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ABSTRACT. The reduction modulo p of a family of lacunary integer polynomi-
als, associated with the dynamical zeta function ζβ(z) of the β-shift, for β > 1
close to one, is investigated. We briefly recall how this family is correlated to the
problem of Lehmer. A variety of questions is raised about their numbers of zeroes
in Fp and their factorizations, via Kronecker’s Average Value Theorem (viewed as
an analog of classical Theorems of Uniform Distribution Theory). These questions

are partially answered using results of Schinzel, revisited by Sawin, Shusterman
and Stoll, and density theorems (Frobenius, Chebotarev, Serre, Rosen). These
questions arise from the search for the existence of integer polynomials of Mahler
measure > 1 less than the smallest Salem number 1.176280. Explicit connection
with modular forms (or modular representations) of the numbers of zeroes of

these polynomials in Fp is obtained in a few cases. In general it is expected since
it must exist according to the Langlands program.
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1. Introduction

In this paper we will address a number of arithmetic questions on a class
of lacunary integer polynomials which have all their coefficients in {0, 1} except
the constant term equal to −1. We have called such polynomials almost Newman
polynomials in D u t y k h and V e r g e r- G a u g r y [10], by comparison with
Newman polynomials which all have their coefficients in {0, 1}. Recall that,
with probability one, Newman polynomials are irreducible (B r e u i l l a r d and
V a r j u [3]).

This class is the following. For n ≥ 2, we denote by B the class of lacunary
polynomials

f(x) := −1 + x+ xn + xm1 + xm2 + · · ·+ xms ,
where

s ≥ 0, m1 − n ≥ n− 1, mq+1 −mq ≥ n− 1 for 1 ≤ q < s,

and by Bn those whose third monomial is exactly xn, so that

B = ∪n≥2Bn.

The case “s = 0” corresponds to the trinomials Gn(z) := −1+ z+ zn. This class
admits a very special type of lacunarity.

This class appears naturally in the study of the existence of reciprocal integer
polynomials having small Mahler measure (Sm y t h [46]): in the Appendix we
recall how this class of polynomials is arising from the dynamical zeta function
ζβ(z) of the β-shift (equivalently from the Parry Upper function fβ(z)), when
β > 1 is close to one. Recall that the Mahler measure of a nonzero algebraic
number β, of minimal polynomial

Pβ(X) = a0X
m + a1X

m−1 + · · ·+ am = a0
∏
i

(
X − α(i)

) ∈ Z[X],

is
M(β) = |a0|

∏
i

max
{
1,
∣∣α(i)

∣∣} =: M(Pβ).

The search for non-trivial Mahler measures of reciprocal integer polynomials
smaller than the smallest Salem number known 1.176280 . . . (Lehmer’s number)
is of particular interest in the Problem of Lehmer (Sm y t h [46], V e r g e r-
-G a u g r y [52]). When β > 1 is close to one, it is shown in D u t y k h and
V e r g e r- G a u g r y [11] [53] that a subcollection of zeroes (the lenticular zeroes,
cf Section 2) of fβ(z) is at the origin of a nontrivial (universal) minorant of M(β).
By Hurwitz Theorem, the zeroes of fβ(z) in the open unit disk of C are limit
points of zeroes of polynomials of the class B, which are its polynomial sections.
It is the reason why this class of lacunary almost Newman polynomials is im-
portant for the Problem of Lehmer.
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By analogy, there is interest in studying the zeroes of f(z) modulo p, for any
f ∈ B and any prime number p. In the present note, we start the investigation
of (i) the number of zeroes Np(f) of the polynomials f ∈ B in Fp, i.e. modulo a
prime number p, as a function of p, n, and the type of lacunarity of f character-
ized by the sequence (mj)j=1,...,s, (ii) the subcollection of prime numbers p for
which Np(f) is equal to zero or is maximal, (iii) the asymptotics of the averages
of Np(f) when p tends to infinity.

For a nonzero integer polynomial f(X) ∈ Z[X] we denote by c(f) the greatest
common divisor of its coefficients. Let Z[X]c := {f ∈ Z[X] \ {0} : c(f) = 1}.
Let N be the map Z[X]c→(N)P, f→(Np(f)

)
p∈P

. Obviously, for f1, f2 ∈ Z[X]c,

N (f1f2) = N (f1) + N (f2) since, for any p ∈ P, Np(f1f2) = Np(f1) + Np(f2).
Now, integrating N over the set of prime numbers P and taking the limit average
with respect to π(x), which is as usual the number of primes p ≤ x, gives the
following result (proof in Section 3).

������� 1.1� Let f ∈ Z[X]c. If f =
∏

i∈J fνi
i is the decomposition of f into

irreducible factors, with all νi ≥ 1, then

lim
x→∞

1

π(x)

∑
p≤x

Np(f) =
∑
i∈J

νi (1)

which is the number of irreducible factors in the decomposition of f.

By the Langlands program closed formulas are expected between the values
Np(f) and the coefficients a(n) of Newforms

∑
a(n)qn. Key properties of New-

forms, geometrical objects attached to the coefficients, can be found, e.g.,
in C o h e n and S t r ö m b e r g [6], O n o [29].

Let us observe that equation (1) is an analog of classical Theorems of Uni-
form Distribution (K u i p e r s and N i e d e r r e i t e r [24], S t r a u c h [48]) (cf.
Section 3).

Therefore the present study on the class B starts a concrete investigation
not only of the quantities Np(f), f ∈ B, and the associated Newforms, but also
of their limit averages by equation (1), which corresponds to the factorization
of f.

���	�
 1� In the literature, following Lehmer’s work, there are two “Conjec-
tures of Lehmer”, which a priori are completely independent. The first one is
evoked in Sm y t h [46], V e r g e r- G a u g r y [52], and is concerned by a uni-
versal minorant of the Mahler measure of reciprocal nonzero algebraic integers
which are not roots of unity. It is of concern in this study. The second one is
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related to the τ -function of Ramanujan. The present work, though trying to
correlate the Problem of Lehmer modulo p to modular forms (Newforms) has
no objectives to try to link the two Conjectures. The authors have no idea if the
two Conjectures are linked.

The factorization of f ∈ B as a function of its reductions modulo p is a deep
question (L e n s t r a and S t e v e n h a g e n [27], [47]). It is well-known that a
monic integer polynomial is irreducible over the rationals if it is irreducible mod-
ulo some prime. The converse is not true in general (B r a n d l [4]). Even if f ∈ B
is irreducible a first question is about the density of the set of prime numbers
p such that Np(f) = 0. Indeed G u r a l n i c k, S c h a c h e r and S o n n [20],
then G u p t a [19], have shown the existence of irreducible integer polynomials
which are reducible modulo all primes. Whether the factorization of f modulo p
contains linear factors is a basic question. If it is so, it is natural to say that
the number Np(f) can take a priori any value between 1 and the maximal value
deg(f).

By Conjecture ARC (Conjecture (3) below) only 75% of the polynomials f
in B are irreducible. General irreducibility criteria for the polynomials f in B
are missing. Theorem 1.1 (Kronecker’s Average Value Theorem), applied to each
irreducible f ∈ B, says

lim
p→∞

1

π(x)

∑
p≤x

Np(f) = 1,

preventing the values Np(f) = deg(f) to occur often, since the sum
∑

p≤x Np(f)

behaves like x/ log(x) at infinity. If f ∈B is irreducible and deg(f) is a prime num-
ber, then N (f)=

(
Np(f)

)
p∈P

is such that infinitely many Np(f) are equal to 0

(S t e v e n h a g e n and L e n s t r a [47]). Examples of the distribution of values
Np(Sj) of the (non-reciprocal parts of the) polynomial sections Sj(x) of the
Parry Upper function fτ (x) = −1/ζτ (x), where τ is Lehmer’s number (cf Sec-
tion 2 for its definition), are given in Section 5.

The density Theorems of Frobenius and Chebotarev (C h e b o t a r e v [5])
play a role in the frequencies of values taken by Np(f) as p varies in general.
For the class B we summarize this in Theorem 1.2 below. The question of the
non-existence of factors of degree 1 (the “Np(f) = 0” case) in the factorization
of f modulo p, is partially answered by a general theorem of S e r r e (Serre’s
Density Theorem [43]), which gives a positive lower bound on the density of such
primes (reported in Theorem 1.2, 1)).

The density is taken in the following sense: a subset S of the set of primes P
has density c if

lim
x→∞

number of p ∈ S with p ≤ x

π(x)
= c.
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The limit need not exist. When it exists the natural density of S is said to be
defined; then it is denoted by δ(S).

������� 1.2� Let n ≥ 3. Let

f(x) := −1 + x+ xn + xm1 + xm2 + · · ·+ xms ∈ B,
where s ≥ 0, m1−n ≥ n−1, mq+1−mq ≥ n−1 for 1 ≤ q < s. The polynomial f
is assumed irreducible. Denote by G the Galois group of f(x) and g := #G. Then

1) the set P0 := {p ∈ P | Np(f) = 0} is infinite, has a density and its density
satisfies

δ(P0) ≥ 1

ms
,

with strict inequality if ms is not a power of a prime,

2) the set Pmax := {p ∈ P | Np(f) = deg(f)} is infinite and has density

δ(Pmax) =
1

g
.

Theorem 1.2 (1.) is due to Serre; the proof of 1) is given in S e r r e [43]. The
statement of 2) is Corollary 2 in R o s e n [33]. This Corollary 2 is a consequence
of a Theorem of Frobenius (Theorem 2 in R o s e n [33]).

In Section 4 we continue the direct study of the factorization of the polynomi-
als f in the class B, initiated in D u t y k h and V e r g e r- G a u g r y [10]. Indeed
this study has left open the problem of the existence of reciprocal non-cyclotomic
components in the factoring of any such f . The main theorem on the factoriza-
tion of all f ∈ B is Theorem 2.1 in [10]. We recall in Section 2 the Asymptotic
Reducibility Conjecture (“ARC”) which states that the probability of finding a
polynomial f in B which is irreducible is 3/4, and the Conjecture “B”, which
states the non-existence of a reciprocal non-cyclotomic component in the fac-
torization of a polynomial f in B. We revisit Conjecture B using a Theorem
of Schinzel and a recent new lower bound by S a w i n, S h u s t e r m a n and
S t o l l [35] for large gaps. We prove that Conjecture B is valid on some infi-
nite subclasses of B. For doing this, we consider the new bound for large gaps
given in [35] as a new critical value above which Conjecture B is always true.
Then, at intermediate lacunarity, for moderate gaps below this critical value, we
show numerically that Conjecture B is also true. The subclasses considered are
families of pentanomials in B, chosen from the quadrinomials studied by F i n c h
and J o n e s [16].

The Problem of Lehmer modulo p, adressed to the class B, with its asymp-
totics when p tends to infinity, also calls for understanding the interplay
between the asymptotics ofNp(f) and the peculiar lacunarity of f, for any f ∈ B.
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The importance of the problem of the factorization of lacunary polynomials
was outlined in a series of papers by S c h i n z e l [37] [38] [39] [40] [41]. The
link between lacunarity, say the geometry of the gappiness, and irreducibility
of any f ∈ B, is emphasized in Corollary 1.4 in [35], as follows.

������� 1.3 (S a w i n, S h u s t e r m a n, S t o l l [35])� Let f ∈ B, and write
it as a polynomial f(x) = gN(x) = d(x) + xNc(x−1) as in equation (5) and
equation (7). Under the assumptions of Schinzel’s Theorem 4.2, the set of N >
deg c+deg d such that f is irreducible is the complement of the union of a finite
set with a finite union of arithmetic progressions.

In Section 6 the quantities Np(f), p tending to infinity, are studied for tri-
nomials, following S e r r e [43], as functions of the coefficients of q-expansions
and correlated to Newforms and modular forms. Some basic questions about
the densities of ps such that Np(f) is congruent to a fixed integer modulo some
integers are asked in Serre’s general context (S e r r e [44] [45]).

To outline the novel strategy of the paper, this note initiates the study of the
quantities Np(f), p any prime number, and also p tending to infinity, for any f
in the class B, and concomittantly the factorization of such fs. This difficult
problem is tackled by the simplest cases of fs in B, which are trinomials, as
in Section 6; and by showing on some subfamilies of B, as in Section 4, that
factorization occurs with the absence of reciprocal non-cyclotomic components,
which is conjectured to be the general rule.

2. Dynamical zeta function of the β-shift and
Lehmer’s problem

Let us recall standard definitions. A complex number α is an algebraic integer
if there exists a monic polynomial R(X) ∈ Z[X] such that R(α) = 0. If R is the

minimal polynomial of α and is reciprocal, i.e. satisfies XdegRR(1/X) = R(X),
then α is called reciprocal. If α is reciprocal, α and 1/α are conjugated. If the
minimal polynomial of α is not reciprocal, α is called non-reciprocal. If α = 1,
or if α > 1 and the conjugates α(i) �= α of α satisfy: |α(i)| < α, then α is said
to be a Perron number.

Let n ≥ 3 be a fixed integer. S e l m e r [42] has shown that the trinomials
−1 + x + xn ∈ Z[x] are irreducible if n �≡ 5 (mod 6), and, for n ≡ 5 (mod 6),
are reducible as product of two irreducible factors whose one is the cyclotomic
factor x2−x+1, the other factor (−1+x+xn)/(x2−x+1) being nonreciprocal
of degree n − 2. We denote by θn the unique zero in (0, 1) of the trinomial
−1 + x + xn. The inverses θ−1

n > 1 are non-reciprocal algebraic integers which
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are Perron numbers, and constitute a decreasing sequence (θ−1
n )n≥3 tending

to 1+. The smallest Mahler measure known is Lehmer’s number τ , root > 1
of x10+x9−x7−x6−x5−x4−x3+x+1, such that: θ−1

12 < τ = 1.176280 . . . < θ−1
11 .

Here n is equal to 12. The search for reciprocal algebraic integers βs, of Mahler
measure M(β) ≤ 1.176280, in the intervals (θ−1

n , θ−1
n−1), n ≥ 13, having a minimal

polynomial for which there is no Z-minimal integer polynomial P̂β(X) such that

Pβ(X) = P̂β(X
r) (2)

for some integer r ≥ 2 is of importance in the problem of the non-trivial minora-
tion of the Mahler measure (Section 2 in V e r g e r- G a u g r y [52]). The existence
of very small Mahler measures is still a mystery.

Let us assume the existence of such a reciprocal algebraic integer β > 1. It is
canonically associated with, and characterized by, two analytic functions:

1) its minimal polynomial function, say z → Pβ(z), which is monic and re-
ciprocal; denote d := degPβ , H := the (näıve) height of Pβ ,

2) the Parry Upper function fβ(x) at β−1, which is the generalized Fred-
holm determinant of the β-transformation Tβ (Section 3 in V e r g e r-
-G a u g r y [53]). It is a (infinite) power series with coefficients in the al-
phabet {0, 1} except the constant term equal to −1, with distanciation
between the exponents of the monomials

fβ(x) := −1 + x+ xn + xm1 + xm2 + · · ·+ xms + · · · ,
where m1−n ≥ n−1, mq+1−mq ≥ n−1 for q ≥ 1. β−1 is the unique zero
of fβ(x) in the unit interval (0, 1). The analytic function fβ(z) is related
to the dynamical zeta function ζβ(z) of the β-shift (Section 3 in V e r g e r-
G a u g r y [53]; F l a t t o, L a g a r i a s and P o o n e n [17]) by: fβ(z) =
−1/ζβ(z). Since β is reciprocal, with the two real roots β and 1/β, the
series fβ(x) is never a polynomial, by Descartes’s rule on sign changes
on the coefficient vector. The algebraic integer β is associated with the
infinite sequence of exponents (mj).

Let us observe that all the polynomial sections

Ss(x) := −1 + x+ xn + xm1 + xm2 + · · ·+ xms , s ≥ 1,

of fβ(x) are polynomials of the class Bn.

The principal motivation to study the class B for itself in the present note
comes from the peculiar form of these polynomial sections.

The polynomials f of the class B are often irreducible by the following con-
jecture, formulated in D u t y k h a n d V e r g e r- G a u g r y [10].
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Asymptotic Reducibility Conjecture (ARC). Let n ≥ 2 and N ≥ n.

Let B(N)
n denote the set of the polynomials f ∈ Bn such that deg(f) ≤ N . Let

B(N) :=
⋃

2≤n≤N B(N)
n . The proportion of polynomials in B = ∪N≥2B(N) which

are irreducible is given by the limit, assumed to exist,

lim
N→∞

#{f ∈ B(N) | f irreducible}
#{f ∈ B(N)} and its value is expected to be

3

4
. (3)

Let us recall the generic factorization of the polynomials f ∈ B which gener-
alizes that of the trinomials −1 + x+ xn by S e l m e r [42].

������� 2.1 (D u t y k h, V e r g e r- G a u g r y [10])� For any f ∈ Bn, n ≥ 3,
denote by

f(x) = A(x)B(x)C(x) = −1 + x+ xn + xm1 + xm2 + · · ·+ xms ,

where s ≥ 1, m1−n ≥ n−1, mj+1−mj ≥ n−1 for 1 ≤ j < s, the factorization
of f where A is the cyclotomic part, B the reciprocal noncyclotomic part, C the
nonreciprocal part. Then (i) the nonreciprocal part C is nontrivial, irreducible,
and never vanishes on the unit circle, (ii) if β > 1 denotes the real algebraic
integer uniquely determined by the sequence (n,m1,m2, . . . ,ms) such that 1/β
is the unique real root of f in (θn−1, θn), the nonreciprocal polynomial −C∗(X)
of C(X) is the minimal polynomial of β, and β is a nonreciprocal algebraic
integer.

From numerous experiments on the class B by Monte-Carlo in D u t y k h and
V e r g e r- G a u g r y [10], the components “B” were never observed. The follow-
ing conjecture is reasonable to formulate. It will be partially proved in Section 4.

Conjecture B. The reciprocal non-cyclotomic part B of any f ∈ Bn, n ≥ 3,
is always trivial.

Let us mention the link with Lehmer’s problem. Lehmer’s number 1.1762 . . . is
the smallest Mahler measure known. By a theorem of S m y t hé [46] the Mahler
measure of a nonzero algebraic integer which is not reciprocal, not a root of unity,
is ≥ 1.3247 . . . , dominant root of X3 − X − 1 and the smallest Pisot number.
Then the Mahler measures of algebraic integers which are in the range (1, 1.3247)
arise from reciprocal algebraic integers which are not roots of unity. This is the
main reason why Conjecture B is important to investigate, about the possible
existence of reciprocal parts in the factors of the polynomials of the class B.
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Our attention is focused on the search for hypothetical reciprocal algebraic
integers β > 1 for which M(β) ∈ (1, 1.176280) and equation (2) is satisfied, that
is when n is large in Conjecture B. Using intermediate alphabets and periodic
representations of Q(β) in the algebraic basis β, it was shown in D u t y k h
and V e r g e r- G a u g r y [11] that the relation between fβ and Pβ is a relation
of identification on the subcollection of lenticular zeroes of fβ . The definition
of a lenticular zero is given in D u t y k h and V e r g e r- G a u g r y [10], where
many examples are proposed.

The lenticular zeroes of fβ are peculiar zeroes, off the unit circle. Let us
briefly recall what is a lenticular zero of fβ . Many examples of lenticular zeroes
are given in D u t y k h and V e r g e r- G a u g r y [10]. The following theorem is
Theorem 4 in [10].

������� 2.2� Assume n ≥ 260. There exist two positive constants cn and cA,n,
cA,n < cn, such that the roots of any f ∈ Bn,

f(x) = −1 + x+ xn + xm1 + xm2 + · · ·+ xms ,
where

s ≥ 1, m1 − n ≥ n− 1, mj+1 −mj ≥ n− 1 for 1 ≤ j < s,
lying in

−π/18 < arg z < +π/18

either belong to{
z ∈ C : ||z| − 1| < cA,n

n

}
, or to

{
z ∈ C : ||z| − 1| ≥ cn

n

}
.

The lenticulus of zeroes ω of f is then defined as

Lβ :=
{
ω ∈ C : f(ω) = 0, |ω| < 1,− π

18
< arg ω < +

π

18
, ||ω| − 1| ≥ cn

n

}
,

where 1/β ∈ Lβ is the positive real zero of f. If a zero of f belongs to Lβ we say
that it is a lenticular zero of f.

More precisely if Ω is a lenticular zero, then

fβ(Ω) = 0 =⇒ Pβ(Ω) = 0.

3. An analog of uniform distribution theorems –
–Proof of Theorem 1.1

Recall (K u i p e r s and N i e d e r r e i t e r [24], S t r a u c h [48]) that we say
a sequence (xn)n≥1 ⊆ [0, 1)s is uniformly distributed on [0, 1)s if for each box
B ⊆ [0, 1)s which is a cartesian product of intervals contained in [0, 1), of volume
|B | we have

lim
N→∞

1

N
#{1 ≤ n ≤ N : xn ∈ B} = |B | .
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Equivalently, for continuous f : [0, 1)s → C we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
[0,1)s

f(t) dt. (4)

In the present context, the left-hand side of equation (1) is the analog
of the left-hand side of equation (4). The right-hand side of equation (1) is de-
duced from Kronecker’s Average Value Theorem. This Theorem was announced
by K r o n e c k e r [23] at the Academy of Sciences, Berlin, in 1880, without proof.
It has been given a proof by R o s e n in [33].

4. Factorization, large gaps and conjecture “B”

The factorization of integer lacunary polynomials has received a lot of atten-
tion, e.g., P r a s o l o v’s book [32], S c h i n z e l [36] [37] [39] [41], or F i l a s e t a
and his collaborators [9] [12] [13] [15]. Finding irreducibilty criteria is an impor-
tant topic, and many problems remain open.

Consider polynomials of the form

gN(x) = xNc
(
x−1

)
+ d(x), (5)

where c and d are fixed polynomials in Z[x] with c(0), d(0) �= 0. We are interested
in the irreductibility of gN for large N . Such polynomials have already appeared
in different contexts, e.g., in D o b r o w o l s k i, F i l a s e t a and V i n c e n t [9],
H a r r i n g t o n, V i n c e n t and W h i t e [21], F i l a s e t a and M a t t h e w s
[15], F i l a s e t a, F o r d and K o n y a g i n [14], S c h i n z e l [36].From S c h i n-
z e l [41] [37] and following S a w i n, S h u s t e r m a n a n d S t o l l [35] we
first recall the general statements of Theorem 4.2 and Corollary 4.3, concerned
by the factorization of gN for N large.

The step after, which is important to understand the factorization of any
f ∈ B containing large gaps, is to recognize such f as a gN , and apply these
general theorems to f. Of course only the f ∈ B having large gaps are concerned
by these statements. It is expected that the polynomials f ∈ B which possess
a small gappiness, though not concerned by these statements, have the same
factorization properties.

What is the main conclusion at large gaps? Corollary 4.3 implies that any
f ∈ B would have an irreducible non-cyclotomic component. But, in view of
Theorem 2.1, since the non-cyclotomic part of f(x) is B(x)C(x) and that C(x)
always exist and is irreducible, it means that the reciprocal non-cyclotomic com-
ponent B(x) is trivial. So to say, Conjecture B is true at large gaps on B.

Proving Conjecture B on all f ∈ B amounts to checking Conjecture B when
the gaps in f do not obey the conditions of Theorem 4.2 and Corollary 4.3, that
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is at small gappiness. Examples of pentanomials with moderate gappiness are
given in Table 1.

Let us now state Theorem 4.2 and Corollary 4.3, and make precise the critical
bounds N1, N2, N3, N4.

For a polynomial u =
∑r

i=0 aix
i ∈ Z[x], we define ‖u‖ as the squared

Euclidean length of its coefficient vector:

‖u‖ :=
r∑

i=0

|ai|2,

and u∗ denotes its reciprocal polynomial, as

u∗(x) = xdeguu(1/x) =

r∑
i=0

ar−ix
i.

We say that u is reciprocal when u∗ = u. It is said to be non-reciprocal if u∗ �= u.

From equation (5) the two integers N1 and N2 can be defined: let T :=
max{deg c, deg d}, and τ be the smallest Salem number known, 1.176280, unique
real positive root > 1 of x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1 (Lehmer’s
polynomial). Denote

N1 := deg c+ deg d+

⎧⎪⎨⎪⎩
2T
log τ log(‖c‖+ ‖d‖) if T ≤ 27,

T
(
log(6T )

)3
log(‖c‖+ ‖d‖), otherwise;

(6)

N2 := deg c+ exp

(
5

16
· 2(‖c‖+‖d‖)2

)(
2 + max

{
2, (deg c)2, (deg d)2

})‖c‖+‖d‖
.

������� 4.1� A pair (c, d) of polynomials c, d ∈ Z[x] with c(0), d(0) �= 0
is Capellian when −d(x)/c(x−1) is a pth power in Q(x) for some prime p or
d(x)/c(x−1) is 4 times a fourth power in Q(x).

The following Theorem 4.2 is Theorem 1.2 in [35], a revisited formulation of a
theorem of S c h i n z e l (Theorem 74 in [41]); the upper bound N2 in item 2)
can be found in S c h i n z e l [37].

������� 4.2 (S c h i n z e l)� Let c, d ∈ Z[x] with c(0), d(0) �= 0. Assume that
c �= ±d, that gcd

Z[x](c
∗, d) = 1 and (c, d) is not Capellian. Then

1) there is a bound N0 depending only on c and d such that for N > N0,
the non-reciprocal part of gN is irreducible,

2) the bound N0 satisfies N0 ≤ N2.
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���	�
 2� Theorem 4.2 is probably the best theorem on the subject in gen-
eral. However, in the case of the class B, a direct application of Ljunggren’s
tricks provides a better solution, which is Theorem 2.1, obtained recently by the
authors in [10].

F i l a s e t a, F o r d and K o n y a g i n [14] have shown that the upper bound
N2 in 2) can be replaced by the better upper bound

N3 := deg c+ 2max
{
54(‖c‖+‖d‖+t)−15, T

(
52(‖c‖+‖d‖+t)−8 + 1/4

)}
,

where T = max{deg c, deg d} and t is the number of terms in c plus the number
of terms in d.

Under some assumptions, S a w i n, S h u s t e r m a n and S t o l l [35] show
that the upper bound N2 in 2) can still be improved by replacing N2 by

N4 := (1 + deg c+ deg d)2‖c‖+‖d‖.

The bound N4 is considerably smaller than N3, and the bound N2 given by
Schinzel is extremely large. For instance, for the pentanomial f(x) = −1 +
x + x5 + x14 + x100, the bounds are: N1 = 292 (cf Corollary 4.3 for its use),
N2 = 1.54 · 104553919, N3 = 6 · 1017 whereas

N4 = 480.

The authors in [35] also suggest an algorithm to improve further the value N4,
by replacing the exponential 2‖c‖+‖d‖ by a polynomial function of ‖c‖ + ‖d‖.
This algorithm is useful in some cases.

The integer N1 defined in equation (6) is introduced in [35] and both N1 and
N2 are used when applying numerically the following statement (which can be
found in [35]).

������	�� 4.3� Under the assumptions of Theorem 4.2, if N > max{N0, N1},
then the non-cyclotomic part of gN is irreducible.

Now let

f(x) = −1 + x+ xn + xm1 + · · ·+ xmj−1 + xmj + · · ·+ xms ∈ B,
with n ≥ 3, s ≥ 1. It is easy to write it under the general form gN as above.

Define m0 = n for coherency. With the distanciation rules we have missing
monomials, those between xn = xm0 and xm1 , between xm1 and xm2 , . . . , and
between xms−1 and xms . Let us fix an integer j ∈ {1, 2, . . . , s} and write f as

f(x) = d(x) + xmjxms−mj c
(
x−1

)
(7)

with
d(x) = −1 + x+ xn + xm1 + · · ·+ xmj−1

and
c(x) = xms−mj + xms−mj+1 + xms−mj+2 + · · ·+ xms−ms−1 + 1.
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The two polynomials c and d are fixed. Let us make the link with equation (5).
We consider the family of polynomials deduced from f by taking arbitrarily sizes
of the “hole” left between the monomials xmj−1 and xmj , as follows. We consider
the subcollection

f̃ (j) =
{
fN (x) := d(x) + xNc

(
x−1

) | N ≥ ms

} ⊂ Bn,

and are interested in the irreducibility of fN for large N . Let us note that
fms

= f . The superscript (j) means that this family is “associated” with f
and its jth “hole”. Let us observe that the integer ‖c‖ + ‖d‖ is the number

of monomials of any fN in f̃ (j). It is an invariant of the family: for any fN

in f̃ (j), the integer N3 is the same, and is equal to

N3 := deg c+ 2max
{
58(‖c‖+‖d‖)−15, T

(
54(‖c‖+‖d‖)−8 + 1/4

)}
.

��	����� We consider infinite families of pentanomials which present a vari-
able gappiness at the last monomial. The polynomial c is taken equal to 1.
When c = 1, then assumptions of Theorem 4.2 are satisfied. The pentanomials
are defined below. When applying Corollary 4.3 to the polynomials

fN ∈ f̃ (j) for j = m2 and N > max{N4, N1},
then Conjecture B is valid for all the fN ∈ f̃ (j). In Table 1 we check the validity
of Conjecture B for the intermediate values of N in the range

m1 + (n− 1) ≤ N ≤ N4.

������� 4.4 (F i n c h, J o n e s)� Let d ∈ B,
d(x) = −1 + x+ xn + xm1 .

Let

e1 = gcd(m1, n− 1), e2 = gcd(n,m1 − 1).

The quadrinomial d(x) is irreducible over Q if and only if

m1 �≡ 0 (mod 2 e1), n �≡ 0 (mod 2 e2).

In Table 1 the Conjecture B is tested on all the pentanomials f(x) = d(x) +
xNc(x−1) with d(x) = −1 + x+ xn + xm1 , c(x−1) = 1, and for N in the range
{m1 + n − 1,m1 + n, . . . , N4}. The quadrinomials d(x) are chosen to be either
irreducible (in which case they are labelled “+”) or reducible (in which case they
are labelled “-”) after Finch-Jones’s Theorem 4.4. The pentanomials f(x) =
1+x+xn+xm1 +xN obtained are either irreducible, or have cyclotomic factors
Φk(x) with k = 3, 6, 9, 10, 12, 18, 24 or 30. No reciprocal non-cyclotomic factor
appears in the factorizations.
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Table 1. Numerical verification of the Conjecture B for all low degree
pentanomials f(x) = −1 + x + xn + xm1 + xN for which m1 + (n− 1) ≤
N ≤ N4. For each experiment number, the polynomials f(x) are either
irreducible or have cyclotomic factors in {Φk} (e.g., for Exp. num. equal
to 1, only Φk=3 and Φk=6 are encountered).

Exp. num. n m 1 Quad. irred. N 4 {Φ k (x )} B−conj.

1 3 5 + 192 {3, 6} �
2 3 6 + 224 {3, 6} �
3 3 7 + 256 {10} �
4 3 8 − 288 {3} �
5 3 9 + 320 {3, 10} �
6 3 10 + 352 {18} �
7 3 11 + 384 {3, 6} �
8 3 12 − 416 {3, 6} �
9 3 13 + 448 ∅ �
10 3 17 + 576 {3, 6, 10} �
11 4 7 − 256 {6, 9} �
12 4 8 − 288 ∅ �
13 4 9 + 320 {9} �
14 4 10 − 352 ∅ �
15 4 11 − 384 {6} �
16 4 12 − 416 ∅ �
17 4 13 + 448 {6, 24} �
18 4 17 + 576 {6} �
19 5 9 + 320 {3, 6, 12} �
20 5 10 + 352 {6} �
21 5 11 + 384 {6} �
22 5 12 + 416 {3, 6, 12} �
23 5 13 + 448 {6} �
24 5 14 + 480 {6} �
25 5 15 + 512 {3, 6} �
26 5 16 − 544 {6, 30} �
27 5 17 + 576 {6} �

���	�
 3� The assumptions of Theorem 4.2 are not strong and are compat-
ible with Conjecture B. Indeed, if f(x) = d(x) + xNc∗(x) belongs to B, then
c �= ±d always, the couple (c, d) is never Capellian. What about the assump-
tion gcdZ[x](c

∗, d) = 1? The polynomial c∗(x) is a Newman polynomial since
all the coefficients are in {0, 1}. By the Odlyzko-Poonen Conjecture (cf [3])
it is irreducible with probability 1. But it has no zero in the interval [0, 1],
which is not the case of the non-reciprocal part of d(x) ∈ B by Theorem 2.1.

42



ALMOST NEWMAN POLYNOMIALS MODULO p AND DENSITY THEOREMS

Therefore, with probability one, c∗ cannot be the non-reciprocal part of d.
Therefore, with probability one, it is an irreducible cyclotomic polynomial, which
is a cyclotomic factor of d. At worst, gcdZ[x](c

∗, d) would be a cyclotomic factor
of f with probability one.

Applying Corollary 4.3, the numerical investigation reported in Table 2 allows
to complement completely the study of Conjecture B at large gaps by the one
at intermediate lacunarity, and gives a proof to the following result.

��������� 4.5� The family of pentanomials f(x) = −1+ x+ x5 + x14 + xN,
N ≥ 18, of B5, admits the bounds N1 = 292, N4 = 480. All the polynomials
of this family satisfy Conjecture B.

���	�
 4� The other infinite families of pentanomials whose first quadrinomial
is given in the list of Table 1 present different values of N1 and N4, and may be
studied in the same way, with respect to Conjecture B

In the continuation of search for the conditions of existence of very small
Mahler measures M(β) > 1 of reciprocal algebraic integers β > 1, close to 1,
it should be noticed that the gaps of the Parry Upper functions

fβ(x) := −1 + x+ xn + xm1 + xm2 + · · ·+ xms + · · · ,
where m1 − n ≥ n − 1, mq+1 − mq ≥ n − 1 for q ≥ 1, are never large by the
following asymptotic upper bound (V e r g e r- G a u g r y [50]):

lim sup
j→∞

mj+1

mj
≤ logM(β)

log β
.

Consequently the polynomial sections of fβ(z) have asymptotically a moder-
ate gappiness, which is the intermediate domain of study for the non-existence
of reciprocal non-cyclotomic factors. If the domain of very large gaps is covered
by Corollary 4.3, the existence of non-zero reciprocal algebraic integers β > 1
would lead to the difficult domain of intermediate gappinesses.

5. On the lower bound in Serre’s density theorem

In this paragraph we show on examples that the lower bound given by Serre
in Theorem 1.2 1) of the density of the set P0 is far from being sharp for the
polynomials of the class B.

We consider the set of the polynomial sections arising from ζτ (z) with
τ = 1.176280 Lehmer’s number.
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Let fτ (x) = −1 + x + x12 + x31 + x44 + x63 + x86 + x105 + x118 + · · · =
−1/ζτ (x) be the Parry Upper function at Lehmer’s number τ = 1.176280 . . .
All the polynomial sections belong to the subclass B12.

Denote:

S0 = −1 + x+ x12, irreducible,

S1 = −1 + x+ x12 + x31, reducible,

= (x2 + 1)(x4 − x2 + 1)C1(x),

S2 = −1 + x+ x12 + x31 + x44, irreducible,

S3 = −1 + x+ x12 + x31 + x44 + x63, irreducible,

S4 = −1 + x+ x12 + x31 + x44 + x63 + x86, irreducible,

S5 = −1 + x+ x12 + x31 + x44 + x63 + x86 + x105, reducible,

= Φ3(x)Φ4(x)Φ12(x)C5(x),

S6 = −1 + x+ x12 + x31 + x44 + x63 + x86 + x105 + x118, irreducible.

The numbers of solutions of the non-reciprocal parts of Sj , Cj(x)≡0 mod p
with p ≤ 43, are given in Table 2, for 0 ≤ j ≤ 6. In this table, on each line,
the frequencies of zeroes are substantially higher than the ones deduced from the
general bounds 1/ deg(Cj) of Theorem 1.2, 1).

Table 2. Values of the quantities Np(Sj) for all primes p in the range
{2, 3, . . . , 43}, where Sj is the jth polynomial section of the Parry Upper
function fτ (x) = −1/ζτ (x), and τ Lehmer’s number, if Sj is irreducible.
When Sj is not irreducible the quantity Np(Sj) represented is replaced
by Np(Cj) where Cj is the non-reciprocal part of Sj . The contributions
of the cyclotomic parts modulo p, removed from the lines j = 1 and j = 5

are indicated underneath (calculated with PARI/GP).

j 2 3 5 7 11 13 17 19 23 27 31 37 41 43

0 0 0 0 0 2 0 2 1 1 1 0 1 0 1
1 0 0 0 0 0 0 1 1 1 1 0 1 2 1
2 0 1 0 1 0 0 1 1 0 0 2 2 2 0
3 1 0 0 1 0 0 1 1 1 1 1 0 1 1
4 0 0 1 0 0 1 2 2 0 1 0 3 0 1
5 0 0 0 0 0 1 1 0 0 2 1 0 0 0
6 0 0 0 1 0 1 1 1 1 0 1 0 3 1

Np(X
2 +X + 1) 0 1 0 2 0 2 0 2 0 0 2 2 0 2

Np(X
2 + 1) 1 0 2 0 0 2 2 0 0 2 0 2 2 0

Np(X
4 −X2 + 1) 0 0 0 0 0 4 0 0 0 0 0 4 0 0
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6. Counting solutions mod p and letting p tend to infinity

For understanding the quantities Np(f), f ∈ B, and possibly relate them
to the coefficients of some power series, by the global correspondence Langlands
program, we follow the general strategy of S e r r e in [43] [44] [45]. The starting
point is the study of the roots of the trinomials −1+ x+ xn mod p, then of the
quadrinomials of B mod p, whose first three terms are −1 + x + xn, etc, then
ideally all the elements of the class B.

On one side the numbers Np(f), f ∈ B, are correlated to the factori-
zation of the polynomials f via K r o n e c k e r’s Average Value Theorem 1.1.
On the other side the numbers Np(f) are related to questions of modularity and
geometry.

6.1. Trinomials −1 + z + zn mod p and Newforms

The case n = 2: f(x) =−1 + x + x2. The discriminant of f is 5. The poly-
nomial f has a double root mod 5; then N5(f) = 1. If p �= 2, 5, the roots of f

in Fp are (1±√
5)/2. If 5 is a square mod p then there are two roots, Np(f) = 2.

If not Np(f) = 0.

For p and q two distinct odd prime numbers, define the Legendre symbol as(
q

p

)
=

{
+1 if r2 ≡ q mod p for some integer r,

−1, otherwise.

The law of quadratic reciprocity says(
q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 .

Then 5 is a square mod p if and only if p ≡ ±1 mod 5. Therefore

Np(−1 + x+ x2) =

{
0 if p ≡ ±2 mod 5,

2 if p ≡ ±1 mod 5.

We deduce the distribution of values of Np(−1 + x + x2) in the first column
of Table 3. This distribution seems fairly regular. The probability limit for each
value 0 and 2 is 1/2, but there is a Chebyshev bias (R u b i n s t e i n and
S a r n a k [34]), mentioned in S e r r e [43], which slightly shifts the probabil-
ity distribution to 0 preferentially. It is observed in Table 4. This bias occurs
for polynomials f ∈ B and will be studied elsewhere.

Using the change of variable x to −x, the results of S e r r e [43] section 5.2,
can be directly applied to the trinomials −1 + x+ x2, as follows.

Let us consider the q-series F =
∑∞

m=0 amqm, defined by

F =
q − q2 − q3 + q4

1− q5
= q − q2 − q3 + q4 + q6 − q7 − q8 + q9 + · · ·
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Then
Np(−1 + x+ x2) = ap + 1 for all prime numbers p.

Note that the coefficients (am) of F have the property to be strongly multiplica-
tive, in the sense:

arq = araq for all integers r, q ≥ 1.

The corresponding Dirichlet series (LMFDB [25]) is the L-series
∞∑

m=1

am
ms

=
∏
p

(
1−

(p
5

)
p−s
)−1

.

The case n = 3: the discriminant of f(x) = −1+x+x3 is -31. Modulo 31, the
polynomial f has a double root and a simple root. Hence N31(f) = 2. For p �= 31,
one has

Np(f) =

{
0 or 3 if

(
p
31

)
= +1,

1 if
(

p
31

)
= −1.

(8)

This explains the values reported in the corresponding column in Table 3.

The case n = 4: using the change of variable x to −x, the case of the trinomial
−1+ x+ x4 may be deduced from the case of −1− x− x4. In Section 5.4 of [43]
S e r r e gives the values Np(−1− x+ x4) from coefficients of Newforms. Let us
summarize the expressions he obtains, for the trinomials −1 + x+ x4.

The discriminant of f(x) = −1 + x + x4 is −283. Modulo 283, f has one
double root and two simple roots. Then N283(f) = 3. If p �= 283, one has

Np(f) =

⎧⎪⎨⎪⎩
0 or 4 if p can be written as x2 + xy + 71y2,

1 if p can be written as 7x2 + 5xy + 11y2,

0 or 2 if
(

p
283

)
= −1.

A complete determination of Np(f) can be obtained via a Newform F =∑∞
m=0 amqm of weight 1 and level 283 (LMFDB [25]) whose first hundred terms

are given in C r e s p o [8]:

F = q + i
√
2q2 − i

√
2q3 − q4 − i

√
2q5 + 2q6 − q7 − q9 + 2q10 + q11i

√
2q12

+ q13 − i
√
2q14 − 2q15 − q16 − i

√
2q18 + i

√
2q19 + i

√
2q20 + i

√
2q21

+ i
√
2q22 − q23 − q25 + i

√
2q26 + q28 − q29 − 2i

√
2q30 + i

√
2q31

− i
√
2q32 − i

√
2q33 + i

√
2q35 + q36 − 2q38 − i

√
2q39 + q41 − 2q42 + · · ·

Then one has

Np(f) = 1 + (ap)
2 −

( p

283

)
for all primes p �= 283.

This explains the values reported in the corresponding column in Table 3.
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Table 3. Values of the numbers Np(−1 + x + xn) for all primes p in the
range {2, 3, . . . , 101} and n in the range {2, 3, . . . , 15} (calculated with

PARI/GP).

p n = 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 1 0 1 0 1 0 1 0 1 0 1
5 1 0 0 1 1 0 0 1 1 0 0 1 1 0
7 0 0 1 2 0 1 0 0 1 2 0 1 0 0
11 2 1 1 1 0 1 1 0 0 1 2 1 1 1
13 0 1 1 2 1 0 0 0 0 2 0 1 0 1
17 0 1 2 1 1 0 0 1 0 1 2 1 1 0
19 2 0 0 3 1 0 1 1 0 3 1 0 1 1
23 0 1 1 0 0 2 2 2 0 0 1 0 1 1
29 2 1 1 1 2 0 0 2 0 1 1 0 1 0
31 2 2 0 0 1 1 1 1 1 3 0 1 1 0
37 0 1 2 0 1 0 0 0 0 2 1 0 1 1
41 2 0 1 1 0 0 0 0 1 0 0 0 0 1
43 0 1 0 1 1 2 0 1 0 2 1 0 0 1
47 0 3 0 0 2 2 1 0 2 2 0 2 0 2
53 0 1 2 0 1 0 0 1 0 2 0 0 0 0
59 2 0 1 1 1 2 1 0 2 1 0 0 2 1
61 2 1 1 1 1 1 1 1 0 2 0 1 0 1
67 0 3 2 0 1 0 0 0 0 3 0 1 1 1
71 2 0 0 0 0 0 1 1 1 1 0 1 2 1
73 0 1 0 1 0 0 0 0 2 3 0 0 1 0
79 2 1 2 0 2 1 1 0 2 2 1 1 0 0
83 0 1 4 0 3 3 2 1 0 1 0 0 2 1
89 2 1 1 1 0 0 0 1 0 1 1 1 2 0
97 0 0 1 0 1 1 2 0 0 3 1 1 1 0
101 2 0 0 1 0 0 0 0 0 1 1 1 0 0

Table 4. Chebyshev bias for −1 + x + x2 mod p.

x = 101 1001 10001

#{p ≤ x | Np(−1 + x+ x2) = 0} 14 89 619

#{p ≤ x | Np(−1 + x+ x2) = 2} 11 78 609

#{p ≤ x} 26 168 1229
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The case n = 7: the Galois group G of the trinomial −1 + x + x7 is S7

(C o h e n, M o v a h h e d i, S a l i n i e r [7]). Applying Theorem 1.2, 2) gives
1.984 ·10−4 = (#G)−1 for the density of primes p such that Np(−1+x+x7) = 7.
Indeed, the only two prime numbers ≤ 105 realizing the maximality identity
Np(−1+x+x7) = 7 are: p = 41143 and p = 82883. By Theorem 1.2, 1) the den-
sity of prime numbers p such that Np(1 + x + x7) = 0 exists and is above 1/7.
This is compatible with the corresponding column in Table 3.

The general case n: following S e r r e [43] there should exist formulas for the
numbers Np(f) coming from the coefficients of q-series, newforms, etc.

6.2. Densities and lacunarity

Let n ≥ 3 and f(x) = (−1+x+xn)+xm1 +xm2 + · · ·+xms ∈ B. To align the
statements on the presentation of S e r r e [44] [45], let us adopt the geometric
language of schemes. The system of algebraic equations defining the variety is
reduced to one equation. Denote by A = Z[x]/(f) the finitely generated ring
over Z. Let X = Spec(A). The solutions mod p of f(x) ≡ 0 correspond to the
elements x ∈ X(Fp) in the fiber. We denote Np(f) by NX(p). The polynomial
f is fixed and p varies.

������� 6.1� For any integer q ≥ 1, any γ ∈ Z/qZ, the set

Pγ := {p | NX(p) ≡ γ mod q}
has a density. This density is a rational number.

P r o o f. S e r r e [44] [45]. �

For q = 2 the question of the density of Pγ amounts to understand when

NX(p) is even, and when NX(p) is odd. In general the set Pγ is empty, is a finite
set or has a density which is > 0. A case when the density is > 0 is of topological
origin and comes from the topology of the complex space X(C), resp. of the real
space X(R). Denote by χ

(
X(C)

)
, resp χc

(
X(R)

)
, in Z, the Euler characteristic

of X(C), resp. the Euler characteristic with compact support of X(R).

������� 6.2� For any integer q ≥ 1,

(i) δ
(
Pγ

)
> 0 for γ = χ

(
X (C)

)
,

(ii) δ
(
Pγ

)
> 0 for γ = χc

(
X(R)

)
.

P r o o f. S e r r e [44] [45]. �

48



ALMOST NEWMAN POLYNOMIALS MODULO p AND DENSITY THEOREMS

The decomposition of f as the sum of the trinomial part

−1 + x+ xn

and the perturbation term

xm1 + xm2 + · · ·+ xms

for m1 − n ≥ n − 1, mj+1 − mj ≥ n − 1, for 1 ≤ j ≤ s − 1 suggests to define
Y = Spec

(
Z[X]/(−1 + x + xn)

)
and to study NY (p) for p tending to infinity.

A first question is about the comparison between NX(p) and NY (p), and when
p tends to infinity.

Question 1: For any integer q ≥ 1, any γ ∈ Z/qZ has

Pγ := {p | NX(p)−NY (p) ≡ γ mod q}
a density?

Question 2: What is the role of n in the sets

{p | NX(p)−NY (p) ≡ γ mod q},
in particular when n becomes very large?

7. Appendix: The expression of the dynamical zeta
function ζβ(z) of the β-shift when β > 1 is close to 1

The importance of the class of polynomials B comes from the formulation
of the dynamical zeta function ζβ(z) of the β-shift when β > 1 is close to 1.
Let us recall the main steps, leaving the details for the reader.

The notion of dynamical zeta function was introduced by M. A r t i n and
B. M a z u r [1] in 1965. Let h : V �→ V be a diffeomorphism of a compact
manifold V , such that its iterates hk all have isolated fixed points. Then they
defined

ζβ(z) := exp

( ∞∑
n=1

#{x ∈ V | hn(x) = x}
n

zn

)
, (9)

and showed that for a dense set of diffeomorphisms h of V the power series
of such an expression converged in a neighbourhood of z = 0. The dynamical
zeta function of a dynamical system, when defined, is an analytic function which
concentrates a lot of information on the dynamical system, and therefore is a
powerful tool (P o l l i c o t t [31]).
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From Theorem 2 in B a l a d i and K e l l e r [2], concerning the Rényi-Parry
dynamical numeration system (V = [0, 1], h = Tβ), where β > 1 and Tβ : x → βx
mod 1 is the β-transformation (I t ô and T a k a h a s h i [22], L a g a r i a s [26]),
we deduce

������� 7.1� Let β ∈ (1, θ−1
2 ). Then, the Artin-Mazur dynamical zeta function

ζβ(z) := exp

( ∞∑
n=1

#{x ∈ [0, 1] | Tn
β (x) = x}

n
zn

)
, (10)

counting the number of periodic points of period dividing n, is nonzero and
meromorphic in {z ∈ C : |z| < 1}, and such that 1/ζβ(z) is holomorphic
in {z ∈ C : |z| < 1},

Let β > 1 be a real number. Denote Aβ := {0, 1, 2, . . . , �β−1�}, where �β−1�
denotes the upper integer part of β−1. If β is not an integer, then �β−1� = �β�
which is the usual integer part of β. Using ergodic theory, T a k a h a s h i [49]
and I t ô and T a k a h a s h i [22] obtained the reformulation of equation (10) as
follows.

������� 7.2� Let β > 1 be a real number. Then

ζβ(z) =
1− zN

(1− βz)
(∑∞

n=0 T
n
β (1) z

n
) , (11)

where N, which depends upon β, is the minimal positive integer such that:
TN
β (1) = 0; in the case where T j

β(1) �= 0 for all j ≥ 1, “zN” has to be replaced
by “ 0”. Up to the sign, the expansion of the power series of the denominator
in the equation (11) is the Parry Upper function fβ(z) at β. It satisfies

(i) fβ(z) = −1−zN

ζβ(z)
in the first case, (12)

(ii) fβ(z) = − 1

ζβ(z)
in the second case, (13)

and, denoting by t1, t2, . . . ∈ Aβ the coefficients in

−1 + t1z + t2z
2 + t3z

3 + · · · = fβ(z) = −(1− βz)

( ∞∑
n=0

Tn
β (1) z

n

)
, (14)

fβ(z) is such that 0.t1t2t3 . . . is the Rényi β-expansion of unity dβ(1). The Parry
Upper function fβ(z) has no zero in {z ∈ C : |z| ≤ 1/β} except z = 1/β which
is a simple zero.
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The total ordering < on (1,+∞) is uniquely in correspondence with the lexi-
cographical ordering <lex on Rényi expansions of 1 by the following Proposition,
which is Lemma 3 in P a r r y [30].

��������� 7.3� Let α > 1 and β > 1. If the Rényi α-expansion of 1 is

dα(1) = 0.t′1t
′
2t

′
3 . . . , i.e., 1 =

t′1
α

+
t′2
α2

+
t′3
α3

+ · · ·
and the Rényi β-expansion of 1 is

dβ(1) = 0.t1t2t3 . . . , i.e., 1 =
t1
β

+
t2
β2

+
t3
β3

+ · · · ,

then α < β if and only if (t′1, t
′
2, t

′
3, . . .) <lex (t1, t2, t3, . . .).

������� 7.4� Let n ≥ 2. A real number β ∈ (1, 1+
√
5

2 ] belongs to [θ−1
n+1, θ

−1
n )

if and only if the Rényi β-expansion of unity dβ(1) is of the form

dβ(1) = 0.10n−110n110n210n3 . . . , (15)

with nk ≥ n− 1 for all k ≥ 1.

P r o o f. Since
dθ−1

n+1
(1) = 0.10n−11 and dθ−1

n
(1) = 0.10n−21,

Proposition 7.3 implies that the condition is sufficient. It is also necessary: dβ(1)

begins as 0.10n−11 for all β such that θ−1
n+1 ≤ β < θ−1

n . For such βs we write

dβ(1) = 0.10n−11u with digits in the alphabet Aβ = {0, 1} common to all βs,
that is

u = 1h00n11h10n21h2 . . .

and h0, n1, h1, n2, h2, . . . integers ≥ 0. The Conditions of Parry (L o t h a i r e [28]
Chap. 7) applied to the sequence (1, 0n−1, 11+h0 , 0n1 , 1h1 , 0n2 , 1h3 , . . .), which
characterizes uniquely the base of numeration β, readily implies h0 = 0 and
hk = 1 and nk ≥ n− 1 for all k ≥ 1. �

The polynomials of the class B are all the polynomial sections of the power
series fβ(z) for β in the interval

(
1, (1+

√
5)/2

)
. Indeed, from equation (15) and

equation (14), the power series in equation (14) takes the form

−1 + x+ xn + xm1 + xm2 + · · ·+ xms + · · ·
with the distanciation conditions:

m1 − n ≥ n− 1, mq+1 −mq ≥ n− 1 for 1 ≤ q.
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