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DISCRETE POLYLOGARITHM FUNCTIONS
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ABSTRACT. We investigate a discrete analogue of the polylogarithm function.
Difference and summation relations are obtained, as well as its connection to the
discrete hypergeometric series.

1. Introduction

Discrete special functions and their applications have been the topic of numer-
ous papers in recent years, see e.g., discrete analogues of Bessel and hypergeomet-
ric functions [2, 3, 6], analogues of orthogonal polynomials [4, 5, 8], semidiscrete
multivariable models [12–14], and discrete models of physics [1].

On the other hand, the classical polylogarithm function

Lis(t) =
∞∑
k=1

tk

ks
.

has seen numerous applications in diverse areas such as Fermi-Dirac integ-
rals [16], conformal field theory [11], thermoelectrics [17], and blackbody ra-
diation [15].

We are interested in expanding the theory of discrete special functions to
include discrete polylogarithm functions, which we define by

Lis(t;n, ξ) =

∞∑
k=1

tnkξk

ks
, (1)

where s, ξ ∈ C and n ∈ R, which is the discrete analogue of the polylogarithm
function.
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2. Preliminaries and definitions

The forward difference operator Δ is defined by Δf(t) = f(t + 1) − f(t).
The discrete shift for n,m ∈ {0, 1, . . .} is the relation

tn(t− n)m = tn+m. (2)

The discrete fundamental theorem of calculus is

b∑
k=a

Δf(k) = f(b+ 1)− f(a). (3)

The classical generalized hypergeometric series is defined by

pFq(a;b; t) =

∞∑
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

tk

k!
,

where a = (a1, . . . , ap) and b = (b1, . . . , bq) for some constants ai, bj ∈ C.
The discrete hypergeometric series is

pFq(a;b; t, n, ξ) =

∞∑
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

tnkξk

k!
.

It is known [3, Proposition 2] that the pFq and pFq are related by

pFq(a;b; t, n, ξ) = p+nFq

(
a, t;b; ξ(−n)n

)
, (4)

where

t =

(−t

n
,
−t+ 1

n
, . . . ,

−t+ n− 1

n

)
.

The falling factorials are defined in terms of the Γ function by

ab =
Γ(a+ 1)

Γ(a− b+ 1)
, (5)

and ratios of Γ functions obey the following known asymptotic relationship [7]

Γ(x+ β)

Γ(x)
∼ xβ (6)

The related Pochhammer symbols are defined for a ∈ C by

(a)k = a(a+ 1) . . . (a+ k − 1).

The polylogarithm obeys many interesting formulas that can be found in the
books [9,10]. We now express many such properties for the Li:

Lin(t) = tn+1Fn(1, 1, . . . , 1; 2, 2, . . . , 2; t), (7)
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t
∂Li
∂t

= Lis−1(t), (8)

Li(t) =
t∫

0

Lis(τ)
τ

dτ, (9)

and
p−1∑
j=0

Lis
(
ze

2πij
p

)
= p1−sLis(zp). (10)

3. Discrete polylogarithms

If t ∈ {0, 1, . . .}, then the series (1) converges, since the factor tnk will
ultimately vanish for sufficiently large k. Now we establish convergence for com-
plex t.

������� 3.1� If t �∈ {0, 1, . . .} and n ∈ {0, 1, 2, . . .}, then the series (1)

converges for |t| < n

√
1
|ξ| .

P r o o f. We assume that t �∈ {0, 1, 2, . . .} because such t-values cause the series
to terminate due to the factor of tnk in the summand. To apply the ratio test,

set ak = tnkξk

ks and consider the limit

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ tnk+nξk+1ks

(k + 1)stnkξk

∣∣∣∣
= lim

k→∞

∣∣∣∣ Γ(t− nk + 1)ξks

Γ(t− nk − n+ 1)(k + 1)s

∣∣∣∣
≈ lim

k→∞

∣∣∣∣ξ
(

k

k + 1

)s

t−nk+1−(−nk−n+1)

∣∣∣∣
= lim

k→∞

∣∣∣∣ξ
(

k

k + 1

)s

tn
∣∣∣∣ = |ξtn| .

Hence the series converges whenever |t| < n

√
1
|ξ| , completing the proof. �

When the subscript is a non-negative integer, the series (1) reduces to a dis-
crete hypergeometric function, analogous to (7).

������� 3.2� If m,n ∈ {0, 1, . . .}, then
Lim(t;n, ξ) = ξtnm+1Fm(1, 1, . . . , 1; 2, 2, . . . , 2; t− n, n, ξ). (11)
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P r o o f. Using (2), compute

ξtnm+1Fm (1, . . . , 1; 2, . . . , 2; t− n, n, ξ) = ξtn
∞∑
k=0

(1)k . . . (1)k
(2)k . . . (2)k

(t− n)nkξk

k!

=

∞∑
k=0

(k!)m+1(
(k + 1)!

)m tn(k+1)ξk+1

k!
=

∞∑
k=1

tnkξk

km
= Lim(t;n, ξ),

completing the proof. �

The previous theorem implies a representation as a classical generalized
hypergeometric series via (4).

����		
�� 3.3� If m,n ∈ {0, 1, . . .}, then
Lim(t;n, ξ) = ξtnm+1+nFm

(
1, 1, . . . , 1, t; 2, . . . , 2; ξ(−n)n

)
,

where t ∈ R
1×n with

t =

(−t+ n

n
,
−t+ n+ 1

n
, . . . ,

−t+ 2n− 1

n

)
.

The following theorem is a discrete analogue of (8).

������� 3.4� The functions (1) obey the formula

tΔLis(t− 1;n, ξ) = nLis−1(t;n, ξ). (12)

P r o o f. Compute

tΔLis(t− 1;n, ξ) = tΔ

∞∑
k=1

ξk(t− 1)nk

ks
= tn

∞∑
k=1

ξk(t− 1)nk−1

ks−1

= n

∞∑
k=1

ξktnk

ks−1
= nLis−1(t;n, ξ),

completing the proof. �

The following corollary is a discrete analogue of (9).

����		
�� 3.5� The functions (1) obey the formula

Lis(t− 1;n, ξ) = n

t−1∑
k=1

Lis−1(k;n, ξ)

k
.

P r o o f. Divide (12) by t and sum to obtain

t−1∑
k=1

ΔLis(k − 1;n, ξ) = n

t−1∑
k=1

Lis−1(k;n, ξ)

k
.
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Since Lis(0;n, ξ) = 0, applying (3) on the left-hand side yields

Lis(t− 1;n, ξ) = n

t∫
1

Lis−1(τ ;n, ξ)

τ
Δτ.

Recognizing the integral on the right-hand side as a sum completes the proof. �

The summation (10) has the following discrete analogue.

������� 3.6� If p ∈ {1, 2, 3, . . .}, then
p−1∑
j=0

Lin

(
t, n, ξe

2πij
p

)
= p1−nLin(t, np, ξ

p).

P r o o f. Calculate
p−1∑
j=0

Lis

(
t;n, ξe

2πij
p

)
=

p−1∑
j=0

∞∑
k=1

tnkξke
2πkij

p

ks

∞∑
k=1

tnkξk

ks

p−1∑
j=0

e
2πkij

p

By the well-known sum of roots of unity

p−1∑
j=0

e
2πkij

p =

{
p, k|p,
0, k � |p.

we obtain
p−1∑
j=0

Lin

(
t, n, ξe

2πij
p

)
= p

∞∑
k=1,k|p

tnkξk

ks
= p

∞∑
�=1

tnp�ξp�

(p�)s

= p1−s
∞∑
�=1

t(np)� (ξp)
�

�s
= p1−sLis(t, np, ξ

p),

completing the proof. �

4. Conclusion

We have established discrete analogues of many of the properties of the poly-
logarithm functions. Future work can expand into looking at applications of these
functions, understanding special cases such as representations when n is a neg-
ative integer, and other discrete analogues such as inverse tangent integrals and
the Legendre χ function.
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[12] SLAVÍK, A.: Discrete Bessel functions and partial difference equations, J. Difference Equ.
Appl. 24 (2018), 425–437.
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