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SOME FRACTAL PROPERTIES
OF SETS HAVING THE MORAN STRUCTURE

SYMON SERBENYUK

Vinnytsia, UKRAINE

ABSTRACT. This article is devoted to sets having the Moran structure. The
main attention is given to topological, metric, and fractal properties of certain
sets whose elements have restrictions on using digits or combinations of digits
in own representations.

1. Introduction

In 1977, the notion “fractal” was considered by B. Mandelbrot in [I5]. A frac-
tal in the wide sense is a set whose topological dimension does not coincide with
the Hausdorff dimension (the fractal dimension), and in the narrow sense, it is
a set that has the fractional fractal dimension.

Fractals are the most appropriate mathematical models of natural objects.
The importance of fractals lies in modeling of physical and biological processes,
and also, fractal is a strictly mathematical notion that unites various mathe-
matical objects, e.g., continuous nowhere differentiable functions, singular dis-
tributions, curves and surfaces that do not have the tangent at any point, etc.
(see [TOYITLIH]). Indeed, the following examples are natural examples of fractals:
the rings around planets (such fractals have the property of self-similarity), the
snow cover in a mountain region, linear lightning, cloud borders, forms of coast
lines or rivers. In fact, one can model coast lines and rivers by continuous nowhere
differentiable functions. One of the oldest mathematical examples of fractals is
the Cantor set
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This set was intoduced by G. Cantor in 1883. The last fractal is the part of such
well-known fractals as the Sierpinski carpet, the Koch snowflake.

Fractal sets are widely applicated in computer design, algorithms of the com-
pression to information, quantum mechanics, solid-state physics, analysis and
categorizations of signals of various forms appearing in different areas (e.g., the
analysis of exchange rate fluctuations in economics), etc. However, for much
classes of fractals, the problem of the Hausdorff dimension calculation is diffi-
cult and the estimate of parameters on which the Hausdorff dimension of certain
classes of fractal sets depends is left out of consideration.

The aim of this survey is to give some local and fractal properties of cer-
tain Moran sets. One can note that Moran sets play an important role in mul-
tifractal analysis/formalism and especially the refined multifractal formalism
(for example, see the papers [1L[42143,45] and references therein).

The multifractal analysis is a natural framework to finely geometrically de-
scribe the heterogeneity in the distribution at small scales of the measures on a
metric space. The multifractal analysis was proved to be a very useful technique
in the analysis of measures, both in theory and applications. Also, the multi-
fractal and the fractal analysis allows one to perform a certain classification
of singular measures. One can note that it was proved that singular distribu-
tions of probabilities are dominant for many classes of random variables. Possible
applications in the spectral theory of self-adjoint operators serve as an addi-
tional stimulus for a further investigation of singularly continuous measures [0].
For example, one can note the following researches of singular measures: singu-
larity of Hewitt-Stromberg measures on Bedford-McMullen carpets [2], the mu-
tual singularity of certain measures (see [0,[8]24.[46,47] and references therein),
dimensions of measures [13,20,23].

Olsen [I7] introduced a general form of multifractal formalism to interpret
the statistical scaling properties of singular measures where the total mass or
energy is spread over regions of phase space in an irregular way. The multi-
fractal formalism aims at expressing the dimensions (the Hausdorff and packing
dimensions) of the level sets in terms of the Legendre transform of some free
energy function in analogy with the usual thermodynamic theory ( [IL23}47]
and references therein).

The multifractal formalism has been proved rigorously for random and non-
random self-similar measures, for self-conformal measures, for self-affine and
for Moran measures (see [IL[7] and references therein). Certain researches are
devoted to new multifractal formalism for which the classical multifractal for-
malism does not hold. For example, the paper [I]] deals with a multifractal
formalism based on the Hewitt-Stromberg measures and that this formalism
is completely parallel to Olsen’s multifractal formalism which is based on the
Hausdorff and packing measures.
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Among fractal geometrical objects, Moran’s types play an important role
in explaining many situations, in pure mathematics as the general context
of Cantor’s, and in applied physics as a suitable context for studying scaling
laws. These sets may be understood as attractors for dynamical systems, elec-
trical circuits, and also smart cities where fractals are nowadays sophisticated
tools in their modeling. Fractals such as Cantor and Moran’s types in general are
also applied in understanding physical properties at different molecular levels,
such as nonmaterial composites, crystal growth, and structure, porous materi-
als, etc. [9]. Finally, one can note some investigations in multifractal analysis
of Moran sets: multifractal properties of homogeneous Moran fractals associated
with Fibonacci sequence [43], multifractal properties [42,[44].

Consider space R™ In [16], P. A. P. Moran introduced the following construc-
tion of sets and calculated the Hausdorfl dimension of the limit set

o0
E=1 U Ausein (1)
n=14i1,..,in€A0,p

Here p is a fixed positive integer, Ay, = {1,2,...,p}, and sets A, ;,. ;, are basic
sets having the following properties:

o any set A, ;, , is closed and disjoint;

o for any ¢ € Ag, the condition A; 4, 4, C A i,..4, holds;

o lim d(Aii,..i,) =0, where d(-) is the diameter of a set;
n—oo
e cach basic set is the closure of its interior;

at each level the basic sets do not overlap (their interiors are disjoint);
e any basic set A;,;,.. . is geometrically similar to A; i, 4.;

° d(Dijig..ini) .
—— 2= —=g;, where o0;,€(0,1) for i=1,p.
d(Aiyiy..i,)

The Hausdorff-Besicovitch dimension « of the set F is the unique root of the
following equation

p

ZO’?O =1.

i=1

It is easy to see that set (Il) is a Cantor-like set and a self-similar fractal.
The set E is called the Moran set.

Let us consider the second definition of the Moran set given by Hua et al. [12].
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DEeFINITION 1.1 (Definition of Hua et al. [40]). Let (nx) be a sequence of pos-
itive integers, J € R™ be a compact set with nonempty interior, and (®;) be a
sequence of positive real vectors with ®; = (ok,1,0%2,-..,0kn,), where k € N

and -
Zak’j < 1.
j=1

L= ﬂ U Aiyig. ins

k=1 ila---yikEAO,nk

A set of the form

where Ay, = {1,2,...,n4}, is called the Moran set associated with the collec-
tion F. Here,

F=JF=J{J)o =020 keNipe (1,2, m}}.
k=0 k=0

The collection F fulfills the Moran structure provided it satisfies the following
Moran Structure Conditions (MSC):
(2) An arbitrary J, is geometrically similar to J.
(3) For any 7,7 € {1,2,...,ng41} such that i # j, the conditions
Aiyigini C Diyigigs Divigigs N Dy iy = D
hold.
(4) For any j € {17 27 s 7nk+1}7
d(Aiyiy...ing) _ _—
d (Ailiz---ik) 7
The elements of F}, are called the basic elements of order k of the Moran set E,
and the elements of F' are called the basic elements of the Moran set E.

Remark 1. Let us note that the main difference between definitions of Moran
and Hua is Property @ in MSC.

Let M = M(J,(ng),(®x)) be a class of Moran sets satisfying MSC [IHdl
It is known that one can define a sequence («y), where «y, satisfies the equation

k ng
Q. __
[[> 75 =1

i=1j=1
Also, suppose that
J— 3 3 * — M .
a, = liminf, o ay, of = limsup,_, . o;
Cx = infm- O0i,j5 c* = supm 04,5+
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A lot of research has been devoted to Moran-like constructions and Cantor-
like sets (for example, see [45L[12T4}I8/T9] and references therein). For example,
in [19], the one parameter family of Cantor sets

AN = {x:x:Zik)\k, ir€eSc{0,1,...,s—1},s € Nis a fixed number}
k=1

is investigated.

THEOREM 1.2 ([19]). Suppose that the condition s — 1 < (I — 1)? holds. Here,
[ is the cardinality of the set S={s1,...,s}, i.e., I=|S|. Then, for almost all
NS [%, ﬂ (with respect to Lebesque measure) we have that

log

It is easy to see that we obtain the case of classical s-adic representation (2))
whenever \ = % In this case, we get

ag(A(N)) = log, L.
The following theorem generalizes the last result.

Let D = (d,) be a fixed sequence of positive integers such that d,, > 1 for all
neN, e, € Ag, ={0,1,...,d, — 1}. Series of the form

9] .
nz::l dledn

are Cantor series introduced by G. Cantor in [3]. These series are generalizations
of s-adic expansion (@), i.e., a Cantor series is the s-adic expansion whenever
d, = const = s for all n € N.

THEOREM 1.3 ([14]). Suppose that D = (d,) is a fized sequence of positive

integer numbers d, > 1, lim,, s loéc:i% =0,1; €{0,1,...,d; —1}, T = (I,,).
Then,
oo €
a0 (Rz(D)) = ag ({x Tx = Z m,en € In}>
n=1 n
log [T}, |11
— liminf,, o —o22=1 11

The present survey is devoted to fractal sets whose elemens are defined
by expansions related with some cases of positive and alternating Cantor series
and their images under the action of certain singular distributions. The main
attention is given to topological and metric properties of these sets, and also
parameters on which the Hausdorff dimension of such sets depends. The sets
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considered in this paper are determined by certain restrictions on using combi-
nations of digits in representations of their elements. Also, the main attention is
given to results obtained in papers [28H30] published in Ukrainian.

Let us remark that in September 2011 and February 2012 the author pre-
sented the results of the papers [2829] in the reports “The main topological,
metric properties of one set of numbers such that it is defined by the s-adic
representation with restrictions” and “The main topological, metric properties
of one set defined by the nega-s-adic and s-adic representation with a parameter,
and using this set” at the seminar on fractal analysis of the Institute of Mathe-
matics of NAS of Ukraine and the National Pedagogical Dragomanov University
(archive of reports is available at

- http://www.imath.kiev.ua/events/index.php?seminarId=21&archiv=1).

In 2012, the results of the papers [28,[29] were presented in conference abstracts
[25H27]. Also, the main results of these papers were published in English as

a preprint [32].

2. Definitions

We begin with definitions of several representations of real numbers and cer-
tain series.

Let 1 < s be a fixed positive integer, A = {0,1,...,s — 1} be an alphabet
of the s-adic or nega-s-adic numeral system, and 4g = A\ {0} = {1,2,...,s—1},
and

L= (AQ)OO = (Ao) X (Ao) X (AO) X
be the space of one-sided sequences of elements of Aj.

An expansion of a real number x € [0, 1] in the form

x:—+_+...+8_+...’ (2)

where a,, € A, is called the s-adic expansion of . By © = AJ 4, a. ..
denote the s-adic expansion of z. The notation A7 .,  is called the s-adic
representation of x.
Obviously, the notation z = AZ°, ~, is called the nega-s-adic representa-
tion of x. Here,
o oy Qs (1),

z=A7 ==t 2 -4t
A1O2...0p ... s 52 53 Sn

Fe®
where o, € A.
If (k) is a certain fixed sequence of positive integers, then a series of the form
Q@ Q@ Q@
klk n k2k Ly
(=s)k 0 (—s)k2

is a nega-s-adic series.

- +"',Oékﬂ€A,
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Suppose that mqy = ki, mo =ko—k1, mg=ks—ko, ..., mp =kn—Fkn1, ...
Then, we obtain the following series
=«
mi+mao+--Fmy
Z (—s)mitmat-tmy’ (4)
n=1

where n, 4mottm, € A.
Numbers x € [f - _f_l, ?11] having a representation in the form (@) have the

following nega-s-adic representation

o
" :z : Qmitmottm, A=S
— (fs)ml+m2+"'+7nn 0.. .Oaml 0... 0am1+m2.‘.0 .. .0am1+m2+...+mn‘.‘

m1—1 mo—1 mpy —1

Let (d,,) be a fixed sequence of positive integers such that d,, > 1 for all
n € N, (A,) be a sequence of the sets

A,=40,1,2,...,d, — 1}, and L, =A4; x Ay x A,, X ---

A series of the form
€1 €9 €3 (=1)"e,
=1 _ I S T 5
di  didy  didads Tt dids -+ dy, + ’ (5)

where €, € A, is called an alternating Cantor series.

In September 2013, see the presentation and the working paper available at:

- https://www.researchgate.net/publication/303720347,
- https://www.researchgate.net/publication/316787375,

respectively (in Ukrainian), the expansion of numbers by an alternating Can-
tor series was investigated as a numeral system and presented in the report
“Representations of real numbers by alternating Cantor series” at the semi-
nar on fractal analysis of the Institute of Mathematics of NAS of Ukraine and
the National Pedagogical Dragomanov University. These results were published
in [31].

An alternating Cantor series that is a nega-s-adic series is called a nega-s-adic
Cantor series. That is,

—1)",
1 <2 <3 +...+#+...’ en € A. (6)

gmi gmi +mo B gmi +mao+ms3 gmi +mo+---+my,

It is easy to see that the following statement is true.

LEmMA 2.1 ([30]). Nega-s-adic series @) is an alternating Cantor series if and
only if for any n € N a sequence (my,) is a sequence of odd positive integers and
En =y, € A as well.
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A series of the form
4+ o, € A

is called a mized s-adic series. Trivially, the last series is an alternating Cantor
series.

We note that the case when sequences (o) and (m,,) are interdependent
s interesting, e.g., when m,, = «a, € Ag for an arbitrary n € N. In particular,
we shall describe properties of the set

_ - (71)nan

n=1

in the present article. Also, here, the following set is considered

s
)

M_pgy=Qqr:z= A6

... Oaml 0 ... Oam1+m2-'-0 ... 0am1+m2+...+mn‘.‘

mi1—1 mo—1 mpy —1

where s > 1 is a fixed positive integer, o, +mot-+m, 7 0 for all n € N, and
my € {3,5,7,...,2i+1,...}.

3. Fractal sets

Let us consider the Cantor set. Any element of the Cantor set has only digits
0 and 2 in own ternary representation. This set is an uncountable, perfect, and
nowhere dense set of zero Lebesgue measure. Also, this is a self-similar fractal
whose Hausdorff-Besicovitch dimension is equal to logs 2.

One can formulate a general theorem on values of the Hausdorff-Besicovitch
dimension of a set whose elements have restrictions on using combinations of dig-
its in own s-adic representation.

THEOREM 3.1 ([29,82]). Let E be a set whose elements are represented by a
finite number of fired combinations o1,09,...,0.,, of s-adic digits in the s-adic
numeral system. Then, the Hausdorff-Besicovitch dimension ag of E satisfies
the following equation

Wik () ez (2] et (1) =

where N(oF) is a number of k-digit combinations o¥, from the set

{o01,00,...,0m}, k€N, and N(o})+N(c2)+ -+ N(cF)=m.
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This theorem is interesting since fractal properties of many sets of special
types follow from this theorem. For example, the following set whose elements
have a functional restriction on using digits in own s-adic representation was

studied in [28]
an
S = {x = Z saitazt o tan? (o) € L} ’

n=1
where s > 2 is a fixed positive integer. The last-mentioned set is the set of all
numbers whose s-adic representations contain only the following combinations
of s-adic digits
1,02,003,...,0...04,...,0...0[s — 1].
SN—— SN——
i—1 s—2

The Hausdorff-Besicovitch dimension «q of the set S satisfies the equation

1 ag 1 2a 1 3aq 1 (s—1)ag
B (7 ()
S S S S

Assume that s > 2 is a fixed positive integer number.
Consider a class T of sets S, ) represented in the form

U Oy — U

S(s,u):{l':xzs_l‘f'zma (an) € L, ay #u, O‘n?'éo}a

n=1

where v = 0,s — 1, u and s are fixed for the set S, ,). That is, the class T
contains the sets S(, 0y, S(s,1),- -+, S(s,s—1)- We say that T is a class of sets such
that it contains the classes Y3, Tyq,..., Ty, ...

It is easy to see that the set S(, ) can be defined by the s-adic representation
in the following form

S(s,u) =TT = AZ...umu...Uaz‘.‘u...Uan.‘.a (an) € L, oy #u, oy #0
— I
a1 —1 ag—1 anp—1
THEOREM 3.2 ( [29/32]). For an arbitraryu € A the set S, .,y is an uncountable,

perfect, nowhere dense set of zero Lebesgue measure, and a self-similar fractal
whose Hausdorff-Besicovitch dimension ag(Ss,.)) satisfies the following equation

1 pPexo
> () -t
piFu,pi€Ao 5

To prove the last statement, the auxiliary notion “cylinder” is used. This
notion is useful for study of local properties of the considered sets (see the
following lemma).
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By zo = Ale’uln .. denote the equality

oo
u Z Cp— U
Zo = S — 1 + SCI+"'+Ck :

. k=1
That is,
(su s
o = Ag Cn. _AU...Ucl’LL...UCg...’LL...’LLcn...
S~ = N——
c1—1 cg—1 cn—1

DEFINITION 3.3. A cylinder A(s "Cn of rank n with base cico...c, is a set
of the following form

n oo
(s,u) e Cp — U 1 a; — U u
ACI'-'CTL - {x = (Z gC1t o tcy > +SCI+"‘+C71 Z §Ont1+otay + s—11["

k=1 i=n+1

where c1, ¢, ..., ¢, are fixed s-adic digits, ¢, # 0, ¢, # u, an # u, a, # 0, and
2<seNneN.

LEMMA 3.4 ([29,32]). Cylinders Aﬁf’“ln have the following properties:

(1)

1 s—1—u u -
N S (7=t + 1) # we (o)
T+m511 Zf U€{2,3,...,S*1},
T + m 511 Zf u = 0,
sup AL =0T+ e (suﬁl T ) if we{l,2,...,s—2},
T+m(* ) ’Lf u:sfl,
where
) " u
T= Z gC1t-Fck + Z S_k
k=1 k=1
(2) if d(-) is the diameter of a set, then
1
d(AL™, ) = prEE—— d(S(s,u));

d(AS ) ey) 1

aafh)

s—1
(4) Al = JASY | Ve, €Ay, nEN, i£u
i=1
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(5) The following relationships hold:
(a) if uwe{0,1}, then

mfA(s Y np > SUD A( cn[p+1]’

(b) if we{2,3,...,s— 3}, then

SupA ucnp < 1an(S u) forall p+1<u,

cn[p+1]

inf AE? u)cnp > sup A(é u) for all u < p;

cn[p+1]

(c¢) if ue{s—2s—1}, then

sup AL , < inf A(é “) e [ph1] -

The fifth property of the last lemma means the following:

e for any positive integer n cylinders AL, are right-to-left situated in the
case of the set S, 0y or S, 1);

e let us have the sets S(,2), S(s3), -+, Ss,s—3); then cylinders Aﬁi’“)cn
(u = 2,5 — 3) are left-to-right sfnuated foralle, <1,¢, <2, ...,¢, <
s — 4, respectively, and cylinders A cn are right-to-left 51tuated for all
Cp > 2, Cn>3,...,Cy>58—3, respectlvely,

e for all positive integers n cylinders A&f“{n are left-to-right situated in the
case of the set S(; s_2) or S s—1);

e for any Sis ., n € N, and ¢, # s — 1 the following condition holds

NS n Al =0.

C1...Cn—1Cn Cl...Cp— 1[Cn+1] -

For proving the nowhere density of S, ,,, the last property is used.

Consider the set of all numbers whose s-adic representations contain only com-
binations of s-adic digits that are used in the s-adic representations of elements
of S(s w)-

By S denote the set of all numbers whose s-adic representations contain only
combinations of s-adic digits from the set

1,02,003,...,u...uc,...,(s—1)...(s=1)(s —2)

c—1 s—3

where ¢ € Ag,u € A, ¢ # u.

11
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THEOREM 3.5 ([29)32]). The set S is:

e an uncountable, perfect, and nowhere dense set of zero Lebesque measure;

e q self-similar fractal, and its Hausdorff-Besicovitch dimension aq satisfies
the following equation

<§>ao+ (s—1) (§>2a0+ (s—1) <§)3a0+ it (s—1) G)(H)ao: 1.

Let us prove the second item. The s-adic representation of an arbitrary ele-
ment from S contains combinations of digits from the following tuple:

02,003,...,0...00(s — 1);
—

5—2
1,12,113,...,1...11(s — 1);
— =
5—2
293,2224,...,2...22(s — 1);
=
5—2
u2, uu3 u.ocuu(u—1)u. . cuu(u+ 1), 0w uu(s — 1);
u—2 U 5—2

Here, s — 35 4+ 3 combinations of s-adic digits, i.e., the unique 1-digit combina-
tion and s — 1 k-digit combinations for all £ = 2, s — 1. Our statement follows
from Theorem 311

Let us consider some fractal sets defined in terms of the nega-s-adic represen-
tation, a nega-s-adic Cantor series, and a mixed s-adic series.

Let s > 2 be a fixed positive integer.

THEOREM 3.6 ([30]). The sets

S(-s,0) = { = Z a1+az+ +ag (an) € L}’
5™ { = Z a1+a2+ +a ’ <a”) GL}’

are:

e uncountable, perfect, nowhere dense sets of zero Lebesgue measure;

12
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e self-similar fractals whose Hausdorff-Besicovitch dimension g satisfies the

following equation ‘
s—1 1 1000
>(3) -t
s

=1

Proof. Let us prove that the sets S(_, ) and S~ are uncountable.

Let us prove that the sets S(_, ) and C[—s, Ag] are equivalent. That is,
let us consider the mapping

> Qp - (_1)a1+az+---+an

r= Z ga1tast-Fan, i> Z (iy;l)n = f(.%’) =Y

n=1 n=1

or, in other words,

—S f —S

T=AG 00 0...0 ase 0...0 an.* Berazan. = (@) =y
S~ S~ S~—~—
Clq*l 01271 anfl

Suppose x1 and x from S(_, ) are such that 1 # z2 and

=R 0 e 0.0 s 0020 a
LoD R ——

Clq*l 012*1 anfl

xng_S
0...08 0...0 B5... 0...0 B,...

fr—1 p2—1 Bn —1

if f(x1) = f(x2) is nega-s-adic irrational (i.e., this number has the unique
representation), then «,, = 3, holds for all n € N. That is, z; = x2. It contradicts
the condition.

Assume that f(xz1) = f(z2) is nega-s-adic rational. But this is not possible
because any number from C[—s, Ag| does not have two expansions.

So, f is a bijection. Since C'[—s, Ag] is a uncountable set, we see that S(_; )
is an uncountable set. The proofs for S~ are similar.

Statements of this theorem follow from properties of the following notions

of cylinders. The proofs are similar to those of Theorem 1 and Theorem 3 in [32]
(arXiv:1703.05262). 0

DEFINITION 3.7. A cylinder Aﬁ;@??cn of rank n with base cico...c, is a set
formed by all numbers of the set S_, ) with nega-s-representations in which
the first n non-zero digits coincide with ¢y, co, ..., ¢y, respectively.

13
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DEFINITION 3.8. A cylinder A of rank n with base cicq . . .c, is a subset

C1C2...Cp
of S~ with elemets for which the following condition holds

a1 = Cq, Qg = C2,..., Qp = Cp,
where c1,ca, ..., ¢, is an ordered tuple of numbers.

LeEMMA 3.9 ([30]). Cylinders ASEO. have the following properties:

(1)

s infS_,. . ;
ah )+(_s)1+(—2+0)+n if c1d- e s even,
inf AC20) - —
c1Ca2...Cp (—s) supS(_s,0) ; )
gn + ComFatore Wt F e is odd,
_s supS(_g . )
a4 u’ﬁ if e+ +cn is even,
sup A0 =
c1Ca...Cn (—s) infS(_q 0y ; )
gn +m if e+ + ey is odd,
where
(=s) — Z L
In gCiteatte
i=1

(2) Suppose d(-) is the diameter of a set. Then,

. d(S(-s0)
d (Afzm.o.?cn) i r—

(3) The main metric relationship is as follows
—s,0
d (Agl(Jg..?cnanrl) 1
—s,0 T gCnt1
d (Aglcg..?cn> § -

(4) For any n € N the following condition holds

s—1
(—s,0)  _ (—s,0)
Aclcg...cn - Aclcz.‘.cni :
i=1

(5) For cylinders A£:0279?0n0n+1 of rank (n+1) with base c1c . .. cpcny1 the fol-
lowing relationships hold:

. _ —5,0 .
inf AEIC‘Z’9?CnP >sup Ailcz._?cn (p+1) Whenever ¢ 4 ¢y 4 -+ cn +p is even,

inf AL50) +1] > Sup Agl_cs’??cnp whenever ¢; + ca + -+ + ¢, + p is odd.

c1Ca...Cn [P 2

14
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(6) Let Tc(l_cz’_(_),)cnp be an interval of the form

(sup Ailcz O)Cn [p+1],1nf Aél_csz’??cnp) if c1+---+cp+piseven,

(sup Aclcz “enp, inf AEICZO Cn[p+1]) if c1+--+c,+pisodd,

where 1 < p < s —1 is a positive integer. Then,

—s,0 _
Tc(lcz.‘.)cnp ﬁ S(_s70) - @

T(_370)

c1C2...Cn D

(7) For any p € {1,2,...,s — 2} the following condition holds

A( sO A( 5,0)

cica.. cica.. cn[p—i-l] =4d.
(8) If xo € S(—s,0), then
(~5.0) v — ﬂ ACO)

CiC2..

Proof. Properties 1—4 follow from the definitions of Aq@ cn and S(_g ).

Let us prove Property 5. Suppose AEISZQ?C“,},AENZ??C (p+1) Br€ cylinders,
where 1 <p < s—1, and

n

(_ ) = #‘ = PR
In U= Z (—3)01+62+~-~+ci ; Wnp=C1tC2t +c

n-
i=1

(From the definition of Alecz O)Cn, it follows that

(=s) p —(s*+1)
{gn JF( 5)=n TP + s(s2—1)(—s)=nFr>
( s) p
ACs0 T e T e s)ﬁnﬂ’]’
C1C2...CpP

[97(1_ ) + (—s)gn‘FP + (32_1)(_s)wn+p§

s —(s2
( ) + (— s)W7L+P + (e74+1) ] )

s(s2—1)(—s)®n+tr

where w,, + p is even for the first case, and w,, + p is odd for the second case
By analogy, we obtain

s —(s°+1
{gr(l ) * (- S)I;tbl‘”’*l + s(s2— 1)(( :;w)nerJrlv
( s) p+1 2
A5O b i + e
cic2. Cn(p-‘,-l) (—s) i1 ,
[gn + (_s)mn+z7+1 + (32—1)(—Z)Wn+17+1;
( i + (= S)I;tl"'p'*'l + 3(32—1_)((8—:;*12)n+p+1] ’

where (w,, + p+ 1) is even for the first case and is odd for the second case
Let us prove the mentioned inequalities.

15
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Let w, +p=c1 +co+ -+ ¢, +p be an even number. Then,
inf A(=5:0) p — Sup A50

C1C2...Cn c1¢2...cn (p+1)
_ g(_s) + P _(32 + 1)
n (73)wn+17 5(32 — 1)(73)Wn+p
_g(_s) . p+1 B *(824“1)

()= T (7~ (e
1

+p+1 Sheitstl >0
= S e
sontp \PPTP s(s?2—1) ’

34+ 82 4+s5+1 (s +1)2 s+1

_— =1l —— =1 — < 2.
s(s?2—1) s(s?2—1) s(s—1)

Let w, +p=c1 +co+ - -+ ¢, + p be an odd number. Then,

3 (_570) — 70
inf Aclcg...cn (p+1) — Sup Aglci--?cnp

n (73)Wn+17+1 8(52 — 1)(f3)wn+}0+1
Y R N Gl
n (75)Wn+p 3(52 — 1)(75)Wn+p
S S (RO e sl s et B
T g@ntptl psTp s(s?2—1) '
To prove Property 6, it suffices to prove the following inequalities:

because

e under the condition that ¢; + ¢ + - -+ + ¢, + p is an even number
(_570)

sup A6101---<:n(10-i-1)cn+z — supA

(_570)
cici...cn(pt+1) < 0,

. —5,0 . —5,0
inf Aﬁlcsy-?cnpcnm - inf Aﬁlcsy-?cnp > 05

e under the condition that ¢; + ¢ + - -+ + ¢, + p is an odd number

(_570)
sup chl--.cnpcn+2

sup Agl_csf-q?cnp < 0,

. (—s,0) . (—s,0)
inf Aclcl‘.‘cn(p-l-l)cn_,_z — inf Aclcl.‘.cn(p—i-l) > 0.
Suppose
—- (8822"’_11) whenever ¢; + ¢y + -+ ¢, + p is even,

lo(c1,¢2,..,¢n,p) = 5 .

e whenever ¢; + ¢ + -+ - + ¢, + p is odd,

ﬁ whenever ¢y +co+ -+ ¢, + p is even,
l(617627"'7cn7p): 241

—5z—yy Whenever ¢ +ca+ -4 cn+pis odd.

16
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Let ¢ + ¢+ -+ + ¢, + p be an even number. Then,
(—s,0) (—s,0)
sup Aclcl Cn(p+1)cny2 — Sup A01 c1...cn(p+1)
—s p+1 Cn42
= ; s) 4 n

(—s)earttentptl & (—g)erttentptltcnys
+l(Cl,CQ,...,Cn,p+1,Cn+2> _ (=s) _ p+1
(—s)erttentptitenta n (—s)ertFentptl

l(Cl,CQ, RN e 1)
(f5)01+---+cn+p+l

2
— 1 < Cn+2 +l(Cl,CQ,...,Cn,p+1,Cn+2) s°+1 )
- —ten 1 AT Y 2 _
sertrtentprl A (=s)f 1o (=5)542 s(s* —1)
1 Cnt2 5241 s 41 : :
T seit  Fentpil (sanrQ - S(SQ—I)SCnJFQ + 8(82—1)> < 0 if Cn+2 1S evel,

Cnt2

1 2 s241 . .
T st tentprl (7 sent2 (32—1)scn+2 + 8(82—1)> < 0 if Cn+2 18 Odd,
because

Cn+2 2 s2+1

SC"+2 (82

— 1)s0n+2 + s(s2—1)
(82 + 1)s+2 + scpyo — (%o +2)s

> 0.
(82 — 1)sttent2 -
By analogy, we have
(—s,0) ( sO)
Inf AL e pens —IEAL DT )
- Cn+2 lo(Cl,Cz,...,Cn,p,Cn+2) _ lo(Cl,CQ,...,Cn,p)
o (73)01+"'+0n+17+0n+2 (7S)C1+'-'+6n+p+0n+2 (73)01+'-'+Cn+p
1 Cnt2 241 241 : :
Ty (scn+2 — serenemE T 8(82_1)> >0 if ¢, is even,

1 Cnt2 2 5241 : :
seit FenTp <_ sentZ — (s2—1)s°n72 + 8(82_1)> >0 if c¢yy0is odd.

Let ¢ + ¢+ -+ + ¢, + p be an odd number. Then,
(—s,0) . (—s,0)
sup AC101 :CnPCn+2 sup AC101 np
B Cn+2 lersea, - cnypsenga)  Uersca, ..o e, p)
o (_S)cl+---+cn+p+cn+2 (_S)cl+---+cn+p+cn+2 (_S)cl-l-----i-cn-i-p

1 Cnt2 5241 5241 : :
— T rerTr ( sentz — sroT)senrr T ostzery ) <0 if ¢pq0 is even,

1 Cni2 2 s2+1 . .
—eiT Fen¥p (_ scT;+2 T 2 1)t + S(s2— )) <0 if ¢pq9 s odd.

17
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Also,
(—s,0) (—s,0)
inf A01 c1...cn(pt1)cnt2 — inf Acl c1...cn(pt+1)
B Cn+2 lo(ci, ¢, Cn,p+ 1, Cnpa)
(—s)crt - tentptitenys (—s)erttentptitents

N 10(617627 s 7Cn7p+ 1)
(fs)cl-l----—i-cn—i-p—i-l

1 Cn42 s2+1 s2+1 . .
scl+"'+‘3n+P (scn+2 - 5(52 1) Sn+2 + 5(52_1) > 0 lf Cn+2 1S even,

1 Cnt2 2 s>+1 : :
sC1t—Fentp (_ 557;_;_2 - (s2—1)s°nt2 + 8(82—1)> >0 if Cn+42 18 odd.

Property 7 follows from Property 6.

Property 8. From properties of cylinders of S(_; oy, it follows the following:
if o € S(_s,0), then
2o € AL NAGEO N ALY L N

where ozt
T0=870 0o 0...0 as. 0...0 .an
~——
ar—1 ag—1 o, — 1
Also,
xp € [inf A((;ls’o); sup A((;ls’o)} [mf Aglzzo), sup A((lemo ] n...

Q1 o.. Q1 o2..

[mfA( 50) SupA( 5,0) }ﬁ
So, xp belongs to the following system of closed intervals:
[inf A&_IS’O); sup Ag—ls,o)} D [mf A0 gup AlS S’O)} D

Qo ) [e5ReS)]

[mfA(SO csup A0 n]:)...

@102 X102
Therefore,
o0
_ (—s,0)
o = m Aclcz |:|
n=1

LemmA 3.10 ([30]). Cylinders Az, .. have the following properties:

(1) {

inf S~ sup S~ . _
O2k + SorFeat Fean 02k+m} if n=2k,

Al ey e, C
Cc1C2.. —
sup S— inf S ; _
[UZk-i-l e Ty 02kl W] if  n=2k+1,
where k € N,
= ¢ i 5 sl s—1 g~ —s24+s5+1
o= Z < sertaberer MO T T T SR E T
i

18
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_ 5571 — 52 42
(2) d<A01L2 ) = (SS _ 1)SCI+CQ+"'+C71 ’
3 N
A5162‘.‘Cn Scn+1 )
(4) AZ ey cnenis CDoey o Ven € Ag, n €N,
(5) Cylinders A;szcn_ll, A;Lz en 120 A;Cz‘“cn_l[s_l] are:

e right-to-left situated whenever n is even, i.e.,

Vk e N:sup A~ ]<1an

cicg...cap—1[carp+1 C1C2...Cop—1Cak "

o [eft-to-right situated whenever n is odd, i.e.,

Vk € N:supA_ <inf A~

C1C2...CokC2k+1 cica...Ccoplcany1+1]"
Proof. The first, the second, and the third properties follow from the definition
of a cylinder A_ ., -

Let us prove the fourth property.

1. Suppose n = 2k, k € N. Then, the equality inf A; ., . ..., =infAZ . .
can be written in the form

2k

Z (=1)™cm _ C2k+1 B sup S~
gCitcat - Fem gCitcat Fcant gCitcat - +canta
m=1
inf 5™
> Z +
501+c2+ +cm gC1tcatteag
or

—Copp1 —Sup ST > sHinf ST

(82 —s— 1)+ s%2+1(s57F — s+ 1) — copr1(s® — 1)
% —1

> 0.

It is easy to see that the last inequality is an equality under the condition

copp1 = L.
In addition, for an even number n, let us consider the inequality
sup A < sup A

C1C2...CnCnpt1 C1C2..

19
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We have
2k . _
(=)™ Cokt1 inf S
Z gCitcat - Fem - gCitcatFcanta o geitecat-teappr —
m=1

ik: (=1)™cp, 4 __Sup S—

géitcattem | gaiteatetear’

m=1

—Copr1 —Inf ST < s+l gup ST
or
(1 + Copy1 + S2+02k+1 + 88—1) _5— 81+C2k+1 _ Czk_HSS — g2k < ().

The last inequality is an equality when cor11 = s — 1 holds.

2. Suppose n = 2k + 1,k € N. Then,
inf A > inf A7

C1C2...CpCn41 C1C2...Cp,
and

2k+1

(=)™ Cokt2 inf S~
Z gCitcat+cm gCitcat - FCopq2 gCitcottcony2 —
m=1
2k+1 —
Z (=)™, sup S

gCitcat-+cm gCitcatFcapt

m=1
are equivalent. Hence,
(5 —1— copra) — s2+2(s% — 5 — 1) + 55 H(scappa — 1) > 0.

If copy2 = s — 1, then the last inequality is an equality.

By analogy, for
sup A <sup A

C1C2...CnCn+1 C1C2...Cp?
we get
2k+1 _
Z (=1)™¢pp Cokt2 sup S
gCitcattcm gCitcat +cCany2 gCitcat tcCakya —
m=1
2k+1 . _
(=)™, inf S
Z gC1tCat o tem  geiteatotcakgi1’
m=1
sup ST + coppa(s® — 1) < —s+2inf ST
and

(5 —8%) + (1 — capra) + (5 — 1)s2+2 4 5571 (se9p 40 — 5°2542) < 0.

It is true for all values of cor12 and s > 2, and is an equality when copyo = 1.
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Let us prove Property 5.
L]

VkeN: supA~ —inf A

c1ca...Con—1[cop+1] ci1C2...C2k—1C2k

car + 1 sup 5
gc1tca+Feaptl serteatteantl

Cok inf S~
N gC1tCat - Fcak N gC1tcat-teag

1 1—s s°—s2+s
- gCitcat-+tcak ( S C2k+28(8571)>

_ 5%(24 cop — scap) + s(cor +2 — 25) — cop, 0
B (85 — 1)sciteattean < U

Vk e N: supA_ —inf A”

C1C2...C2KC2k+1 cica...Coplcakt1+1]

Cok+1 inf S™

gCitcat - FCartcant gCitcat-+cap+cant1

14 copt1 sup S™
glteitcat-teap+eant glteitcat-teap+eant

B 1 5% =282 +25+1 B 5T eopy1 — sCopy1
- glt+citcat - teap+carntr ss —1 s —1

+

s°Copy1 — Copy1 |, 85— 1
s —1 ss—1
5°(2 + carg1 — sCapy1) +5(2 — 28 — copg1) — Copya

- (55 — 1)slterteatFeanteania <0. =

It follows from the last-mentioned lemma that the following statements are
true.

COROLLARY 3.11. For all ¢, € {1,2,...,s — 2} the condition
Ac_wz--.cnflcn N Ac_lcQ...cn,l[cn-i-l] =9

holds.

COROLLARY 3.12. Intervals of the form

(sup AT inf A7

C1€2...C2K—1" clcg...02k,2[02k,1+1]>

and
(Sup Aclc2m02k_l [ear+1]? inf ACIC2~-02k—102k> ’

where k € N, have the empty intersection with the set S™.

21



SYMON SERBENYUK

COROLLARY 3.13. For an arbitrary xqg € S~ the following condition holds:

0
To = m Aclcg...cn'
n=1

Let u be a fixed positive integer from A.
By S(_s,u) denote the set (a subset of the segment [7?51, 3J+1]) of all num-
bers = represented by the nega-s-adic expansion such that they are of the form

> ay — U u
= - h n L.
x Z ((_S)cn-‘raz-i-----i-an) s+ 1’ where (a ) €

n=1

This set is the following set

. . _ —S
Scow) =822 =A0" yoaru. . Uas U.. Uan... {
a1 —1 ag—1 anp—1

where (a,) € L, u # o, for all n € N, and u is a fixed number.
It was shown in [30] that the following statement is true.

THEOREM 3.14. Let {01,09,...,0m} be a fized finite set of combinations (tu-
ples) of nega-s-adic digits, E be a set whose elements have in own nega-s-adic
representation only combinations of digits from the set {o1,09,...,0m}. Then,
the Hausdorff-Besicovitch dimension ag(E) of the set E satisfies the equation

Nt () 4 e (1)+ o N(oE) (1)'””: L

S

where N(oF)) is a number of k-digit combinations from {o1,02,...,0m}, k €N,

and N(U'}n) + N(O-'?n) ot N(Ufn) =m.

Proof. Let {o1,02,...,0m} be aset of fixed combinations of nega-s-adic digits,
and let the nega-s-adic representation of any number from E (E is a Cantor-like
set) contain only such combinations of digits. There exist digit combinations
€1€3...€p, L1la ... L, where 7t € N (they can be represented as one or several
combinations from {o1,09,...,0.,}) such that

inf &/ = A(_eIEQ...er)(eleg...e,«)... and SupE = A(_LlLQ...Lt)(Lll,g...l,t)...'
Also, here,

d(E) =sup E — inf E, where d(-) is the diameter of the set.

A cylinder A%_TSZ’F.)T" of rank n with the base 775 ... 7, is a set formed by all
the numbers of F with nega-s-adic representations in which the first n combi-

nations of digits are fixed and are from {o1,09,...,0,}. It is easy to see that
d (A(—&E) ) — d(E)
T1T2---Tn sN(Tl+T2+"'+Tn)’
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where N (11 +72+- - -+7,) is the number of digits in the combination 7175 ... 7,.

Since
E =C[-s,{01,09,...,0n}], E C]|inf E;sup E], and
As—1_7‘—927-E--)7—717-n+1 o ]‘
—s,F T oN(Thi1)?
AS’1T2...)‘I‘n s ( +)
we have
E=[,NEU[,NEN...n[L, NE],
where
L. = [inf A(T:S’E); sup AS:S’E)] , i=1,m.
So,
[171 mE] ~ B |LynE|~ B, [ mE} “ E;
o2 1 -2 =2
[ITzﬂE] ~ E|l.nE|~E,..., ITﬁsz} < E;
s*k r 7 s*k r s*k
[ITk mE] ~ E,|LynE|*~ E,... L mE} ~ E,
1 L i L "k
where Tf is some k-digit combination from {o1,09,...,0m} (j = 1,n;), and ny
s the number of k-digit combinations from {o1,09,...,0p,}.

Hence, the set E is a self-similar fractal whose Hausdorff dimension satisfies
the equation

N(o}) <§>ao+ N(c2) (%)MOJF -4 N(o%) (1>kao =1. O

S

The following statements follow from the last-mentioned theorem.

THEOREM 3.15 ( [30]). The set S(_, ) is:

e an uncountable, perfect, nowhere dense sets of zero Lebesgue measure;

e a self-similar fractal, and its Hausdorff-Besicovitch dimension oo (S(—s,u)),
satisfies the equation

3 (1)’% — 1, where Ay = {1,2,. .., 5 — 1)\ {u}.

S
€A,

Let us consider fractal sets whose elemets are represented by nega-s-adic
Cantor series.
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THEOREM 3.16 ( [30] ). Let s > 1 be a fized positive integer, Cm, +mo+-tm, 7 0
for allmn € N, and m,, € {3,5,7,...,2i +1,...}. Then, the set M(_p )

M) =72 =807 00 0...0am smye0. e Qcmiimssimy..

mq—1 mog—1 mp —1

is a self-similar fractal whose Hausdorff-Besicovitch dimension ag (M(_D7S)) 18
equal to

1 3571+1 27(371)2744_3571 1 /27(s—1)2—4
O — _
8s 2 6V 3 2 6V 3

Proof. From (@) and Theorem 314 it follows that the Hausdorff-Besicovitch
dimension of the set M _p ) under

my, € {3,5,7,,2Z+1,}, Oy +mot-+mn #0,

and under fixed s > 1, satisfies the equation

(s—1) <§>3a0+ (s— 1) <§)5a0+ (s— 1) <§)7a0+ ot

1 (2i+1) o
(31)(—> fo=1, i=1,2,...
S

The last equation is equivalent to the equation
g3 _ 5% _ (s —1)=0.

Using Cardano’s formula, we get the result. O

COROLLARY 3.17. If a sequence (my,) of odd positive integers is a fized purely
periodic sequence with the period (mimsy...my), then the set M(/—D,s,t) of all
numbers represented by nega-s-adic Cantor series (@) with the corresponding
sequence (my,) is a self-similar fractal and

/ t
M, . ): .
O[O( (_D757t) m1 _|_m2 _|_ +mt

Proof. Since elements of this set have periodic nega-s-adic representation, i.e.,

’
_ —S
M(—D,s,t) 91‘—A s
0...Oaml0...Oam1+m2...0...0am1+m2+...+mt
my—1 mo—1 my—1
where {mi,ma,...,m;} is a fixed set of odd numbers and a,, Amytmy; - - -

oo Qi+ tm, are numbers from the set A, from Theorem [B.14] it follows that
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Hausdorff-Besicovitch dimension satisfies the equation

1 (m1+m2+~-~+mt)a0
t —
5 <—> = 1.
S

The statement follows from the last equation. O

Finally, let us remark that restrictions on using elements of sets S4 ) are
new (they occur for the first time).

So, we considered topological, metric, and fractal properties of certain sets
whose elements have restrictions on using digits in own expansions. For consid-
ered sets, the case of functional restrictions is equivalent to the case of restric-
tions on using combinations of digits. The simple methods for the calculation
of the Hausdorff-Besicovitch dimension of such sets are described. In the case
of the s-adic or nega-s-adic representations, the Hausdorff-Besicovitch dimen-
sion of a set whose elements have in own representations only combinations
of digits from some fixed set of combinations of digits, depends on parameters
as a number of k-digit combinations and numbers k. In addition, note that the
considered sets have the Moran structure. Similar investigations did not study
the case of generalizations of the s-adic or nega-s-adic representation. These in-
vestigations will be discussed by the author of the present article in a further

paper.

4. Properties of images

In this section, the main attention is given to images of sets S, ,,) and S(_; )
under the Salem type functions (see [34,35,38], the Salem function was intro-
duced in [21]).

Let s > 1 be a fixed positive integer and «,, € A ={0,1,...,s— 1}. Let
P ={po,p1,---ps—1}
be a fixed set whose elements satisfy the following properties
po+pr+--+ps_1=1 and p; >0 forall i=0,5— 1.

Then, let us consider the following distribution functions.
Let ¢ be a random variable defined by the s-adic representation

L1 L2 L3 125
A2k A8
¢ s+3253+ +sk+ ,

L1l . lg...

where digits ¢, (k=1,2,3,...) are random and taking the values 0,1,...,s5—1
with positive probabilities pg, p1,...,ps—1. That is, ¢, are independent and
P{ux = ar} = pa,, ar € A.
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Let ¢ be a random variable defined by the s-adic representation

§= 71'17r2 Z k:

| 3

where
g if k is odd,
T —
s—1—a if kiseven,

and digits 7 (k=1,2,3,...) are random and taking the values 0,1,...,s — 1
with positive probabilities pg,p1,...,ps—1. That is, 7w, are independent and
P{m = ar} = pa,, P{mr =s—1— o} = ps—1—a,, where a;, € A.

Let us consider the distribution function f¢ of the random variable ¢ and the
distribution function Fg of the random variable :

0 whenever x < 0,
fe(@) = Q Ban@) + 2Ze (5%@ 1 1Pa]<m>> whenever 0 <z <1,
1 whenever x > 1,

where pq, >0 and

B = {Z?_’“ém)_l pi(x) whenever a(z) >0
(67

0 whenever  ay(x) =0,
also,
0 whenever x < 0,
F.(z) = Bal(m) + >0, (Bak(m) H;:i ﬁaj(m)> whenever 0<x <1,
1 whenever x> 1,

1 _
T = Azldz.‘.&k.‘. = s + 1 - Aafaz.‘.ak.‘.
1 > (—1)*ay > Qo1 . s—1— o
:S+1*Z ok ZZS%_1+Z 2k
k=1 k=1 k=1
and
I if k is odd,
Pe. = Ds—1-a, if kis even,
B ) B if kis odd,
) Besiia, if K is even.
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One can note that the function
[e'¢] n—1
F(‘T) = 5al(m) + Z Ban(z) H ﬁaj(z)
n=2 j=1

is a partial case of the function investigated in [38].

Let x € S(,4)- Let us consider the properties of the following images of S(_ )
and S(s,u):

Stpay = {y 1y = fe(w),x € S5}
and
S(_pm) = {g cy=Fofjo f+(x),x S S(s,u)} = {Z rz=Fo fl(.%'), T < S(—s,u)}-
Here, ~
§=1Fofiofi(z),
where
frix=A2 A =y

A1O2...0y .. A1O2...0py e
is not monotonic on the domain and is a nowhere differentiable function ( [33]),

fily) = s-%l —y, and F is the last-mentioned distribution function.
Let us describe properties of the set S(p,,).

THEOREM 4.1 ([39]). The set Sp) is an uncountable, perfect, and nowhere
dense set of zero Lebesgue measure and also is a self-similar fractal whose Haus-
dorff dimension aq (S(pm)) satisfies the following equation

> (e )" =1
i€ A\ {u)

Let ¢1,ca, ..., ¢y be an ordered tuple of integers such that ¢; € {0,1,...,s—1}
for i =1,n.

DEFINITION 4.2. A cylinder of rank n with base cics...c, is a set Aﬁf,;?j?ﬂcn
of the form

(P,u) _ . ..__ AP
Afidsen =9 T =Dy ueu. . Ues .. Uenlt . . U 1 Uy yo.
~—— N~ = ~——
c1—1 cg—1 cn—1 oy —1 apya—1

aj=cj,j=1n

By (ajaz...ay) denote the period ajas .. .ax in the representation of a peri-
odic number.

The following lemma describes local properties of the set Sip,,).
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LeEmMA 4.3 ([39]). Cylinders A( ’" .. have the following properties:
(1)

AP
0...0c¢,0...0¢5...0. Ocn(o 0[5 1])
—— = 2
cq—1 cp—1 cn—l s—
if u=0,

P
AL 1ol desd . den(l .. 1fs—1))
e Ve

c1—1 co—1 cn —1 s—2

inf AP =

if u=1,
AP
U... UciUW... . Ucz.. U ... Ucy (1)
—— N — N——
c1—1 co—1 cn—1

if we{2,3,...,s—1},

AP

[s—1]...[s=1er..[s—1] ... [s—=1]e. ([s—1] ... [s—1]is—2])
c1—1 cn—1 s—3
if u=s-—1,
AP
supAgf’."‘g _ U...UciWU... . Ucs..U... . Ucy (U ... Uutl])
e c1—1 cg—1 en—1 w

if we{l,...,s—2},

P
A 060,060 ... Ocn (1)
Rfl_/ —— R,T/
c]— cg—1 cn —

if u=0.

(2) If d(-) is the diameter of a set, then
d(AgD’uc)n) = d(S(Ps,u))pzl+C2+ +Cn_anCj'

(Aép,ugncn ) c —
¥ (AlT“);l = Penga Py g
(4) APW U ALY e, € Ay, neEN, ifu.

(5) The following relationships are satisfied:
(a) if u € {0,1}, then

inf A(P" p > Sup A(Pu A
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(b) ifue{2,3,...,s— 3}, then

sup A(Pucnp < 1an(P u) forall p+1<u,

cnlp+1]

A(P u) A(P u)

inf énp > SUD en[p1]° for all u < p;

(c) ifue{s—2,s—1}, then

sup Agjff) < inf A(Pu (in this case, the condition p # s — 1 holds).

cn[p+1]

We considered the properties of S, ,,) and its image S(p ) under the Salem
function. So, the Salem function preserves the self-similarity, but, in the general
case, it does not preserve the Hausdorff dimension. This map also preserves
the structure of S(, ), but the numerical values change.

Finally, one can note the following theorem.

THEOREM 4.4 ([39]). Let S be a set whose elements are represented in terms
of the s-adic representation by a finite number of fixed combinations T, Ta, . .., Tim
of digits from the alphabet A.

Let E be an image of the set S under the Salem function fe. Then, the Haus-
dorff dimension oy of E satisfies the following equation:

m s—1 “o
(pr_%(ﬁ')) =1,

j=1 \i=0
where

N;(1i) (k=1,m) is a number of the digit i in 1, from the set {T1,72, ..., Tm}.

Now, we describe the properties of S(_p,y).

Suppose d(-) is the diameter of a set and a cylinder AE;’;?)C” is a set whose

elements are elements of S__p,) and for these elements the condition a; = ¢;
holds for all i = 1,n (here c1,ca,- -+ , ¢, is a fixed tuple).

THEOREM 4.5 ([40]). An arbitrary set S(_p,) is an uncountable, perfect, and
nowhere dense set of zero Lebesgue measure.

THEOREM 4.6 ([40]). In the general case, the set S(_p., is not a self-similar
fractal, the Hausdorff dimension ao(S(_p.y) of which can be calculated by the

formula

ap = lim inf oy,
k—o0

29



SYMON SERBENYUK

where (ay) is a sequence of numbers satisfying the equation

Z (wa,e) + Z (wa,e)™" | %

c118 %id c11s even
c1€EA c1€EA
k
a; .
H E : Nie (wlvci) t+ E : Ny, (w270i) t
1=2 \ ¢;is odd ciis odd
c, €A c, €EA

Z N3 e, (w370i)ai + Z Nie; (w476i)ai =1

c;1is even c;1s even
c;,€EA €A

Here, Nj ., (j =1,4,1 <i € N) is the number of cylinders Ale_cf’_%i for which

—P,u
d (AglCQ...)ci7101>
= Wi ..
—P,u I
d (AS:102---)C¢—1)

Also,
d(S¢p,
_ (P,u)
Wie; = Ps—1-uPu---Ps—1-uDu ps_1_ciQ for an odd number c;,
(S
Ci—l
d(S
(P,u)
W2.e; = PuPs—1—u -+ - PuPs—1—u Pc; (7—) fO’I" an odd number Ci,
d(Sp.u))
ci—1
W3,c;, = Ps—1—uPu - - - Ps—1—uPuPs—1—u Pe; for an even number Ci
ci—1
W = DPuPs—1—u - - - PuPs—1—uPu Ps—1—c; for an even number c;.
C,i—l

In addition,

Nie, + Noe, =1l(m+ l)i_1 and N3, + Ny, =m(m+ l)i_l,

where | is the number of odd numbers in the set A = A\ {0,u} and m is the
number of even numbers in A.

Auxiliary values can be calculated from the following lemma.
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LEmMMA 4.7 ([4Q]). For the sets S(p,) and S(p.y, the following equalities hold:

Al 3j0js-3) if u=0,
inf Spu) = Af:—z]1[s—4](1[s—3]) if u=1,

Af:[.s—l—u]Z) Zf u e {2,3,...787 1}7
and
All1- if uwe{0,1},
sup S(P,u) _ E:[.s 1—u]2) ‘
Als_gj(ups—gy o wed{2,3,...,s -1},
Az if u€{0,1},
infS(P,u) _ g[s 3]) .
A1([s—l—u]2) Zf u € {2737"'73_ 1}7
and
Af([s—l]2) if u=0,
SUp S(p,u) = Aﬁs—2]3([s—2]2) if u=1,
AEL[S—S]) Zf u e {2,3,...,8*1}.
Finally, let us consider the local properties of S(_p ).
Assume
- oy whenever n is odd,
" ls—1-— «, whenever n is even
and
U

whenever w is situated at an odd position in the representation,

<
I

s—1—u
whenever w is situated at an even position in the representation.

LEMMA 4.8. Cylinders AE;?}? have the following properties:

(1)
Tn + (H;‘lzl 150j761+---+6j> (Hi—l,q-ﬁ-----ﬁ-cn—l iﬁu,i> inf S(P,u)

i@ Chy
if c1+---+cp is even,
inf AL 7 =

Tn + (H?:l ﬁC]‘,Cl-‘r'-'-‘rC]‘) (Hi_lycgi‘"'-i-cn—l ﬁuﬂ,) lnfm
1¢Cn 1
if c1+---+cp is odd,
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Tn+ (H;lzl ﬁ0j701+---+6j) (Hi_l,qég--+c7l—1 ﬁu,i) sup S(P,u)
T n—1

if c1+---+c, is even,

Tt (H;Ll 15Cj,c1+---+cj) (Hi—Wﬁu,i> Sup S(p,u)
? n—1

if c1+---+cp is odd,

(2) If d(-) is the diameter of a set, then

a(aG ) =

—P,u
d<A£1'-'Cn)cn+l ) —

d(AS )y
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(HL ﬁcy‘,01+-“+01) (Hi:1,01+---+cn—li¢0n_1 ﬁu:i) d (S(P,U))

if 14y is evend(%)a

(H?:l ﬁcj,cﬁ-----i-cj) (Hi:mian,l ﬁu,i) d (S(P,u)) d (S(P,u))

if 1+ + ey is oddd (Sipy)) -

ci1+-tepp1—1 ~
Ps—1—cnt1 (Hi:cl-l-cz—i-----l-cn-l-l pu,i)
if c1+ -+ cp, Cpy1 are even,
ci1+-tenpp1—1 ~
Pepga (Hi:cl-l-cz—i-----l-cn-l-l pu,i)
if 144y is odd, chiq is even,

ci+-+epp1—1 ~ U
poteenn (TEE T 0 i) (S Sen)

if c1 4+ cp, Cpy1 are odd,

totenpi—l - S
an+1 (Hz?l:cl—i-czc-l-tl-—i-cn—i-l puai> (S(P,u)/S(P,u))

if c1+---+cy is even, cpr 1S odd.

AP — U AP Ve, €A, neN.

C1C2...Cp C1C2...Cp
ceEA
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(5) The following relationships are satisfied:
(a) ifu e {0,1}, then

(- PU)
inf A enle+1]

> supA( P"

whenever c¢i1+ -+ ¢, + ¢ 1S even,
(c#s—1);

ian( Pc:)c > sup A( Pci[c+1]

whenever c¢1+ -+ ¢, + ¢ is odd,

(b) ifue{2,3,...,5 =3}, then for an odd c1 + -+ ¢, + ¢

supA cc<1an(Pu o] for all c+1 < u,

A( PU)

inf e > sup A( Pyu)

[c+1] for all u < ¢;

ifu€{2,3,...,573}, then for an even c¢1 + -+ + ¢, + ¢

1an( ’u)[cﬂ] > sup Acl ’qul)c for all u < ¢,

inf A& ’C:)C > sup A( ’u)[C_H] forallc+1 < wu;

(c) iqu{s—Q s — 1}, then

inf A( [c+1] > sup Acl cnc whenever ¢1 + -+ ¢, + ¢ is odd,

inf Aél o c > sup A( ’u)[C_H] whenever ¢y + -+ 4 ¢, + ¢ s even.

Remark 2. One can note that if for S_; ,) and S, ,), topological, metric, and
fractal properties (without some properties of cylinders) are similar, then fractal
and some local properties of S(_p ) and S(p,,) are different. For example, S(p,,)
is a self-similar fractal (i.e., this is a Moran set by Moran’s definition, [16]) but
S(—pu) is a non-self-similar set having the Moran structure (i.e., this is a Moran
set by the definition of Hua et al. (see the definition in [12])).

5. Certain examples

Let us consider the case of the sets S(p, o) and S(_p, o). That is, the set S(p, o)
is a set of the form

S(P3’0) = {I = Ag?’ ..00:0...00:..0.. .Oan.‘.’a” € {172}?n: 1,2,3,.. }

a1 —1 ag—1 anp—1
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In the other words, our set is the image of a certain set under the Salem func-
tion f¢, and this certain set is the set whose elements are represented in terms
of the 3-adic (ternary) representation by using combinations of ternary digits
only from {1,02}. So, applying Theorem I we obtain that the Hausdorff di-
mension of S p, oy satisfies the equation

(p1)*° + (pop2)™® = 1. (7)

Let us consider the set S(_p, o). That is,

o o AP _
SP0) =TT =80 000 00y 0. Oa,. O E{L2En=1,2,3,...
1 1 1
a1 — @ — Qp —

Since ([40,41])

Py — A-P3

A(XIQQ"'(XTL"' - A()él[2—0&2]&3...0&2k,1[2—a2k]...
and b
—P3 — 3

Aa1a2.‘.an.‘. = Aocl[2—0&2]&3...0&21471[2—a2k]---’

we have that this set is a subset of the set
{o:0=A0 5,00 €{00,1,22}}.
Actually it is a subset, because, for example,

P
1= A22322222.‘. ¢ S(—Ps,O)-

Using Lemma 7] we have

. S S _P P
InfS_p;0) = InfSp00 = Aozoroe.. = Aodooooo.. = 0,
_P P
SupS(—p,0) = SUPS(p0) = Aigoogo2.. = Aldesssss.. = Potpi
and .
inf Sp, 00 = Algooooo... = B = Ppo,
P
SUp S(p;0) = Aodogane . = L.

Hence, using Theorem and Lemma .8 we obtain
(here d(-) = sup(-) — inf()),

d(S(p,00) = B2 = po+p1,
d(Sp,,00) = 1 =61 = 1—po,
as well as
po +p1 D1+ D2 2
_— w _— w,

w1 = P1 ) =P1 )
p1+p2 Po + p1
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In addition, for any step k£ € N, the following relationships hold:

Nic+ Nocit+ Nse+ Nig, =28
and
Nie, =Nac, = N3, =Nio, = 2"
The local structure of our set can be characterized by the following scheme:

Iy w1 wa w3 Wy

N Y e L VG

w9 W4 w9 W4 w1 w3 w1 w3 w2 W4
Here,
IQ = [mf S(—P3,0)7 sup S(_p?”o)] .
So, the Hausdorff dimension dim g (S(_p, o)) of S(_p, o) is equal to

a, = liminf 7y,
k— o0

where (%) is a sequence of numbers satisfying the equation

k
((w2)71 + (w4)“> 11 <2i_2 ((M)% + (w2) "+ (w3) "+ (wa) " )) =1.

1=2
EXAMPLE. Suppose 1 2 1 . 3
= — = = = = an = = = =.
Po 67 D1 6 37 D2 6 2

Then, the set S(p, o) is a self-similar fractal whose Hausdorff dimension is
approximately equal to 0.408985; but the set S(_p, () is not a self-similar fractal,
its Hausdorff dimension is approximately equal to 0.422592.

EXAMPLE. Suppose
po =p2 =025 and p; =0.5.

Then, the sets S(p, o) and S(_p, o) are self-similar fractals and their Hausdorff
dimensions are approximately equal 0.46496.
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