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ABSTRACT. Some new oscillation criteria are obtained for a class of third-
order quasi-linear Emden-Fowler differential equations with unbounded neutral
coefficients of the form(

a(t)
(
z′′(t)

)α)′
+ f(t)yλ

(
g(t)

)
= 0,

where z(t) = y(t) + p(t)y
(
σ(t)

)
and α, λ are ratios of odd positive integers.

The established results generalize, improve and complement to known results.

1. Introduction

In the present paper, we are dealing with the oscillatory behaviour of solutions
of the third-order quasi-linear Emden-Fowler neutral differential equation(

a(t)
(
z′′(t)

)α)′
+ f(t)yλ

(
g(t)

)
= 0, t ≥ t0 > 0, (E)

where z(t) = y(t) + p(t)y
(
σ(t)

)
and α, λ are ratios of odd positive integers,

subject to the following conditions:
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(C1) p, f : [t0,∞) → R are continuous functions, p(t) ≥ 1, p(t) �= 1 for large t,
f(t) ≥ 0 and f(t) is not identically zero for large t;

(C2) σ, g : [t0,∞) → R are continuous functions, σ(t) ≤ t, σ is strictly increasing(
σ−1

(
g(t)

))′
> 0 and limt→∞ σ(t) = limt→∞ g(t) = ∞;

(C3) a(t) ∈ C
(
[t,∞), (0,∞)

)
and

∫∞
t0
a−1/α(t) dt = ∞.

By a solution of (E), we mean a real valued function y(t) that is continuous
on [ty ,∞) for some ty ≥ t0, such that z ∈ C3([ty,∞),R) and y(t) of (E) that
satisfy sup{|y(t)| : t ≥ T} > 0 for all T ≥ ty . Moreover, we tacitly assume that
(E) possesses such solutions. Such a solution x(t) of (E) is called oscillatory if
it has arbitrarily large zeros on [ty ,∞); otherwise it is called nonoscillatory.
Equation (E) is called oscillatory if all its proper solutions oscillate.

Investigating the oscillatory behaviour of (E) is important due to its practi-
cal importance in the development of oscillation theory of functional differential
equation. In particular Emden-Fowler type differential equations have many ap-
plications in physics, engineering and technology, see for example [1, 2, 20] and
the references cited therein.

In recent years, there is a lot of research activity concerning the oscillation
and asymptotic behaviour of solutions to various types of third-order neutral
differential equations, see for example [1,5–12,16–18,21] and the references cited
therein. Most of the papers concerned with the case where p is bounded, that is,
the cases where −1 < p0 ≤ p(t) ≤ 0, 0 ≤ p(t) ≤ p0 < 1 and 0 ≤ p(t) ≤ p0 < ∞
were considered. In a very recent paper [2], the authors studied the equation (E)
where α = 1 and a(t) = 1, and established sufficient conditions for the oscillation
of all solutions of (E) for the cases λ = 1 and 0 < λ < 1, while the case λ > 1
was left as an open problem.

In view of the above observations, in this paper our aim is to obtain explicit
sufficient conditions for the oscillation of all solutions of (E) where α and λ
satisfy different values. Thus, the results established in this paper are new and
extend the results in [2,5–12,16–18,21].

2. Main Results

We begin with the following lemmas which play an important role in proving
our main results. For the sake of convenience, we define

A(t) =

t∫
t1

1

a1/α(s)
ds, B(t) =

t∫
t1

A(s) ds, C(t) = exp

⎛
⎝ t∫

t1

A(s)

B(s)
ds

⎞
⎠ ,
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φ(t) =
1

p(σ−1(t))

(
1− 1

p(σ−1(σ−1(t)))

)
> 0,

ψ(t) =
1

p(σ−1(t))

(
1− c(σ−1(σ−1(t)))

p(σ−1(σ−1(t)))c(σ−1(t))

)
> 0

and

R(t) =

σ−1(η(t))∫
σ−1
(
g(t)
)
⎛
⎜⎝

σ−1(η(t))∫
s

a−1/α(u) du

⎞
⎟⎠ ds

for any t1, t1 ≥ t0, and σ
−1 is the inverse function of σ.

����� 2.1� Let (C1) − (C3) be satisfied and assume that y is an eventually
positive solution of (E). Then the function z(t) satisfies either

(I) z(t) > 0, z′(t) > 0, z′′(t) > 0 and
(
a(t)

(
z′′(t)

)α)′ ≤ 0; or

(II) z(t) > 0, z′(t) < 0, z′′(t) > 0 and
(
a(t)

(
z′′(t)

)α)′ ≤ 0

for sufficiently large t.

P r o o f. The proof follows by the similar argument as in Lemma 1 of [7] and
hence is omitted. �

����� 2.2 ([3])� Let γ > 1 be a quotient of odd positive integers and δ > 0.
If

lim
t→∞ inf γ−t/δ log b(t) > 0,

where b ∈ C
(
[t0,∞), (0,∞)

)
, then equation

x′(t) + b(t)xγ(t− δ) = 0

is oscillatory.

����� 2.3� Assume that z(t) satisfies Case (I) of Lemma 2.1 for all t ≥ t1.
Then

z′(t) ≥ A(t)a1/α(t)z′′(t), (2.1)

z(t) ≥ B(t)a1/α(t)z′′(t), (2.2)

z(t) ≥ B(t)

A(t)
z′(t) (2.3)

and
z(t)

C(t)
is nonincreasing for all t ≥ t1. (2.4)
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P r o o f. Since
(
a(t)

(
z′′(t)

)α)′
leq0, a(t)

(
z′′(t)

)α
is nonincreasing and hence

z′(t) = z′(t1) +

t∫
t1

(a(s)(z′′(s))α)1/α

a1/α(s)
ds ≥ A(t)a1/α(t)z′′(t).

Integrating again, we have

z(t) ≥ a1/α(t)z′′(t)

t∫
t1

A(s) ds = B(t)a1/α(t)z′′(t).

From (2.1), we see that

z′(t)
A(t)

is nonincreasing

and therefore

z(t) = z(t1) +

t∫
t1

A(s)z′(s)
A(s)

≥ B(t)

A(t)
z′(t).

From the last inequality, we see that

(
z(t)

C(t)

)′
=

[
B(t)
A(t) z

′(t)−z(t)
]

A(t)
B(t)

C(t)
≤ 0.

Hence z(t)
C(t) is nonincreasing. This completes the proof. �

����	�� 2.4� Let conditions (C1)− (C3) hold and assume that there exists a
function η ∈ C([t0,∞),R) such that g(t) ≤ η(t) < σ(t) for all t ≥ t0. If both
first order delay differential equations

X ′(t) + f(t)ψλ
(
g(t)

)
Bλ
(
σ−1

(
g(t)

))
Xλ/α

(
σ−1

(
g(t)

))
= 0 (2.5)

and

W ′(t) + f(t)φλ
(
g(t)

)
Rλ(t)Wλ/α

(
σ−1

(
η(t)

))
= 0 (2.6)

oscillate, then (E) oscillates.

P r o o f. Let y be a nonoscillatory solution of (E). Without loss of generality,
we may assume that there is a t1 ≥ t0 such that y(t) > 0, y

(
σ(t)

)
> 0 and

y
(
g(t)

)
> 0 for all t ≥ t1. Then as in Lemma 2.1, the function z satisfies either

Case (I) or Case (II).
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Case (I): In view of definition of z, we have

y(t) =
1

p
(
σ−1(t)

)(z(σ−1(t)
)− y

(
σ−1(t)

))

≥ 1

p(σ−1(t))

(
z(σ−1(t))− z(σ−1(σ−1(t)))

p(σ−1(σ−1(t)))

)
. (2.7)

From (2.4), we see that z(t)
C(t) is nonincreasing and σ−1

(
σ−1(t)

) ≥ σ−1(t).

Thus, from (2.7) we have

y(t) ≥ 1

p(σ−1(t))

(
1− C(σ−1(σ−1(t)))

p(σ−1(σ−1(t)))C(σ−1(t))

)
z
(
σ−1(t)

)
,

that is,

y(t) ≥ ψ(t)z
(
σ−1(t)

)
and thus

y
(
g(t)

) ≥ ψ
(
g(t)

)
z
(
σ−1

(
g(t)

))
. (2.8)

Combining (2.8) with (E), we obtain(
a(t)

(
z′′(t)

)α)′
+ f(t)ψλ

(
g(t)

)
zλ
(
σ−1

(
g(t)

)) ≤ 0, t ≥ t1. (2.9)

From (2.2), we have

z
(
σ−1(t)

) ≥ B
(
σ−1(t)

)
a1/α

(
σ−1(t)

)
z′′
(
σ−1

(
(t)
))
, t ≥ t1

and hence

z
(
σ−1

(
g(t)

)) ≥ B
(
σ−1

(
g(t)

))
a1/α

(
σ−1

(
g(t)

))
z′′
(
σ−1

(
g(t)

))
, t ≥ t1. (2.10)

Using (2.10) in (2.9) yields

(
a(t)

(
z′′(t)

)α)′
+

f(t)ψλ
(
g(t)

)
Bλ
(
σ−1

(
g(t)

))(
a
(
σ−1

(
g(t)

))(
z′′
(
σ−1

(
g(t)

)))α)λ/α≤ 0.

Letting X(t) = a(t)
(
z′′(t)

)α
, we have that X is a positive solution of the first-

-order delay differential inequality

X ′(t) + f(t)ψλ
(
g(t)

)
Bλ
(
σ−1

(
g(t)

))
Xλ/α

(
σ−1

(
g(t)

)) ≤ 0.

Therefore, by Corollary 1 of [19], we conclude that equation (2.5) also has a
positive solution, which is a contradiction.
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Case (II): Since z is strictly decreasing and σ(t) ≤ t, we have

z
(
σ−1(t)

) ≥ z
(
σ−1

(
σ−1(t)

))
and using this in (2.7), we obtain

y(t) ≥ φ(t)z
(
σ−1(t)

)
.

Thus

y
(
g(t)

) ≥ φ
(
g(t)

)
z
(
σ−1

(
g(t)

))
. (2.11)

Substituting (2.11) into (E), we get(
a(t)

(
z′′(t)

)α)′
+ f(t)φλ

(
g(t)

)
zλ
(
σ−1

(
g(t)

)) ≤ 0. (2.12)

For t ≥ s ≥ t1, we have

z′(t)− z′(s) =

t∫
s

a1/α(u)z′′(u)
a1/α(u)

du,

or

−z′(s) ≥
( t∫

s

1

a1/α(u)
du

)
a1/α(t)z′′(t).

Again integrating, we have

−z(t) + z(s) ≥
⎛
⎝ t∫

s

( t∫
u

a1/α(v) dv

)
du

⎞
⎠a1/α(t)z′′(t),

or

z(s) ≥
⎛
⎝ t∫

s

( t∫
u

a−1/α(v) dv

)
du

⎞
⎠ a1/α(t)z′′(t). (2.13)

Since g(t)≤η(t) and the fact that σ is strictly increasing, we see that σ−1
(
g(t)

)≤
σ−1

(
η(t)

)
. Setting s = σ−1

(
g(t)

)
and t = σ−1

(
η(t)

)
into (2.13), we get

z
(
σ−1

(
g(t)

)) ≥⎛
⎜⎜⎝

σ−1(η(t))∫
σ−1
(
g(t)
)
( σ−1(η(t))∫

s

a−1/α(u) du

)
ds

⎞
⎟⎟⎠ a1/α

(
σ−1

(
η(t)

))
z′′
(
σ−1

(
η(t)

))
.

Using the last inequality in (2.12), we obtain(
a(t)

(
z′′(t)

)α)′
+ f(t)φλ

(
g(t)

)
Rλ(t)

[
a
(
σ−1

(
η(t)

))(
z′′
(
σ−1

(
η(t)

)))α]λ/α≤ 0.
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Letting W (t) = a(t)
(
z′′(t)

)α
, we see that W is a positive solution of the first

order delay differential inequality

W ′(t) + f(t)φλ
(
g(t)

)
Rλ(t)Wλ/α

(
σ−1

(
η(t)

)) ≤ 0.

The rest of the proof is similar to that of Case(I) and hence the details are not
repeated. The proof of the theorem is complete. �


�	����	� 2.5� Let conditions (C1)− (C3) hold and α = λ. Assume that there
exists a function η ∈ C([t0,∞),R) such that g(t) ≤ η(t) < σ(t) for t ≥ t0.
If

lim
t→∞ inf

t∫
σ−1(g(t))

f(s)ψλ
(
g(s)

)
Bλ
(
σ−1

(
g(s)

))
ds >

1

e
(2.14)

and

lim
t→∞

inf

t∫
σ−1(η(t))

f(s)φλ
(
g(s)

)
Rλ(s) ds >

1

e
, (2.15)

then (E) oscillates.

P r o o f. The proof follows from a well-known result in [14] and Theorem 2.4,
and hence the details are omitted. �


�	����	� 2.6� Let conditions (C1)− (C3) hold and α > λ. Assume that there
exists a function η ∈ C([t0,∞),R) such that g(t) ≤ η(t) < σ(t) for t ≥ t0.
If

∞∫
T

f(t)ψλ
(
g(t)

)
Bλ
(
σ−1

(
g(t)

))
dt = ∞ (2.16)

and ∞∫
T

f(t)φλ
(
g(t)

)
Rλ(t) dt = ∞ (2.17)

for all t ≥ T ≥ t0, then (E) oscillates.

P r o o f. Applications of (2.16), (2.17) and [13, Theorem 2], show that (2.5) and
(2.6) oscillate. So, by Theorem 2.4, equation (E) oscillates. �

In our next result, assume that g(t) = t− δ1, σ(t) = t− δ3 and η(t) = t− δ2,
where δ1, δ2 and δ3 are positive real numbers.
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�	����	� 2.7� Let conditions (C1)− (C3) hold and α < λ. If δ1 ≥ δ2 > δ3,

lim
t→∞ inf

(
λ

α

)−t/(δ1−δ3)

log
(
f(t)ψλ(t− δ1)B

λ(t+ δ3 − δ1)
)
> 0 (2.18)

and

lim
t→∞

inf

(
λ

α

)−t/(δ2−δ3)

log
(
f(t)φλ(t− δ1)R

λ(t)
)
> 0, (2.19)

then (E) oscillates.

P r o o f. Applications of (2.18), (2.19) and Lemma 2.2 imply that (2.5) and (2.6)
oscillate. So, by Theorem 2.4, (E) oscillates. �

Next, we present a result when g(t) = θt, σ(t) = μt and η(t) = νt, where
θ, μ, ν ∈ (0, 1).


�	����	� 2.8� Assume that (C1) − (C3) hold and α < λ. If θ ≤ ν < μ and

there exists a δ > − ln
(
λ
α

)
/ ln

(
θ
μ

)
such that

lim
t→∞ inf

[
f(t)ψλ(θt)Bλ

(
θ

μ
t

)
exp(−tδ)

]
> 0 (2.20)

and there exists a ε > − ln
(
λ
α

)
/ ln

(
ν
μ

)
such that

lim
t→∞ inf

[
f(t)φλ(θt)Rλ(t) exp(−tε)] > 0, (2.21)

then (E) oscillates.

P r o o f. Applications of (2.20), (2.21) and Theorem 4 of [4] imply that (2.5)
and (2.6) oscillate. Hence by Theorem 2.4, equation (E) oscillates. �

����	�� 2.9� Let conditions (C1)− (C3) hold and α = λ. Assume that there
exists a function η ∈ C([t0,∞),R) such that g(t) ≤ η(t) < σ(t) for t ≥ t0.
If (2.15) holds and there exists a positive nondecreasing differentiable function
ρ(t) such that

lim
t→∞ sup

t∫
t0

[
ρ(s)f(s)ψα

(
g(s)

)− (ρ′(s))α+1

(α+ 1)α+1(ρ(s))αAα(h(s))(h′(s))α

]
ds = ∞,

(2.22)
where h(t) = σ−1

(
g(t)

)
, then (E) oscillates.
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P r o o f. Let y be a nonoscillatory solution of (E). Without loss of generality we
may assume that there exists a t1 > t0 such that y(t) > 0, y

(
g(t)

)
> 0 and

y
(
σ(t)

)
> 0 for t ≥ t1. Then as in Lemma 2.1, the function z satisfies either

Case (I) or Case (II).

Case (I): Proceeding as in Case (I) of Theorem 2.4, for α = λ, we arrive at

(
a(t)

(
z′′(t)

)α)′
+ f(t)ψα

(
g(t)

)
zα
(
h(t)

) ≤ 0, t ≥ t1. (2.23)

Define

F (t) =
ρ(t)a(t)(z′′(t))α

zα(h(t))
, t ≥ t1. (2.24)

Then F (t) > 0 for all t ≥ t1. Differentiating (2.24) and using (2.23), we obtain

F ′(t) = ρ(t)(a(t)(z′′(t))α)′

zα(h(t)) + ρ′(t)
ρ(t) F (t) − αF (t)z′(h(t))(h′(t))

z(h(t))

≤ −ρ(t)f(t)ψα
(
g(t)

)
+ ρ′(t)

ρ(t) F (t) − αF1+1/α(t)
ρ1/α(t)

A
(
h(t)

)(
h′(t)

)
,

(2.25)

where we have used (2.1) and the nonincreasing behaviour of a(t)
(
z′′(t)

)α
for t ≥ t1. Using the inequality (see [15])

Au− Bu1+1/α ≤ αα

(α+ 1)α+1

Aα+1

Bα

for B > 0 and u > 0 in (2.25), we obtain

F ′(t) ≤ −ρ(t)f(t)ψα
(
g(t)

)
+

(ρ′(t))α+1

(α+ 1)α+1ρα(t)Aα(h(t))(h′(t))α
.

Integrating the last inequality from t1 to t, we get

t∫
t1

[
ρ(s)f(s)ψα

(
g(s)

)− (ρ′(s))α+1

(α+ 1)α+1(ρ(s))αAα(h(s))(h′(s))α

]
ds <∞.

Letting t→ ∞ and taking supremum in the last inequality, we obtain a contra-
diction to (2.22).

Case (II): In this case, by using condition (2.15) and by a known result in [14]
we conclude that equation (2.6) oscillates. Hence by Theorem 2.4, equation (E)
is oscillatory. The proof is now complete. �
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����	�� 2.10� In addition to conditions (C1)− (C3), assume that λ ≤ α and
the function g with g(t) < σ(t) is nondecreasing for all t ≥ t0. If

lim
t→∞ supAλ

(
h(t)

)∞∫
t

f(s)ψλ
(
g(s)

)Bλ(h(s))

Aλ(h(s))
ds

{
= ∞ if λ < α,

> 1 if λ = α,
(2.26)

and

lim
t→∞

sup

∞∫
h(t)

f(s)φλ
(
g(s)

)
Rλ

1 (t, s) ds

{
= ∞ if λ < α,

> 1 if λ = α,
(2.27)

where R1(t, s) =
h(t)∫
h(s)

(
h(t)∫
u

a−1/α(v) dv

)
du, then (E) oscillates.

P r o o f. Let y be a nonoscillatory solution of (E). With no loss of generality,
we may assume that there exists a t1 ≥ t0 such that y(t) > 0, y

(
σ(t)

)
> 0, and

y
(
g(t)

)
> 0 for such all t ≥ t1. Then as in Lemma 2.1, the function z satisfies

either Case (I) or Case (II).

Case (I): Proceeding as in the proof of Theorem 2.4, we get (2.9). Using (2.3)
in (2.9), we obtain(

a(t)
(
z′′(t)

)α)′
+ f(t)ψλ

(
g(t)

)Bλ(h(t))

Aλ
(
h(t)

)(z′(h(t)))λ ≤ 0, t ≥ t1. (2.28)

Let x(t) = z′(t). Then x(t) > 0, x′(t) > 0 and
(
a(t)

(
x′(t)

)α)′ ≤ 0 for t ≥ t1.

Since a1/α(t)x′(t) is positive and decreasing, we have for t ≥ s ≥ t1,

x′(s) ≥ a1/α(t)x′(t)
a1/α(s)

and integrating from t1 to t, we obtain

x(t) ≥ A(t)a1/α(t)x′(t), t ≥ t1. (2.29)

Integrating (2.28) from t to ∞, we obtain

a(t)
(
z′′(t)

)α ≥
⎛
⎝ ∞∫

t

f(s)ψλ
(
g(s)

)Bλ
(
h(s)

)
Aλ
(
h(s)

) ds
⎞
⎠xλ

(
σ−1

(
g(t)

))
.

Using (2.29) in the last inequality, we obtain

a(t)
(
z′′(t)

)α ≥⎛
⎝ ∞∫

t

f(s)ψλ
(
g(s)

)Bλ(h(s))

Aλ(h(s))
ds

⎞
⎠Aλ

(
h(t)

)(
a
(
h(t)

))(
x
(
h(t)

))α)λ/α
.
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Since h(t) ≤ t, a1/α(t)x′(t) is decreasing and using this in the last inequality,
we get (

a(t0)
(
x′(t0)

)α)1− λ
α ≥ Aλ

(
h(t)

)∞∫
t

f(s)ψλ
(
g(s)

)Bλ(h(s))

Aλ(h(s))
ds.

Taking lim sup as t → ∞ in the last inequality, we obtain a contradiction
to (2.26).

Case (II): From Case (II) of Theorem 2.4, we arrive at (2.12) and (2.13).
Since h(t) ≥ h(s) for t ≥ s and putting s = h(s) and t = h(t) into (2.13),
we get

z(h(s)) ≥

⎛
⎜⎝

h(t)∫
h(s)

( h(t)∫
u

a−1/α(v) dv

)
du

⎞
⎟⎠ a1/α

(
h(t)

)
z′′
(
h(t)

)
. (2.30)

Integrating (2.12) from h(t) to t and using (2.30), we obtain

a
(
h(t)

)(
z′′
(
h(t)

))α≥
⎛
⎜⎝

t∫
h(t)

f(s)φλ
(
g(s)

)
Rλ

1 (t, s) ds

⎞
⎟⎠(a(h(t))(z′′(h(t)))α)λ/α,

which can be written as[
a
(
h(t0)

)(
z′′
(
h(t0)

))α]1− λ
α ≥

t∫
h(t)

f(s)φλ
(
g(s)

)
Rλ

1 (t, s) ds.

Taking lim sup as t → ∞ in the above inequality, we get a contradiction to
(2.27). The proof of the theorem is complete. �

3. Examples

In this section, we present some examples to illustrate the significance of the
main results.

Example 3.1. Consider the sublinear Emden-Fowler neutral differential equa-
tion (√

t

(
y(t) + ty

( t
2

))′′)′
+

d

tβ
y1/3

( t
4

)
= 0, t ≥ 4, (3.1)

where d > 0 is a constant and 0 < β ≤ 7/6.

Here a(t) =
√
t, p(t) = t, f(t) = d

tβ
, σ(t) = t

2 , g(t) =
t
4 , α = 1 and λ = 1/3.

Then A(t) ≈ 2
√
t, B(t) ≈ 4

3 t
3/2, C(t) ≈ t3/2, R(t) ≈ 0.018t3/2, φ(t) = 4t−1

8t2 and

ψ(t) =

√
2t− 1

2
√
2t2

.

11
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Thus (2.16) becomes

∞∫
4

d

tβ

(
2(
√
2t− 4)√
2t2

)/3(
2

3
√
2
t3/2

)1/3
dt ≈

∞∫
4

d1
tβ−1/6

dt = ∞,

where d1 > 0 is a constant. The condition (2.17) becomes
∞∫
4

d

tβ

(
2(t− 1)

t2

)1/3 (
0.018t3/2

)1/3
dt ≈

∞∫
4

d2
tβ−1/6

dt = ∞,

where d2 > 0 is a constant. Therefore, by Corollary 2.6, equation (3.1) is oscil-
latory.

Example 3.2. Consider the half-linear Emden-Fowler neutral differential equa-
tion ⎛

⎝t3/2
((

y(t) + ty
( t
2

))′′)3⎞⎠
′

+
d

t3/2
y3
( t
3

)
= 0, t ≥ 1, (3.2)

where d > 0 is a constant.

Here a(t) = t3/2, p(t) = t, f(t) = d
t3/2

, σ(t) = t
2 , g(t) = t

3 , α = λ = 3.

Then A(t) ≈ 2
√
t, B(t) ≈ 4

3 t
3/2, C(t) ≈ t3/2, φ(t) = 4t−1

8t2 , ψ(t) =
√
2t−1

2
√
2t2

, and

R1(t, s) =
4
√
2

9
√
3
t3/2 + 8

√
2

9
√
3
s3/2 − 4

√
2

8
√
3
t3/2s. Conditions (2.26) and (2.27) become

lim
t→∞ sup t3/2

∞∫
t

d1
s2

ds = lim
t→∞ sup t1/2 = ∞

and

lim
t→∞ sup

t∫
2/3t

f(s)φ3(s/4)R3
1(t, s) ds = lim

t→∞

(
d1
√
t− d2√

t
+
d3
t
− d4
t2

)
= ∞,

respectively. Hence by Theorem 2.10, equation (3.2) is oscillatory.

Example 3.3. Consider the third-order superlinear neutral differential equation(√
t
(
y(t) + ty(t− 2)

)′′)′
+ exp(3t)x3(t− 4) = 0, t ≥ 2. (3.3)

Here
a(t)=

√
t, p(t)= t, f(t)= exp(3t), σ(t)= t− 2, g(t)= t− 4,

α=1, λ=3, δ1=4, δ2 =3, δ3 =2.

Then

A(t) ≈ 2
√
t, B(t) ≈ 4

3
t3/2, C(t) ≈ t3/2, R(t) ≈ 0.018t3/2, φ(t) =

4t− 1

8t2
and

ψ(t) =

√
2t− 1

2
√
2t2

.
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The condition (2.18) becomes

lim
t→∞ inf d13

−t/23t log(t3/2) > 0,

where d1 > 0 is a constant. The condition (2.19) becomes

lim
t→∞ inf d23

−t3t log(t3/2) > 0,

where d2 > 0 is a constant. Therefore, by Corollary 2.7, equation (3.3) is oscil-
latory.

4. Conclusion

In this paper, we have established some new sufficient conditions for the
oscillation of (E) when α and λ satisfy different conditions. The results obtained
in this paper generalize those in [2,5,6,7,9,11,12]. Further some of the results
obtained in the literature applied to our examples since a(t) �= 1 and α �= 1.
Hence the criteria established in this paper are new and interesting for any
researcher working in this area. Moreover, the results for the case a(t) ≡ 1,
α = 1 and λ > 1 answer the open problem posed in [2].

Acknowledgements. The authors thank the Reviewer for his/her constructive
suggestions and useful corrections that improved the content of the paper.
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