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Classical model predictive control (MPC) algorithms need very long horizons when the controlled process has complex
dynamics. In particular, the control horizon, which determines the number of decision variables optimised on-line at each
sampling instant, is crucial since it significantly affects computational complexity. This work discusses a nonlinear MPC
algorithm with on-line trajectory linearisation, which makes it possible to formulate a quadratic optimisation problem, as
well as parameterisation using Laguerre functions, which reduces the number of decision variables. Simulation results of
classical (not parameterised) MPC algorithms and some strategies with parameterisation are thoroughly compared. It is
shown that for a benchmark system the MPC algorithm with on-line linearisation and parameterisation gives very good
quality of control, comparable with that possible in classical MPC with long horizons and nonlinear optimisation.
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1. Introduction

Various control approaches have been developed for
nonlinear processes, e.g., fuzzy (Harrabi et al., 2018),
neural (Li et al., 2019), model predictive control (MPC)
(Maciejowski, 2002; Tatjewski, 2007), robust (Pazera
et al., 2018), adaptive (Witkowska and Śmierzchalski,
2018) and hybrid (Falconı́ et al., 2018). In particular,
MPC algorithms are characterised by very good quality
of control, particularly for multivariable processes. This is
because MPC algorithms calculate repeatedly on-line the
best possible sequence of manipulated variable(s) taking
into account future predictions found from a dynamical
model of the controlled process, and solve an optimisation
problem whose objective is to minimise the predicted
control errors. Typically, MPC algorithms have been used
in industrial applications (e.g., Karimi Pour et al., 2018),
frequently in supervisory control and multilayer control
system structures with set-point optimisation (Tatjewski,
2007). Currently, thanks to availability of cheap but
powerful and fast microcontrollers, MPC algorithms are
used in embedded systems (Chaber and Ławryńczuk,
2019; Takács et al., 2016). In contrast to industrial

applications, embedded systems are characterised by very
short sampling times, of the order of milliseconds.

Computational complexity has always been an issue
in MPC. The time necessary to calculate the values of the
manipulated variable(s) must not exceed that determined
by the sampling time. In practical solutions the control
horizon is typically shorter than the prediction one,
but such an approach may be only used for processes
with relatively simple dynamics for which shortening
the control horizon does not lead to deterioration of
control quality. In predictive functional control (PFC),
which uses linear models for prediction (Richalet and
O’Donovan, 2009), the sequence of future manipulated
variable(s) is parameterised using a set of basis functions.
The optimisation routine does not directly calculate the
future manipulated variable(s), but the coefficients of
the basis functions. A different idea is utilised in the
explicit linear quadratic regulator for linear constrained
systems (Bemporad et al., 2002). In this approach the
quadratic optimisation problem is not solved on-line,
but a number of simple explicit local controllers are
activated/deactivated depending on the operating point of
the process. For nonlinear MPC algorithms fast nonlinear
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optimisation methods are possible (e.g., Wang and Boyd,
2010). Alternatively, computationally efficient nonlinear
MPC algorithms with on-line linearisation may be used
(Ławrynczuk, 2014). Successive model or trajectory
linearisation leads to simple quadratic optimisation
tasks—nonlinear optimisation is not necessary.

Laguerre, Kautz and other orthonormal functions
may be successfully used for modelling dynamical
systems in linear (Oliveira et al., 2011) and nonlinear
(Oliveira et al., 2012) cases, respectively. Furthermore,
application of orthonormal Laguerre functions to
parameterise the calculated future sequence of the
manipulatedation of variable(s) was used in MPC
algorithms based on linear models: in continuous-time
(Wang, 2001) and discrete-time (Wang, 2004) versions.
A systematic tuning methodology to find parameters of
Laguerre functions in parameterised MPC is discussed by
Gutiérrez-Urquı́dez et al. (2015) or Khan and Rossiter
(2013). MPC algorithms with parameterisation using
Laguerre functions have been developed for different
technological processes. Example applications include
buildings (Bosschaerts et al., 2017), wave energy
converters (Jama et al., 2018), magnetically actuated
satellites (Kim et al., 2018), wind turbines (Lasheen
et al., 2017), hexacopters (Ligthart et al., 2017) and
power systems (Zheng et al., 2017).

This work shortly presents a nonlinear MPC
algorithm for processes with complex dynamics which
combines two concepts: on-line trajectory linearisation
and parameterisation using Laguerre functions. Firstly,
trajectory linearisation makes it possible to control
nonlinear processes using easy-to-solve quadratic
optimisation tasks. Secondly, since in the case of
complicated dynamics reduction of the control horizon
leads to low control quality, parameterisation of the
calculated control policy makes it possible to reduce the
number of actually optimised on-line decision variables
but keeps the control horizon as long as necessary. In
simulations, different configurations of classical, i.e., not
parameterised, MPC algorithms and some strategies with
parameterisation are thoroughly compared. The influence
of parameters of Laguerre filters is investigated.

2. MPC problem formulation

Let the manipulated variable, i.e., the input of the process,
be denoted by u and the controlled variable, i.e., the output
of the process, be denoted by y.

In classical MPC algorithms as many as Nu (which
is called the control horizon) future increments of
the manipulated variable are calculated on-line at each

sampling instant k = 0, 1, . . . ,

�u(k) =

⎡
⎢⎣

�u(k|k)
...

�u(k +Nu − 1|k)

⎤
⎥⎦ , (1)

where �u(k + p|k) denotes a backward difference of the
manipulated variable for the future sampling instant k+ p
calculated at the current instant k. The decision variables
of MPC are calculated from the following rudimentary
MPC constrained optimisation problem:

min
�u(k)

{
J(k) =

N∑
p=1

(ysp(k + p|k)− ŷ(k + p|k))2

+ λ

Nu−1∑
p=0

(�u(k + p|k))2
}
,

subject to (2)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1,

−�umax ≤ �u(k + p|k) ≤ �umax,

p = 0, . . . , Nu − 1,

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N.

The first part of the minimised cost function J(k)
takes into account the sum of predicted control errors
measured over the prediction horizon N , while the second
one is a penalty term; ysp(k+ p|k) and ŷ(k+ p|k) denote
the set-points and the predicted values for the future
sampling instant k + p known at the instant k, λ > 0
is a weighting coefficient, umin, umax and �umax denote
minimal and maximal values as well as the maximal
change in the manipulated variable, respectively, ymin and
ymax denote minimal and maximal values of the predicted
controlled variable, respectively. Having calculated the
optimal vector �uopt(k), its first element is applied to
the process, i.e., u(k) = �uopt(k|k) + u(k − 1).

3. Parameterisation using Laguerre
functions

Let l1(k),. . . ,lnL(k) denote nL Laguerre functions. The
transfer function of the Laguerre function of order n is
(Wahlberg, 1991)

Gn(z) =

√
1− a2

z − a

(
1− az

z − a

)n−1

, (3)

where a is a scaling factor, often named a Laguerre
pole. For stability, the condition 0 ≤ a < 1 must be
satisfied. The Laguerre functions are defined as inverse
Z-transforms of the transfer function G(z), i.e.,

ln(k) = Z−1(Gn(z)). (4)
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Taking into account the structure of the obtained
Laguerre functions, it can be found that (Wang, 2004)

L(k + 1) = ΩL(k), (5)

where a vector of length nL is

L(k) = [l1(k) . . . lnL(k)]
T , (6)

and an nL × nL matrix is

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a 0 0 . . . 0
β a 0 . . . 0

−aβ β a . . . 0
a2β −aβ β . . . 0

...
...

...
...

(−a)nL−2β (−a)nL−3β . . . β a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
;

(7)
β = 1− a2 and the initial condition is

L(0) =
√
1− a2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
−a
a2

−a3

...
(−a)nL−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

The future control increments are parameterised
using the Laguerre functions (Wang, 2004) in the
following way:

�u(k + p|k) =
nL∑
n=1

ln(p)cn(k). (9)

Using the vector notation, one has

�u(k + p|k) = LT(p)c(k), (10)

where a vector of coefficients is

c(k) = [c1(k) . . . cnL(k)]
T
. (11)

For the whole vector of future increments over the control
horizon one has

�u(k) = Lc(k), (12)

where an Nu × nL matrix is

L =

⎡
⎢⎢⎢⎣

l1(0) l2(0) . . . lnL(0)
l1(1) l2(1) . . . lnL(1)

...
...

. . .
...

l1(Nu − 1) l2(Nu − 1) . . . lnL(Nu − 1)

⎤
⎥⎥⎥⎦ .

(13)
In parameterised MPC the vector of decision variables is
c(k), not �u(k). Since nL < Nu, the number of decision
variables used in the MPC optimisation problem solved
on-line is reduced.

4. Nonlinear MPC with on-line trajectory
linearisation and parameterisation using
Laguerre functions

If a model used for prediction is linear, e.g., a
step response, a discrete-time difference equation, a
state-space model, future predictions of the controlled
variable, i.e., ŷ(k + 1|k), . . . , ŷ(k + N |k), are linear
functions of the decision variables (1). Consequently,
the rudimentary MPC optimisation problem (2) is of a
quadratic optimisation type. On the other hand, for a
nonlinear model the predictions are nonlinear and the
resulting MPC optimisation task is nonlinear.

In order to reduce the computational effort, a number
of computationally efficient nonlinear MPC algorithms
with on-line linearisation have been formulated
(Ławrynczuk, 2014). In the simplest case a linear
approximation of the nonlinear model is successively
calculated on-line for the current operating point of
the process and used for prediction. In more advanced
solutions a linear approximation of the predicted
trajectory of the controlled variable (over the prediction
horizon) is directly calculated. In all cases quite simple to
solve quadratic optimisation MPC problems are obtained.
However, such classical MPC algorithms with on-line
linearisation are characterised by as many as Nu decision
variables (1), which still may be a problem.

In this work only MPC with nonlinear prediction
and linearisation around the trajectory (MPC-NPLT) is
considered (Ławrynczuk, 2014). The predicted vector of
the controlled variable is defined as

ŷ(k) =

⎡
⎢⎣

ŷ(k + 1|k)
...

ŷ(k +N |k)

⎤
⎥⎦ . (14)

Its linear approximation along some assumed future
trajectory of the manipulated variable,

utraj(k) =

⎡
⎢⎣

utraj(k|k)
...

utraj(k +Nu − 1|k)

⎤
⎥⎦ , (15)

is found using the Taylor series expansion. Provided
that the process model is differentiable, as proved by
Ławryńczuk (2014), the linearised trajectory is

ŷ(k) = H(k)J�u(k) (16)

+ ŷtraj(k) +H(k)(u(k − 1)− utraj(k)).

The N × Nu matrix of derivatives of the predicted
trajectory of the controlled variable with respect to the
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trajectory of the manipulated one has the structure

H(k) =
∂ŷ(k)

∂u(k)

∣∣∣∣∣∣ ŷ(k)=ŷtraj(k)

u(k)=utraj(k)

(17)

=

⎡
⎢⎢⎢⎢⎢⎣

∂ŷtraj(k + 1|k)
∂utraj(k|k) · · · ∂ŷtraj(k + 1|k)

∂utraj(k +Nu − 1|k)
...

. . .
...

∂ŷtraj(k +N |k)
∂utraj(k|k) · · · ∂ŷtraj(k +N |k)

∂utraj(k +Nu − 1|k)

⎤
⎥⎥⎥⎥⎥⎦
.

The Nu × Nu matrix J has zero upper-diagonal
entries; the others are equal to 1. For the assumed
trajectory utraj(k) of the manipulated variable, the
resulting nonlinear trajectory

ŷtraj(k) =

⎡
⎢⎣

ŷtraj(k + 1|k)
...

ŷtraj(k +N |k)

⎤
⎥⎦ , (18)

of the controlled variable is calculated successively using
the nonlinear model. The vector u(k − 1) = u(k −
1)INu,1, where INu,1 is an all-ones vector of length Nu.

In the classical nonlinear MPC algorithms with
on-line linearisation the linear approximation (16) of the
predicted trajectory is a function of as many as Nu

independent future increments �u(k). In order to obtain
a computationally efficient MPC algorithm with a reduced
number of decision variables, the parameterisation defined
by Eqn. (12) is used. Hence, the linearised trajectory of the
controlled variable becomes

ŷ(k) = H(k)JLc(k) (19)

+ ŷtraj(k) +H(k)(u(k − 1)− utraj(k)).

After some simple transformations, from the basic
MPC optimisation task (2) and Eqn. (12) one obtains
the following quadratic optimisation problem solved at
each sampling instant of the MPC-NPLT algorithm with
parameterisation (MPC-NPLTp):

min
c(k)

{
J(k) =

∥∥ysp(k)−H(k)JLc(k)− ŷtraj(k)

−H(k)(u(k − 1)− utraj(k))
∥∥2

+ ‖Lc(k)‖2Λ
}
,

subject to (20)

umin ≤ JLc(k) + u(k − 1) ≤ umax,

−�umax ≤ Lc(k) ≤ �umax,

ymin ≤ H(k)JLc(k) + ŷtraj(k)

+H(k)(u(k − 1)− utraj(k)) ≤ ymax.

The matrixΛ = diag(λ, . . . , λ) is of dimensionalityNu×
Nu,

umin = uminINu,1, ymin = yminIN,1, (21)

umax = umaxINu,1, ymax = ymaxIN,1, (22)

�umax = umaxINu,1. (23)

In the MPC-NPLTp optimisation problem (20) hard
constraints imposed on the predicted controlled variable
are considered for simplicity of presentation. In real
applications, in order to guarantee feasibility, soft
constraints must be implemented (Maciejowski, 2002;
Tatjewski, 2007).

Having calculated the optimal vector copt(k) from
the optimisation problem (20), the current optimal value
of the manipulated variable is calculated from

u(k) =
[
l1(0) l2(0) . . . lnL(0)

]
copt(k) (24)

+ u(k − 1)

and applied to the process.
The MPC-NPLT and MPC-NPLTp algorithms solve

one quadratic optimisation problem at each sampling
instant. The fundamental difference is the fact that in the
first case as many as Nu decision variables are necessary
while in the second case only nL < Nu.

The MPC-NPLTp algorithm can be used for different
types of input-output models. Minor modifications
are necessary when state-space models must be used
(Ławrynczuk, 2014).

5. Simulation results

In order to demonstrate advantages of parameterisation
using Laguerre functions in computationally efficient
nonlinear MPC, control of a Wiener system is considered
since such systems have great practical significance
(Greblicki, 2010; Janczak and Korbicz, 2019; Mzyk,
2014). Its dynamical part is described by the following
discrete-time linear equation (van Donkelaar et al., 1999):

v(k) = b1u(k − 1) + b2u(k − 2) + b3u(k − 3)

+ b4u(k − 4)− a1v(k − 1)− a2v(k − 2)

− a3v(k − 3)− a4v(k − 4). (25)

The parameters are a1 = −3.0228, a2 = 3.8630, a3 =
−2.6426, a4 = 0.8084, b1 = −1.4316, b2 = 4.8180,
b3 = −5.3445, b4 = 1.9641. The dynamical part of the
process is followed by a steady-state block

y(k) = − exp (−v(k)) + 1. (26)

The steady-state characteristic y(u) of the whole Wiener
process is depicted in Fig. 1.

The process considered has very complex dynamics.
Figure 2 shows the step-response of its linear part (25). It
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Fig. 1. Steady-state characteristic of the Wiener system.

suggests that very long horizons should be used in MPC.
In the work of Wang (2004), where only control of the
linear process (25) (with a changed steady-state gain) is
considered, the horizons are N = Nu = 100. The default
value of the parameter λ = 0.25.

The following MPC algorithms without
parameterisation are compared:

1. The classical linear generalized predictive control
(GPC) algorithm (Clarke et al., 1987). For
prediction, the linear part of the process (25) is
used. The gain of the nonlinear steady-state block
(26) is 1 for the operating point u = y = v = 0.

2. The MPC algorithm with nonlinear prediction and
simplified linearisation (MPC-NPSL) (Ławryńczuk,
2014). Simplified model linearisation is carried out
in the following way: for the current operating point
of the process, the current gain of the nonlinear block
(26) is calculated. Next, the linear dynamical block
(25) is multiplied by such a time-varying gain. The
obtained linearised model is used for prediction of
the influence of the future (calculated) control policy.
The full nonlinear model is used to find the influence
of the past.

3. The MPC algorithm with nonlinear prediction
and linearisation around the predicted trajectory
(MPC-NPLPT) (Ławryńczuk, 2014). In this
approach, if the process is close to the required
set-point, the MPC-NPLT algorithm is executed
once at each sampling instant. If the process is far
from the set-point, a few (in this work maximally 5)
executions of the MPC-NPLT strategy are performed
in such a way that the calculated future trajectory of
manipulated variables is used for linearisation at the
next internal iteration.
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Fig. 2. Step-response of the linear part (25) of the Wiener sys-
tem.

4. The MPC algorithm with nonlinear optimisation
(MPC-NO), in which the full nonlinear model is used
for prediction without any simplifications.

The following MPC algorithms with parameterisation
using Laguerre functions are compared:

1. The MPC-NPLT1p algorithm, in which the future
trajectory of the manipulated variable used for
linearisation, utraj(k), Eqn. (15), is defined by the
value of the manipulated variable calculated and
applied to the process at the previous sampling
instant (Ławryńczuk, 2014).

2. The MPC-NPLT2p algorithm, in which the trajectory
utraj(k) is defined by Nu − 1 last elements of the
optimal trajectory found at the previous sampling
instant and not applied to the process (Ławryńczuk,
2014).

3. The MPC-NPLPTp algorithm with maximally 5
executions of the MPC-NPLTp strategy at each
sampling instant.

4. The MPC-NOp algorithm with nonlinear
optimisation.

The MPC-NO and MPC-NOp algorithms need solving
on-line a nonlinear optimisation problem, while all other
algorithms use quadratic optimisation tasks.

In all MPC algorithms a nonlinear model defined by
Eqns. (25)–(26) is used, although in a different way.

Figure 3 presents simulation results for the classical
linear GPC algorithm with different values of the
parameter λ. Long prediction and control horizons are
used, i.e., N = Nu = 100. The GPC algorithm practically
does not work since the process is nonlinear while its
model used for prediction in GPC is linear.
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Simulation results for the MPC-NPSL algorithm
with the default value of the parameter λ = 0.25 are
shown in Fig. 4; N = Nu = 100. For the first, second and
fourth step changes in the set-point quite good control is
obtained, but for the third one the MPC-NPSL algorithm
gives a very bad trajectory. The problem can be reduced by
increasing the value of the weight to λ = 0.5; the obtained
simulation results are depicted in Fig. 5. Unfortunately,
the results are still unsatisfactory.

Because the classical GPC algorithm and the simple
MPC-NPSL approach with model linearisation, despite
using long horizons, give poor results, the MPC-NPLPT
algorithm with advanced trajectory linearisation is
considered. Figure 6 shows the obtained trajectories for
three different values of the control horizon Nu, in all
cases N = 100. It is evident that the MPC-NPLPT
algorithm makes it possible to obtain good control quality,
but very long horizons must be used (N = Nu = 100).

Next, the classical MPC-NPLPT algorithm and
the MPC-NPLPTp strategy with parameterisation are
compared. In both cases the horizons are N = Nu = 100.
It is interesting to study the influence of the parameters a
and nL on control quality of the MPC-NPLPTp algorithm.
To this end, the following performance index is used:

E1 =

120∑
k=1

(yMPC-NPLPT(k)− yMPC-NPLPTp(k))2. (27)

It measures the sum of squared differences between the
process output controlled by these two algorithms; the
first one of those is treated as the reference. The obtained
numerical values of the performance index E1 are given
in Table 1. The emphasised results refer to very good
performance of the MPC-NPLPTp approach, i.e., when it
gives practically the same trajectories as the MPC-NPLPT
one. Since the objective of parameterisation is to reduce
the number of decision variables in MPC, the value a =
0.7 is chosen because it makes it possible to obtain very
good control quality for the lowest value of the parameter
nL. Table 1 suggests that for a = 0.7 it is sufficient
to use only nL = 20 or nL = 25 decision variables.
Figure 7 shows the process trajectories for nL = 5, 10, 20,
a = 0.7. Of course, for nL = 5, 10 control quality is not
satisfactory. The influence of the parameter a is depicted
in Fig. 8. In this case nL = 20 and a = 0.1, 0.7, 0.9. Too
small and too big values of the parameter a lead to bad
control quality.

Table 2 compares the classical MPC algorithms
against the MPC strategies with parameterisation in terms
of two performance indices. The first one is the sum of
squared differences between the required set point and the
actual process output for the whole simulation horizon,

E2 =

120∑
k=1

(ysp(k)− y(k))2. (28)
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Fig. 3. Simulation results for the GPC algorithm with different values of the parameter λ, N = Nu = 100.
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Fig. 4. Simulation results for the MPC-NPSL algorithm with λ = 0.25, N = Nu = 100.
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Fig. 5. Simulation results for the MPC-NPSL algorithm with λ = 0.5, N = Nu = 100.
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Fig. 6. Simulation results for the MPC-NPLPT algorithm with different values of the control horizons Nu, N = 100.
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Fig. 7. Simulation results for the MPC-NPLPTp algorithm with parameterisation with different values of the parameter nL, a = 0.7,
N = Nu = 100.
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Fig. 8. Simulation results for the MPC-NPLPTp algorithm with parameterisation with different values of the parameter a, nL = 20,
N = Nu = 100.
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Table 2. MPC strategies with parameterisation vs. the classical MPC algorithms: the values of the performance indices E2 (Eqn. (28))
and E3 (Eqn. (29)) and optimisation time; nvar is the number of decision variables.

Algorithm Parameterisation E2 E3 nvar Optimisation type Optimisation time

MPC-NPLT1p

Yes

7.9098× 101 1.2012× 101

nL = 20

Quadratic 50.18%
MPC-NPLT2p 6.7355× 101 4.2176 Quadratic 49.28%
MPC-NPLPTp 6.1999× 101 3.4170× 10−1 Quadratic 100.00%
MPC-NOp 6.1366× 101 8.1167× 10−3 Nonlinear 1754.84%
MPC-NPLT1p 7.9945× 101 1.3052× 101

nL = 25

Quadratic 54.12%
MPC-NPLT2p 6.7340× 101 4.2085 Quadratic 51.45%
MPC-NPLPTp 6.1905× 101 3.2881× 10−1 Quadratic 102.18%
MPC-NOp 6.1283× 101 1.1372× 10−3 Nonlinear 2762.48%

MPC-NPLPT
No

6.1900× 101 3.2856× 10−1

Nu = 100
Quadratic 132.26%

MPC-NO 6.1269× 101 – Nonlinear 15734.30%

The second one measures the sum of squared differences
between the process output controlled by the “ideal”
MPC-NO algorithm without parameterisation and the
consecutive compared algorithms,

E3 =

120∑
k=1

(yMPC-NO(k)− y(k))2. (29)

The performance index (29) is similar to the one given
by Eqn. (27), but now the MPC-NO algorithm is treated
as the reference. Additionally, Table 2 specifies the
number of optimised variables nvar, the optimisation type
(nonlinear or quadratic) and relative optimisation time
(MATLAB). The following observations may be made:

1. The MPC-NPLT1p and MPC-NPLT2p algorithms
with single trajectory linearisation and optimisation
at every sampling instant are the worst ones (the
performance indices E2 and E3 are the biggest).
Multiple linearisation and optimisation possible in
the MPC-NPLPTp and MPC-NPLPT algorithms
give much better results. Figure 9 compares
trajectories obtained when the MPC-NPLPTp,
MPC-NPLT1p and MPC-NPLT2p algorithms with
parameterisation are used, in all cases a = 0.7,
nL = 20, N = Nu = 100. It is clear that
for the benchmark process considered only one
trajectory linearisation and quadratic optimisation
at every sampling instant is not satisfactory, i.e.,
the resulting trajectories are different from those
obtained when the MPC-NPLPTp algorithm is used,
in which maximally 5 repetitions of linearisation and
optimisation at every sampling instant are allowed.

2. The MPC-NPLPTp algorithm with quadratic
optimisation gives very similar results as
MPC-NOp with nonlinear optimisation. Figure 10
compares trajectories of these algorithms with
parameterisation, a = 0.7, nL = 20.

3. The MPC-NPLPTp algorithm with parameterisation
(the optimisation problem has only nL = 20
or nL = 25 decision variables) gives practically
the same results as the classical MPC-NPLPT
algorithm without parameterisation (the optimisation
problem has as many as Nu = 100 decision
variables). Figure 10 compares trajectories of the
MPC-NPLPTp and MPC-NPLPT algorithms. The
results for nL = 25 are even better.

4. Taking into account the MPC-NPLPTp algorithm
(and also the MPC-NOp one), increasing the number
of decision variables (nL) leads to better results. This
is also clear from Table 1.

5. The MPC-NPLPTp algorithm with parameterisation
and quadratic optimisation gives very similar results
as the computationally demanding, best possible
MPC-NO algorithm with nonlinear optimisation and
Nu = 100 decision variables.

6. As far as the optimisation time is concerned,
the comparison between the MPC-NPLPTp
algorithm with parameterisation and the classical
MPC-NPLPT algorithm, with as many as Nu = 100
decision variables, is the most important. When
nL = 20, the classical MPC-NPLPT algorithm is
characterised by over 30% longer optimisation time.
Secondly, the MPC-NPLT1p and MPC-NPLT2p
algorithms with only one on-line linearisation
and optimisation at every sampling instant are
characterised by an approximately 50% shorter
optimisation time than the MPC-NPLPTp strategy
with multiple linearisation and optimisation. Thirdly,
the MPC-NOp and MPC-NO algorithms are very
computationally demanding, but parametrisation
makes it possible to significantly reduce the
optimisation time.

Finally, the performance of all the discussed
nonlinear MPC algorithms is compared when the process
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Fig. 9. Simulation results for the MPC-NPLPTp, MPC-NPLT1p and MPC-NPLT2p algorithms with parameterisation, a = 0.7, nL =
20, N = Nu = 100.
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Fig. 10. Simulation results for the MPC-NPLPTp and MPC-NOp algorithm with parameterisation, a = 0.7, nL = 20, vs. the MPC-
NPLPT algorithm, N = Nu = 100.
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Fig. 11. Simulation results for the MPC-NPLPTp and MPC-NOp algorithms with parameterisation when the process is affected by
disturbances, a = 0.7, nL = 20, vs. the MPC-NPLPT algorithm, N = Nu = 100.
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Table 3. MPC strategies with parameterisation vs. the classical MPC algorithms when the process is affected by disturbances: the
values of the performance indices E2 (Eqn. (28)) and E3 (Eqn. (29)) and optimisation time; nvar is the number of decision
variables.

Algorithm Parameterisation E2 E3 nvar Optimisation type Optimisation time

MPC-NPLT1p

Yes

1.3052× 101 1.8343

nL = 20

Quadratic 55.99%
MPC-NPLT2p 1.1536× 101 2.3643× 10−1 Quadratic 54.23%
MPC-NPLPTp 1.0951× 101 2.7907× 10−3 Quadratic 100.00%
MPC-NOp 1.0877× 101 1.6367× 10−3 Nonlinear 2368.32%
MPC-NPLT1p 1.3791× 101 2.6299

nL = 25

Quadratic 59.03%
MPC-NPLT2p 1.1533× 101 2.3665× 10−1 Quadratic 58.03%
MPC-NPLPTp 1.0990× 101 4.0057× 10−3 Quadratic 103.53%
MPC-NOp 1.0910× 101 8.4355× 10−4 Nonlinear 3488.62%

MPC-NPLPT
No

1.0994× 101 4.2286× 10−3

Nu = 100
Quadratic 132.16%

MPC-NO 1.0917× 101 – Nonlinear 21471.16%

is affected by unmeasured additive output disturbances.
Four disturbance steps are considered: the first step,
−0.25, starts at the sampling instant k = 5, the
second step, 0.25, starts at k = 30, the third step,
−0.5, starts at k = 60, the fourth step, 0.5, starts at
k = 90, the set-point is zero for the whole simulation
horizon. The algorithms are compared in terms of the
indices E2 and E3 as well as the optimisation time
in Table 3. The observations made for the set-point
tracking case hold true. In particular, the MPC-NPLPTp
algorithm with parameterisation gives practically the
same results as the classical MPC-NPLPT algorithm
without parameterisation. Moreover, the trajectories
of the MPC-NPLPTp algorithm are very similar to
those of the MPC-NOp and MPC-NO schemes with
nonlinear optimisation. In terms of the optimisation
time, the classical MPC-NPLPT algorithm is slower
by more than 30% than the MPC-NPLPTp algorithm.
Figure 10 compares trajectories of the MPC-NPLPTp and
MPC-NOp algorithms with parameterisation, a = 0.7,
nL = 20, vs. the classical MPC-NPLPT scheme.

6. Conclusions

This work discussed a nonlinear MPC approach to
processes with complex dynamics which need long
horizons and numerous optimised decision variables
calculated at every sampling instant. The presented
solution uses two concepts: advanced on-line linearisation
of the predicted trajectory of the controlled variable and
parameterisation using Laguerre functions. As a result,
the MPC-NPLPTp algorithm needs only on-line quadratic
optimisation and the number of decision variables is
significantly lower than the control horizon. For a
benchmark system the MPC-NPLPTp algorithm with only
20 decision variables gives very good quality of control.
In particular, the obtained trajectories are practically the
same as those possible in the MPC-NPLPT algorithm
with as many as 100 decision variables. Furthermore,

it is very important that the MPC-NPLPTp algorithm
gives results comparable with those possible in the “ideal”
MPC-NO scheme with nonlinear optimisation, but is very
computationally efficient.
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