =
⋂

A∈A U �(A)

for all A ⊆ P (X) . Therefore, U � is intersection-preserving.

Thus, the “if part” of assertion 3) is true. Hence, since U �� = U , it is clear
that the “only if part” of assertion 2) is also true. �
��	�
	� 15.4� If U is a super relation on X to Y , then

1) U � is intensive if and only if U is extensive ;

2) U � is extensive if and only if U is intensive ;

3) U � is involutive if and only if U is involutive ;

4) U � is idempotent if and only if U is idempotent .
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P r o o f. For instance, if U is idempotent, then by the corresponding definitions

U �
(
U �(A)

)
= U �

(
U (Ac)c

)
= U

(
U (Ac)

)c
= U (Ac)c = U �(A)

for all A ⊆ X. Therefore, U � is also idempotent.

Thus, the “if part” of assertion (4) is true. Hence, since U �� = U , it is clear
that the “only if part” of assertion (4) is also true. �

��	�
	� 15.5� If U and V are super relations on X to Y , then

1) (U � V )� = V � ∗ U � ; 2) (U ∗ V )� = V � � U � .

P r o o f. By Definitions 15.1 and 8.2 and De Morgan’s laws, we have

(U � V )�(A) = (U � V )(Ac) c =
((

Ac ∪ U (Ac)
)
∩ V (Ac)

)c

=
(
Ac ∪ U (Ac)

)c ∪ V (A)c =
(
A ∩ U (Ac)c

)
∪ V (Ac)c =(

A ∩ U �(A)
)
∪ V �(A) = (V � ∗ U �)(A)

for all A ⊆ X. Therefore, assertion (1) is true.

From assertion (1), by using Theorem 15.2 we can infer that

(V � ∗ U �)� = (U � V )�� = U � V .

Hence, by writing U� in place of V and V � in place of U , we can see that
assertion (2) is also true. �

Remark 15.6� From assertion 2), by using Theorem 15.2, we can infer that

U ∗ V =
(
V � � U �

)�
.

Therefore, the properties of the binary operation ∗ can be derived from those
of the binary operation � and the unary operation � .

Analogously to Definition 15.1, we may also naturally introduce the following

�	
������� 15.7� For a hyper relation V on X to Y , we define two dual hyper
relations V � and V ��������� on X to Y such that

V �(A) = V (Ac)c = P (Y ) \ V (Ac)
and

V ���������(A) =
[
V (Ac)

]c
=

{
Bc : B ∈ V (Ac)

}

for all A ⊆ X.

Remark 15.8� Thus, some properties of the hyper relations V � and V ��������� can
also be easily derived from those of the hyper relation V .

Moreover, having in mind the derivations of small closures and interiors from
the big ones [41,42] , we may also naturally introduce the following
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�	
������� 15.9� For a hyper relation V on X to Y , we define a super rela-
tion V ��� on X to Y such that

V ���������(A) =
{
y ∈ Y : {y} ∈ V (A)

}
for all A ⊆ X.

Remark 15.10� Thus, in some cases, we may also naturally consider the ordi-
nary relation V ��������� � .

However, for instance, for two super relations U and V it may be very hard
to determine the super relation (U ��������� V )��������� .

Example 15.11. Of course, if U and V are as in Example 13.6, then for any
A ⊆ X and y ∈ X we have

y ∈ (U ��������� V )���������(A) ⇐⇒ {y} ∈ (U ��������� V )(A) ⇐⇒ {y} ∈ P (A) ⇐⇒
{y} ⊆ A ⇐⇒ y ∈ A ⇐⇒ y ∈ U (A) .

Therefore, (U ��������� V )���������(A) = U (A) for all A ⊆ X, and thus (U ��������� V )��������� = U .

Hence, by Corollary 10.5, we can see that (U ��������� V )��������� � W = U �W = U ∩∩∩W
for any super relation W on X. Thus, in particular, (U ��������� V )��������� � W = U if W
is extensive.

16. Applications to generalized topologically open sets

Now, following the ideas of [33, 34, 59] , we shall show that the ordinary,
super and hyper relations can be used to treat, in a general, unified framework,
the various generalized open sets studied by a great number of topologists.

For this, we shall assume that R, U and V are ordinary, super and hyper
relators on X in the sense that they are arbitrary families of ordinary, super
and hyper relations on X, respectively.

And, following the ideas of [42, 54] , in the non-conventional three relator
space X (R, U , V) , for any A, B ⊆ X and x ∈ X we define

1) B ∈ Int U (A) if U (B) ⊆ A for some U ∈ U ;

2) B ∈ ClU (A) if U (B) ∩ A 	= ∅ for all U ∈ U ;

3) x ∈ intU (A) if {x} ∈ IntU (A); 4) x ∈ clU (B) if {x} ∈ ClU (B);

5) A ∈ τU if A ∈ IntU (A) ; 6) A ∈ τ-U if Ac /∈ ClU (A) ;

7) A ∈ TU if A ⊆ intU (A) ; 8) A ∈ FU if clU (A) ⊆ A ;

9) A ∈ EU if intU (A) 	= ∅ ; 10) A ∈ DU if clU (A) = X ;

11) A ∈ NU if clU (A) /∈ EU ; 12) A ∈ MU if intU (A) ∈ DU .
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Thus, by using the plausible definitions IntR = IntR� and intR = intR� ,
with R � = {R � : R ∈ R} , it can be easily shown that Int U◦ = IntU� and
intU = intU◦ = intU� . However, IntU is usually a more general tool than IntR .

Moreover, it can also be easily shown that

τ-U =
{
A ⊆ X : ∃ U ∈ U : A ⊆ U �(A)

}
.

Thus, in particular

τ-U =
{
A ⊆ X : A ⊆ U �(A)

}
and τ-U� =

{
A ⊆ X : A ⊆ U (A)

}

for any super relation U on X.

Hence, by taking

U (A) = clR
(
intR(A)

)
for all A ⊆ X,

and using that U �(A) = intR
(
clR(A)

)
for all A ⊆ X, we can at once see

that τ-U and τ-U� are just the families of all topologically preopen and semi-open
subsets of the relator space X (R) considered in [35] .

Thus, by taking

U1(A) = clR
(
intR

(
clR(A)

))
and U2(A) = clR

(
intR(A)

)
∪ intR

(
clR(A)

)

for all A ⊆ X, we can quite similarly obtain some further important classes
of generalized topologically open subsets of the relator space X (R) [35,36] .

However, it is now more important to note that, for any A ⊆ P (X) , we may
also naturally define

Ak = AkV = clV (A) and A� = A�V = clV−1 (A) .

Namely, thus it can be easily seen that, for any A ⊆ P (X) and B ⊆ X, we
have

a) B ∈ Ak if and only if for each V ∈ V there exists A ∈ A such that
A ∈ V (B) ;

b) B ∈ A� if and only if for each V ∈ V there exists A ∈ A such that
B ∈ V (A) .

Therefore, if, in particular, V is a hyper relation on X such that

V (A) =
{
B ⊆ X : A ⊆ B ⊆ clR(A)

}
for all A ⊆ X,

then we can at once see that T �V
R and T kV

R are just the families of all topologi-
cally quasi-open and pseudo-open subsets of the relator space X (R) considered
also in [35] .
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Concerning the above particular relations

U = clR ◦◦◦ intR and V = Δ� clR ,

in [33, Section 32] we have proved the following assertions and their counterparts.

A) T kV

R ⊆ τ-U is always true ;

B) TR ⊆ T kV

R ⊆ τ- kV
U

if R is reflexive in the sense that x ∈ R (x)
for all x ∈ X and R ∈ R ;

C) τ- kV
U

⊆ τ-U if R is quasi-topological in the sense that
x ∈ intR

(
intR(R (x))

)
for all x ∈ X and R ∈ R ;

D) T kV

R = τ- kV
U

= τ-U if R is topological in the sense that for each
x ∈ X and R ∈ R there exists V ∈ TR such that x ∈ V ⊆ R (x) .

If R is topological, then A = τ-U is actually the smallest subset of P (X)
such that TR ⊆ A and AkV ⊆ A .

Moreover, if R is topological and topologically filtered in the sense that for
any X ∈ X and R, S ∈ R there exists T ∈ R such that T (x) ⊆ R (x)∩S (x) ,
then for any B ⊆ X we have B ∈ τ-U if and only if there exist A ∈ TR and
D ∈ DR such that B = A ∩D .

In this respect, it is curious that if R is topological and topologically filtered
and B ∈ τ-U� , then there exist A ∈ TR and N ∈ NR such that B = A ∪ N
and A ∩N = ∅ .

However, the converse statement need not be true. Moreover, the genuine
characterizations of τ-U� , established in [35, Section 24 ] , do not require R to
be topologically filtered.
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[9] CSÁSZÁR, Á.: Weak structures, Acta Math. Hungar. 131 (2011), 193–195.

[10] DAVEY, B. A.—PRIESTLEY, H.A.: Introduction to Lattices and Order. Cambridge
University Press, Cambridge, 2002.

[11] DAVIS, A. S.: Indexed systems of neighbordoods for general topological spaces, Amer.
Math. Monthly 68 (1961), 886–893.

[12] DONTCHEV, J.: Survey on preopen sets, in: Meetings on Topological Spaces, Theory
and Applications, Yatsushiro College of Technology, Kumamoto, Japan, 1998, 18 pp.
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[35] RASSIAS, TH.M.—SALIH, M.M.—SZÁZ, Á.: Characterizations of generalized topolog-
ically open sets in relator spaces, Montes Taurus J. Pure Appl. Math. 3 (2021), 39–94.
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