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FAULT TOLERANT MULTICONTROLLERS FOR NONLINEAR SYSTEMS:
A REAL VALIDATION ON A CHEMICAL PROCESS
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An active sensor fault tolerant controller for nonlinear systems represented by a decoupled multimodel is proposed. Active
fault tolerant control requires accurate fault estimation. Thus, to estimate both state variables and sensor faults, a discrete
unknown input multiobserver, based on an augmented state multimodel, is designed. The multiobserver gains are computed
by solving linear matrix inequalities with equality constraints. A multicontrol strategy is proposed for the compensation
of the sensor fault and recovering the desired performances. This strategy integrates a bank of controllers, corresponding
to a set of partial models, to generate a set of control laws compensating the fault effect. Then, a switching strategy
between the generated local control laws is established in order to apply the most suitable control law that tolerates the fault
and maintains good closed loop performances. The effectiveness of the proposed strategy is proven through a numerical
example and also through a real time application on a chemical reactor. The obtained results confirm satisfactory closed
loop performance in terms of trajectory tracking and fault tolerance.

Keywords: multicontroller, experimental validation, transesterification reactor, discrete unknown input multiobserver, fault
tolerant control, sensor fault estimation.

1. Introduction

Fault diagnosis (FD) and fault tolerant control (FTC) are
integrated in many applications to prevent performances
losses, preserve stability and maintain desirable
performances. It is crucial to point out that, when a
fault occurs in actuators or sensors, the characteristics
of the entire system can endure significant changes,
degrading its performances and even causing instability
(Bonfè et al., 2011; Noura et al., 2009; Du et al., 2014).
Therefore, FD and FTC are increasingly recommended
because they enhance system safety due to their reliability
(Khelassi et al., 2011; Gao et al., 2015; Sojoudi
et al., 2011).

Two types of FTC are mentioned in survey papers
(Gao et al., 2015; Yu and Jiang, 2015; Jiang and Yu, 2012;
Zhang and Jiang, 2008): passive and active approaches.
The former aim to design the same controller for normal
and faulty cases. They use robust control techniques to
ensure that the closed-loop system remains insensitive
to certain faults which are presumed and regarded as
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disturbances and uncertainties of modeling. Nevertheless,
the latter react actively even in the occurrence of a fault.
They require necessarily fault identification as well as an
updated control mechanism.

Many research works have dealt with the design
of FTC, and important results are developed for linear
and nonlinear systems (Pazera et al., 2017; Noura et al.,
2009; Du et al., 2014; Theilliol et al., 2008; Rodrigues
et al., 2014; Abdelkrim et al., 2012; Ichalal et al., 2016).
Since real industrial processes are nonlinear, it is difficult
to perform fault diagnosis and control. To surmount these
problems, multimodel and multicontrol approaches are
considered in several research works. The multimodel
approach has received increasing attention. It represents
an interesting technique and an efficient solution to
perform the modeling, control and fault diagnosis of
nonlinear systems (Orjuela et al., 2013; Tanaka and
Wang, 2001; Takagi and Sugeno, 1985; Ben Atia et al.,
2014). Indeed, the nonlinear system can be represented
by a set of partial systems, which makes the modeling
and application of some techniques possible thanks to
the simplicity of multimodel representation. Then, it
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is possible to design and implement local control laws
generated by controllers associated with partial models.

The controller design requires the knowledge of the
state variables, which are not measurable and inaccessible
in practice (Ben Atia et al., 2014). Regarding state
estimation and control problems, many works exploiting
observers for linear and nonlinear systems have been
conducted. Thus, many tools are used to perform fault
tolerant control and several real-time applications are
proposed to preserve human safety, maintain system
reliability and prevent process breakdowns (Pico and
Adam, 2017; Ichalal et al., 2016; Theilliol et al., 2000;
Odgaard and Stoustrup, 2012).

In contrast to model-based approaches, Jiang and
Yin (2018) as well as Jiang et al. (2018) developed
data driven approaches, where no model representation
can be used to describe the system studied. Thus, the
monitoring system has to collect and store process data to
perform state estimation, fault diagnosis and fault tolerant
control. Data driven based plant monitoring, prognosis
and fault diagnosis require failure determination, affecting
key performances indicators of the systems (Jiang and
Yin, 2018) exploiting various approaches and several
algorithms. Using data driven based techniques, the
model parameters are not known a priori and it is not
clear which model matrices are unavailable for observers
and controllers design. Thus, model based approaches are
crucial to overcome this problem.

Motivated by the decoupled multimodel approach,
a multicontrol strategy is proposed in this work. An
integrated sensor fault estimation and FTC is discussed,
where a switching mechanism is established to select
the appropriate control law accommodating faults. The
proposed decoupled multimodel representation results
from the association of partial models only in the output
equation of the multimodel. The retained decoupled
multimodel structure is well known for its flexibility
in the modeling of complex systems with a variable
structure. Indeed, it introduces partial models with
different dimensions adapted to each operating zone.
Consequently, the number of the identified parameters
will be reduced.

With this multimodel structure, the output of each
partial model, depending on the operating zone of
the system, contributes more or less to the global
approximative system behavior. The contribution of each
partial model to the global multimodel representation is
defined by an activation function. However, for switching
systems, a switching law indicates which partial model of
a set of partial models is active at each instant. In fact,
a logical rule organizes transition between these models
and total activation of the partial model is registered.
Therefore, the output of each partial model of switching
systems, depending on the zone where the system evolves,
contributes solely to the overall approximation of the

system behavior. Activation functions are used for
multimodel representation to ensure transition between
local models. These functions point out the degree
of contribution of each partial model in the global
representation of complex systems.

Activation functions, which are mentioned as
membership function for the fuzzy logic case, represent
each local model with a membership value between 0 and
1. Moreover, gain scheduling is a technique similar to
activation functions, interpolating a set of local models.
However, the interpolation between models, in this case,
is achieved according to the scheduling variables.

In the present paper, the main contribution is to
design active FTC for nonlinear systems subject to sensor
faults. Nonlinear systems are represented by a decoupled
state multimodel. An integrated online fault estimation
is needed to achieve this active control strategy. Then,
a discrete unknown input multiobserver is synthesized to
provide accurate and rapid state variables and sensor fault
estimation. To achieve this task, an augmented decoupled
multimodel is constructed where the sensor fault is added
as an auxiliary state variable. Based on the Lyapunov
approach, a stability analysis is achieved and sufficient
conditions for the convergence of the state estimation
error are established in terms of linear matrix inequalities
(LMIs) with equality constraints.

Thanks to the features of a decoupled multimodel,
multiple controllers, associated with each local model, are
designed to generate a set of local controls compensating
the occurring fault. Thereafter, a switching strategy is
established to select the suitable control law that provides
satisfactory closed loop performances. Finally, we prove
the effectiveness of the proposed multicontrol strategy
through a numerical example and a real time application
on a transesterification reactor.

This paper is organized as follows. Section 2
describes the design of a partial nominal tracking
controller. Section 3 is reserved for fault estimation based
on a discrete decoupled state multimodel. A switching
strategy for fault tolerant control is proposed in Section 4.
Section 5 provides an illustrative example to prove the
effectiveness of the proposed control strategy. A practical
application on a chemical reactor is presented in Section 6.
The last section concludes the paper.

2. Partial feedback controller design for
nominal trajectory tracking

An active FTC strategy is founded on the design of a
nominal control law, fault estimation and modification of
the control law in order to compensate the fault effect.

As a first step, we are interested in the design of
a nominal tracking controller. A state feedback integral
control is designed to ensure the trajectory tracking.
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Consider a nonlinear system described by the
following discrete decoupled state multimodel:

⎧
⎪⎪⎨

⎪⎪⎩

xi(k + 1) = Aixi(k) + Biu(k),
yi(k) = Cixi(k),

yMM(k) =
Nm∑

i=1

μi(νk−1)yi(k),
(1)

where Nm is the number of partial models, xi(k) ∈
R

ni and yi(k) are the state and the measured output
of the i-th partial model, respectively, u(k) represents
the control input and yMM(k) is the multimodel output,
Ai ∈ R

ni×ni , Bi ∈ R
ni×1 and Ci ∈ R

1×ni are known
and appropriately dimensioned matrices, μi(νk−1) are the
activation functions that ensure the transition between
partial models. They depend on the decision variable
(νk−1) which can be the signal control. These activation
functions satisfy the convex sum property

⎧
⎨

⎩

Nm∑

i=1

μi(νk−1) = 1,

0 ≤ μi(νk−1) ≤ 1, ∀ i = 1, . . . , Nm.

(2)

The activation functions can be chosen as normalized
Gaussian functions given as follows:

μi (νk−1) =
exp

(
− (νk−1−ci)

2

σ2

)

Nm∑

i=1

exp
(
− (νk−1−ci)

2

σ2

) , (3)

i = 1, . . . , Nm, where ci (i = 1 . . .Nm) are the centers
and σ is the dispersion.

The objective is to design a partial controller to make
the system output follow the reference input yc(k) as close
as possible. To track the reference input, a comparator
integrator is added satisfying (Theilliol et al., 2008; Noura
et al., 2000; Prajapati and Roy, 2016)

eu0i(k + 1) = eu0i(k) + T
(
yc(k + 1)

− Cixi(k + 1)
)
,

(4)

i = 1, . . . , Nm, where eu0i(k) is the integral error and T
is the sampling time. Taking into account (1) and (4), a
new augmented decoupled state multimodel is obtained:

⎧
⎪⎨

⎪⎩

Xai (k + 1) = AaiXai (k) +Baiu(k)

+Gaiyc(k + 1),

yi(k) = CaiXai (k) ,

(5)

where Xai(k) is the new augmented state vector defined
by

Xai (k) =

[
xi (k)
eu0i (k)

]

∈ R
ni+1.

Define the new augmented matrices:

Aai =

[
Ai 0ni×1

−TCiAi 1

]

∈ R
(ni+1)×(ni+1),

Bai =

[
Bi

−TCiBi

]

∈ R
(ni+1)×1,

Gai =

[
0ni×1

T

]

∈ R
(ni+1)×1

and
Cai =

[
Ci 0

] ∈ R
1×(ni+1).

Hence, the classical feedback control law, which
guarantees both stability and dynamic behavior of the
closed-loop system, is modified and computed:

u(k) = − [
kxi kei

]
[

xi(k)
eu0i(k)

]

= −KiXai (k),

(6)
where Ki ∈ R

1×(ni+1) represents the feedback gain
calculated based on an augmented partial model.

The most popular techniques, such as eigenstructure
assignment or linear quadratic (LQ) optimization, can be
used to determine the feedback gain matrix.

3. Fault estimation based on an unknown
input multiobserver

In the presence of a sensor fault, the closed-loop system
behavior is corrupted. Indeed, the real output does not
converge to the desired input reference. Furthermore,
fault compensation is carried out by the addition of a new
control law. The newly added control law relies on the
occurring fault estimation.

Considering a decoupled state multimodel subject to
an additive sensor fault, the state representation of the
faulty decoupled multimodel is given by

⎧
⎪⎪⎨

⎪⎪⎩

xi(k + 1) = Aixi(k) +Biu(k),
yi(k) = Cixi(k) + Fcfc(k),

yMM(k) =
Nm∑

i=1

μi(νk−1)yi(k),
(7)

where fc(k) and Fc are the sensor fault and its fault
distribution matrix, respectively.

3.1. Discrete unknown input multiobserver synthesis.
Recall the faulty decoupled multimodel (7) rewritten in
compact form (Orjuela et al., 2009):

{
xcf (k + 1) = Acfxcf (k) +Bcfu(k),
yMM(k) = Ccf (k)xcf (k) + Fcfc(k),

(8)

where xcf (k) is the compact state vector defined by

xcf (k) =
[
xT
1 (k) · · · xT

i (k) · · · xT
Nm(k)

]T

∈ R
n, n =

Nm∑

i=1

ni,
(9)
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Acf and Bcf are the augmented matrices

Acf =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 0 · · · 0

0
. . .

...
... Ai

. . . 0
0 · · · 0 ANm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×n,

Bcf =
[
B1

T · · · Bi
T · · · BNm

T
]T ∈ R

n×m,

Ccf (k) is a time varying matrix. It can be written, taking
into account the properties (2), as a weighted sum of
matrices

Ccf (k) =
Nm∑

i=1

μi(νk−1)C̃cfi ,

C̃cfi =
[
0 · · · Ci · · · 0

] ∈ R
1×n.

(10)

To estimate both the state vector and the sensor fault,
we propose to design an unknown input multiobserver.
Nevertheless, the decoupled multimodel (8) seems
appropriate for the proposed multiobserver. To make
this decoupled multimodel suitable for unknown input
multiobserver synthesis, assume that a sensor fault has as
a dynamic (Theilliol et al., 2000; Sobhani and Poshtan,
2012; Chaves et al., 2019)

fc (k + 1) = fc (k) + Tuc (k) , (11)

where uc(k) represents the sensor error input and T is the
sampling time.

Then, a new augmented decoupled multimodel is
defined including Eqn. (11),
{

x̄cf (k + 1) = Ācf x̄cf (k) + B̄cfu(k) + T̄ uc (k) ,
yMM(k) = C̄cf (k)x̄cf (k),

(12)
denoting by

x̄cf (k) =

[
xcf (k)
fc (k)

]

∈ R
n+1 (13)

the new augmented state vector.
This augmented state vector is defined based on the

compact form, where the state vector xcf (k) ∈ R
n. In the

case of a SISO nonlinear system, the real output is subject
to only one sensor fault. The new matrices are as follows:

Ācf =

[
Acf 0n×1

01×n 1

]

∈ R
(n+1)×(n+1),

B̄cf =

[
Bcf

0

]

∈ R
(n+1)×1,

C̄cf (k) =
[
Ccf (k) Fc

] ∈ R
1×(n+1)

T̄ =

[
0n×1

T

]

∈ R
(n+1)×1.

The decoupled multimodel (8) affected by a sensor fault
is rewritten as a decoupled multimodel affected by one
actuator fault.

The unknown input observer has been largely
conceived and exploited in several research works.
Buciakowski et al. (2017) and Witczak et al. (2016)
designed a robust unknown input observer to estimate
states and faults for nonlinear systems. However,
the observer design seems difficult in the general case
where nonlinear models have several structures since the
nonlinear terms are involved indifferent ways.

Nevertheless, the multimodel approach highlights
a set of simple and linear local models offering the
possibility of an easier synthesis of observers extended
from linear cases irrespective of the system complexity.
Based on the multimodel representation that is recognized
by its ability to decompose the nonlinear system in
a set of partial models, a local observer is associated
with each local model where a global observer known
as the multiobserver is defined. Compared with the
existing discrete unknown input observers, the proposed
unknown input multiobserver is able to estimate states
of any nonlinear system irrespective of its complexity.
Indeed, the existing discrete unknown input observers
are dedicated to estimate state variables of a specific
class of nonlinear systems. However, based on the
multimodel representation, the proposed multiobserver
structure is known as a general form of observers that
estimate states of a wide range of nonlinear systems. The
proposed unknown input multiobserver (UIMO) provides
estimates of the nonlinear system states, particularly the
decoupled states of the multimodel. Moreover, it has an
analytical form resulting from the aggregation of local
observers that performs the stability and convergence
study of the estimation error. It is synthesized based on
mixing the outputs of the partial models. Therefore, it
yields an excellent compromise between the generality
and the practical usability, independently of the classes of
nonlinear systems.

According to the state representation (12), an
unknown input multiobserver can be easily built:

⎧
⎨

⎩

z̄cf(k + 1) = N̄cf z̄cf (k) + Ḡcfu(k) + L̄cfyMM(k),
̂̄xcf (k) = z̄cf(k)− ĒcfyMM(k),
ŷMM(k) = C̄cf (k)̂̄xcf(k),

(14)
where z̄cf (k) ∈ R

n+1 is the multiobserver state vector
and x̂cf(k) ∈ R

n+1 is the estimated state vector,N̄cf ∈
R

(n+1)×(n+1), L̄cf ∈ R
(n+1)×1, Ḡcf ∈ R

(n+1)×1 and
Ēcf ∈ R

(n+1)×1 are the multiobserver gains determined
later.

Define the state estimation error

ēx(k) = x̄cf (k)− x̂cf (k). (15)
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It can be obtained as

ēx(k) =
(
In+1 + Ēcf C̄cf (k)

)
x̄cf (k)− z̄cf (k). (16)

Setting

P̄cf (k) = In+1 + Ēcf C̄cf (k) ,

P̄cf (k) ∈ R
(n+1)×(n+1),

(17)

Equation (16) can be rewritten as

ēx(k) = P̄cf (k)xcf (k)− z̄cf(k). (18)

The evolution of the state estimation error can be
expressed by

ēx(k + 1)

= N̄cf ēx(k) +
[
P̄cf (k + 1)B̄cf − Ḡcf

]
u(k)

+
[
P̄cf (k + 1)Ācf − N̄cf − K̄cf C̄cf (k)

]
x̄cf (k)

+ P̄cf (k + 1)T̄ uc(k),

(19)

where

K̄cf = L̄cf + N̄cf Ēcf , K̄cf ∈ R
(n+1)×1. (20)

Based on the decoupling technique, the discrete unknown
input multiobserver gains are computed when the
following relation skips are satisfied:

⎧
⎨

⎩

P̄cf (k + 1)Ācf − N̄cf − K̄cf C̄cf (k) = 0,
P̄cf (k + 1)B̄cf − Ḡcf = 0,
P̄cf (k + 1)T̄ = 0.

(21)

Retaining the previous conditions, the state estimation
error is reduced to

ēx(k + 1) = N̄cf ēx(k). (22)

The convergence of the state estimation error relies on
matrix N̄cf , which must be a Hurwitz matrix.

The stability of the multiobserver is studied with the
Lyapunov approach in terms of linear matrix inequalities.
Exponential convergence of the estimation error towards
zero is achieved if a symmetric positive definite matrix
X̄ = X̄T > 0 exists satisfying the following theorem.

Theorem 1. The augmented state estimation error con-
verges exponentially to zero, under the condition of the ex-
istence of matrices S̄cf and W̄cf and a symmetric positive
definite matrix X̄ = X̄T > 0 of appropriate dimensions,
if the following LMIs hold for i, j = 1, . . . , Nm:

[
(1− 2α) X̄ ZT

ij

Zij X̄

]

> 0 (23)

with Zij
T = X̄Ācf + S̄cf

˜̄CcfiĀcf − W̄cf
˜̄Ccfj while the

following equality constraints are satisfied:

X̄T̄ + S̄cf
˜̄Ccfi T̄ = 0, i = 1, . . . , Nm, (24)

where α is the decay rate, serving to quantify the conver-
gence speed of the estimation error.

For a chosen decay rate 0 < α < 0.5, the LMIs
(23) are solved. Thereafter, the multiobserver gains are
calculated as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K̄cf = X̄−1W̄cf ,
Ēcf = X̄−1S̄cf ,
Ḡcf (k + 1) = P̄cf (k + 1)B̄cf ,
N̄cf(k + 1) = P̄cf (k + 1)Ācf − K̄cf C̄cf (k),
L̄cf(k + 1) = K̄cf − N̄cf(k + 1)Ēcf .

(25)
Once the augmented state vector is estimated with a good
accuracy, the estimated sensor fault is the last component
of the estimated augmented state vector.

The fault estimation shows a powerful ability to
provide exact information about the fault online.

3.2. Decoupling conditions. The unknown input
multiobserver provides supplementary conditions
compared with classical multiobservers. It decouples
unknown inputs and removes their effect from the error
estimate.

To prove the effectiveness of the supplementary
technique, it is crucial to satisfy the condition

P̄cf (k + 1)T̄ = 0. (26)

Taking into account (17), the previous equation is
transformed to

T̄ + Ēcf C̄cf (k + 1)T̄ = 0 (27)

Since

C̄cf (k + 1) =

Nm∑

i=1

μi(νk)
˜̄Ccfi

, (28)

taking into account (28), Eqn. (27) can be rewritten as

Nm∑

i=1

μi(νk)
[
T̄ + Ēcf

˜̄Ccfi T̄
]
= 0, (29)

A possible solution among several others, owing to
the convex sum properties, can be proposed:

T̄ + Ēcf
˜̄Ccfi T̄ = 0, i = 1, . . . , Nm. (30)

A single solution of (30) exists if the following Nm
conditions are satisfied:

rank( ˜̄Ccfi T̄ ) = rank(T̄ ), i = 1, . . . , Nm. (31)

Thus, it is necessary to determine the multiobserver gain
Ēcf . Since the conditions (31) are satisfied, a unique Ēcf

is determined exploiting the pseudo-inverse formula,

Ēcf = −T̄
( ˜̄Ccfi T̄

)+

− Φi

[
I− (˜̄Ccfi T̄

)(˜̄Ccfi T̄
)+]

, (32)
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where
(˜̄Ccfi T̄

)+
is the generalized inverse of ˜̄Ccfi T̄

defined by (33) and Φi is a real arbitrarily chosen matrix
of appropriate dimensions,

(˜̄Ccfi T̄
)+

=
((˜̄Ccfi T̄

)T ( ˜̄Ccfi T̄
))−1( ˜̄Ccfi T̄

)T
. (33)

Proof. (of Theorem 1) Based on the second method
of Lyapunov, the stability of the multiobserver is
studied. Indeed, the exponential convergence of the state
estimation error is guaranteed if there exists a Lyapunov
function V (k) > 0 and α > 0 such that

∃X̄ = X̄T > 0, ΔV (k) + 2αV (k) < 0, (34)

where
ΔV (k) = V (k + 1)− V (k), (35)

with V (k) being a candidate Lyapunov function which
guarantees the convergence of the estimation error near
zero, defined by

V (k) = ēx(k)
T X̄ēx(k), X̄ = X̄T > 0. (36)

In this case, the difference ΔV (k), given in Eqn. (35), is
equivalent to

ΔV (k) = ēx(k + 1)T X̄ ēx(k + 1)− ēx(k)
T X̄ ēx(k)

(37)
By reference to (22), (37) is given as follows:

ΔV (k) = ēx(k)
T (N̄T

cf X̄N̄cf − X̄)ēx(k). (38)

Taking account of the Lyapunov function and its
difference given by the previous relation, Eqn. (34) can
be rewritten as

ΔV (k) + 2αV (k)

= ēx(k)
T
(
N̄T

cfX̄N̄cf + (2α− 1)X̄
)
ēx(k) < 0. (39)

Replacing N̄cf by its defining expression (see Eqn. (25)),
(39) can be written as follows:

ēx(k)
T {[P̄cf (k + 1)Ācf − K̄cf C̄cf (k)

]T
X̄

[
P̄cf (k + 1)Ācf − K̄cf C̄cf (k)

]

+ (2α− 1) X̄}ēx(k) < 0,

(40)

which can be reduced to

[
P̄cf (k + 1)Ācf − K̄cf C̄cf (k)

]T
X̄

[
P̄cf (k + 1)Ācf − K̄cf C̄cf (k)

]
+ (2α− 1) X̄ < 0.

(41)

Replacing P̄cf (k + 1) and C̄cf (k) by their
expressions in (17) and (10) and taking into account of

(2), the previous inequality can be rewritten as

[
Ācf + Ēcf

˜̄CcfiĀcf − K̄cf
˜̄Ccfj

]T
X̄

[
Ācf + Ēcf

˜̄CcfiĀcf − K̄cf
˜̄Ccfj

]
+ (2α− 1) X̄ < 0.

(42)

Setting

W̄cf = X̄K̄cf , S̄cf = X̄Ēcf (43)

and taking into account the property of the matrix X̄ , we
get

(1− 2α) X̄ −
[
X̄Ācf + S̄cf

˜̄CcfiĀcf − W̄cf
˜̄Ccfj

]T

X̄−1
[
X̄Ācf + S̄cf

˜̄CcfiĀcf − W̄cf
˜̄Ccfj

]
> 0. (44)

To obtain the LMIs (23), the Schur complement is
applied to the latest inequality. Taking into account the
relation (43), the equality constraints (30) can be rewritten
as follows:

X̄T̄ + S̄cf
˜̄Ccfi T̄ = 0, i = 1, . . . , Nm. (45)

�
Afterwards, the proposed UIMO is synthesized

and estimates the state vector and the sensor fault
simultaneously. The estimated augmented state vector is
needed to reconfigure the control law and maintain the
tracking performances.

4. Switching strategy for an effective fault
tolerant control

In most practical systems, controllers are synthesized
neglecting that faults can occur (a fault-free case). The
nominal control law is updated and modified according
to the occurrence of a sensor fault. Furthermore, it is
necessary to take account of the fact that direct sensor
fault accommodation should be considered to prevent
performances losses, maintain the system stability and
ensure trajectory tracking.

A single controller can hardly tolerate faults affecting
the nonlinear system represented by a decoupled state
multimodel. Indeed, a multimodel control strategy is
studied.

According to the interesting feature of the proposed
multimodel approach, a bank of controllers is built. Each
designed controller generates a local control law.

Therefore, an additive control law is computed and
added to the nominal one when a sensor fault occurs. The
new partial control law is computed as follows:

ui(k) = −kxi x̂i (k)− keieu0i (k) + uaddi(k). (46)



Fault tolerant multicontrollers for nonlinear systems: A real validation on a chemical process 67

The partial measured output and the integral error eu0i(k)
are changed since the occurrence of a sensor fault and
their expressions are given as follows:

{
yi(k) = Cixi(k) + Fcfc (k) ,
eui(k) = eu0i(k) + ẽfi(k),

(47)

where
⎧
⎪⎨

⎪⎩

eui(k + 1) = eui(k) + T (yc(k + 1)

− Cix̂i(k + 1)− Fcf̂c (k + 1)),

ẽfi(k + 1) = eui(k)− eu0i(k)− TFcf̂c (k + 1).
(48)

These conditions lead the additional control law to
compensate the sensor fault. It is computed as follows:

uaddi(k) = −kxiC
+
i Fcf̂c(k)− kei ẽfi(k). (49)

Moreover, the faulty nonlinear system is maintained
as the nominal one when the partial control laws
are modified, avoiding huge performances losses and
improving trajectory tracking.

Then, it is crucial to calculate a global control
law which makes the nonlinear system output track the
reference input and compensates the sensor fault effect. A
set of control laws are generated. Hence, the sensor fault
is accommodated by one of a set of selected controllers
under a suitable switching strategy.

The switching strategy is based on the evaluation of
the quadratic criterion that selects the most appropriate
generated fault tolerant control law guaranteeing
trajectory tracking and system stability. The most
appropriate controller is the one that yields the smallest
value of the criterion (ben Atia et al., 2015; 2018; Allaoui
et al., 2017; Messaoud et al., 2009).

The criterion is given by

Ji(k) = ςe2pi
(k) + β

k∑

h=1

e−δ(k−h)e2pi
(h),

i = 1, . . . , Nm, (50)

where epi(k) = y(k) − ŷci(k) means the error between
the real output and the i-th predicted reference input, ς , β
and δ are positive tuning parameters. They determine the
switching speed between controllers, ς , β represent the
weighting factors of the instantaneous and the long-term
measures accuracy. Moreover, δ denotes the forgetting
factor that ensures the boundness of the partial criterion
Ji(k) for the bounded error epi(k).

Despite the presence of a fault, a stable and certain
commutation to the correct and suitable controller is
established. The evaluation of the criterion (50) leads
to correct identification and selection of the appropriate
controller that is convenient to satisfy the closed-loop
performances in terms of trajectory tracking and fault
compensation (Narendra and Balakrishnan, 1997).

Algorithm 1. Final design procedure of the proposed
approach.

1: An offline multimodel identification is adopted to
represent the nonlinear system.

2: An unknown input multiobserver, based on an
augmented decoupled state multimodel, is designed
to estimate accurately both sensor faults and state
variables (Eqn. (14)).

3: A set of controllers are designed where nominal
control laws are reconfigured by computation of
additive control laws when the sensor fault appears
(Eqn. (46)).

4: A switching strategy is investigated to select the
most suitable control in the sense of the desired
performance criterion (Eqn. (50)).

The local predicted reference input ŷci(k), deduced
from (46), (48) and (49), can be written as follows:

ŷci(k) = (keiT )
−1(−ui(k)−kxi x̂i(k)

− keieu0i(k − 1) + keiTCix̂i(k)

+uaddi(k))

(51)

The final design procedure of the proposed approach
is detailed in Algorithm 1.

5. Numerical example

We consider nonlinear SISO system described by
a discrete decoupled multimodel including two
heterogenous partial models (Orjuela et al., 2009):

Partial model 1:

A1 =

[ −0.5 −0.7
0.4 0.1

]

, B1 =

[
1

−0.8

]

,

C1 =
[
0.7 0.4

]
.

Partial model 2:

A2 =

⎡

⎣
−0.7 0.2 0.5
0.3 −0.4 −0.1
−0.2 −0.3 0.6

⎤

⎦ , B2 =

⎡

⎣
0.2
0.3
0.4

⎤

⎦ ,

C2 =
[
0.3 0 0.5

]
.

The input u(k) ∈ [0, 1] is retained as a decision variable.
The centers and dispersion, in this case, are as follows:
c1 = 0.25, c2 = 0.75 and σ = 0.4.

Real processes operate over a wide range of
conditions and it seems difficult to use approximate
models linearized around a single operating point. To deal
with this problem, a multimodel identification procedure
can be applied. An off-line identification procedure is
established to obtain a decoupled multimodel, with a set
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Fig. 1. Evolution of the output and the reference trajectory (with
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Fig. 2. Evolution of effective control.

of partial models representing the nonlinear system. The
parameters of the resulting partial models are constant
and, consequently, the decoupling conditions, in this case,
are satisfied and a relatively perfect decoupling can be
achieved in numerical and experimental studies.

The evolution of the output and the reference input,
when an additive sensor fault appears at k = 600, is
depicted in Fig. 1. The proposed strategy shows its
capacity in improving the closed-loop performances in
terms of tracking and sensor fault compensation.

The smallest value of the criterion allows choosing
an appropriate controller according to a switching
mechanism. A control law is obtained from switching
between local control signals,

u(k) = ui(k), i = 1, 2. (52)

The evolution of the effective control applied to the
nonlinear system is shown in Fig. 2.

An active FTC requires accurate fault estimation to
accomplish fault compensation. Moreover, the control
performance relies on the sensor fault estimation quality,

which must be rapid and accurate. In the present paper, the
synthesized unknown input multiobserver is an efficient
one that estimates rapidly and accurately both sensor
faults and states. Therefore, the accurate estimation
provides an efficient control law that allows reference
trajectory tracking and fault tolerance.

Safety problems are due to a different kind of
failures affecting actuators, sensors and process that may
cause process performance degradation and even system
breakdowns. Sensor faults, which can be evoked by many
different kinds of problems, are generally related to wrong
readings due to a failure in the sensor components causing
the loss of effectiveness. They are considered additive
signals on the measurements.

Thus, the estimation of the occurring fault is
accomplished by the proposed UIMO as illustrated in
Fig. 3.

The unknown input multiobserver performs accurate
fault estimation that allows the control law to be the most
suitable one to maintain the trajectory tracking and fault
compensation goals.

The proposed discrete multiobserver shows its
capacity in estimating state variables with a good accuracy
(Figs. 4–8).

Compared with a proportional integral multiobserver
(PIMO) in the case of a time varying fault, the
proposed unknown input multiobserver performs rapid
and accurate sensor fault estimation. Hence, the proposed
strategy provides satisfactory trajectory tracking and fault
tolerance. The outputs and the reference trajectory are
compared in Fig. 9.

The proposed UIMO shows its capacity in terms of
accuracy in estimation despite the fact that the fault is a
time varying one. Thus, satisfactory trajectory tracking
and fault tolerance are fulfilled.
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Fig. 3. Evolution of the sensor fault and its estimate.
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Fig. 4. Evolution of the first state variable of the first partial
model, its estimate and the estimation error.
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6. Practical application to
a transesterification reactor

6.1. Process description. Chemical reactors are the
most often encountered industrial process in chemical
and pharmaceutical applications (Messaoud et al., 2009).
Their flexibility and their polyvalent character made them
attractive for several applications in research. However,
these batch reactors have nonlinear behavior, which makes
diagnosis and control more difficult. Batch reactors can
be used in the extraction of oils. Plant oils are generally
extracted and undergo reactions in order to produce
fuels. Indeed, oils need small modification such as a
transesterification reaction to produce cleaner biofuels. To
accelerate the conversion, a catalyst such as a strong acid
or base is needed.

The chemical process (Fig. 10) consists of a stirred
tank equipped with a jacket where heat exchange between
a cooling fluid and the reaction mixture is provided. The
fluid flow rate of the heating cooling reactor is constant.
The fluid temperature within the jacket is regulated with
an external servo system including a plate heat exchange
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Fig. 6. Evolution of the first state variable of the second partial
model, its estimate and the estimation error.
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Fig. 7. Evolution of the second state variable of the second par-
tial model, its estimate and the estimation error.

with electric resistors. The heating of the fluid is insured
by electric resistors, whereas the cooling fluid which is
also named tap water is provided by a plate exchanger.
To measure the chemical process’ temperatures and the
inlet and the outlet jacket temperature, many temperature
sensors are implemented.

The chemical reactor is exploited in batch mode
with which biodiesel can be used. The transesterification
reaction takes place in these steps. Tallow (animal fat)
or vegetable oils (virgin or used) which are considered
fatty materials (FM) are mixed with the alcohol to produce
ester and glycerol. The transesterification is called also
alcoholysis. The mentioned reaction is described as
follows (Meher et al., 2006; Ma and Hanna, 1999):

FM + Alcohol � Esters + Glycerol.

Triglycerides and a minor amount of mono and
diglycerides are associated to form FM. Indeed, a
molecule of triglycerides is composed from a three carbon
glycerol head group chemically altered to three fatty acid
chains,
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Fig. 8. Evolution of the third state variable of the second partial
model, its estimate and the estimation error.
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Biodiesels are considered an interesting alternative
to bio-based fuel, which make up for fossil fuel resources
that will be depleted in the near future. Because they are
eco-friendly, biodiesels have attracted increasing attention
and have been developed to be used as a renewable energy
source. In fact, biofuels help to reduce global warming by
decreasing the emissions of particles, sulfur and carbon
dioxide.

The system can be considered as a single-input
single-output one. The heating power Q [W] is an input
and the output is the chemical reactor temperature T ◦

RC.
An experimental study identified the sampling period to
be 120 s.

6.2. Experimental results. Based on a set of
data, a multimodel identification procedure (Messaoud
and Ben Abdennour, 2018) is established and yields a
decoupled multimodel with three heterogenous partial

models:

Partial model 1:

A1 =

[
0.4581 0.4871
0.8951 0.0680

]

, B1 =

[
0.0008
0.0210

]

,

C1 =
[
1 0

]
.

Partial model 2:

A2 =

[
0.4699 0.4881
0.8950 0.0670

]

, B2 =

[
0.0019
0.0185

]

,

C2 =
[
1 0

]
.

Partial model 3:

A3 = 0.9906, B3 = 0.0033, C3 = 1.

The desired reference trajectory TC is defined in
three phases: heating, reaction and cooling.

When an additive fault occurs, the monitored
chemical reactor temperature changes. The experimental
results of the proposed control strategy are presented and
show, again, the efficiency of the strategy in terms of
trajectory tracking.

Figure 11 illustrates the evolution of the reactor
output.

When the sensor fault is estimated with a good
accuracy, the right control law is considered after
computing an additive control law. Therefore, the
reactor’s temperature is maintained and the trajectory
tracking is carried out. In this condition, the evolution of
the heating power Q [W], which denotes the control input,
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Fig. 10. Synoptic scheme of the transesterification reactor con-
sidered.



Fault tolerant multicontrollers for nonlinear systems: A real validation on a chemical process 71

50 100 150 200 250

20

40

60

80
°C

 

 

TC(k)

TR(k)

0 50 100 150 200 250
−2

−1

0

1

2

 

 
ep(k)ep(k)

time k

time k
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is shown in Fig. 12. The suitable control law is selected
by the proposed switching strategy between controllers
(ci, i = 1, 2, 3).

Figure 13 illustrates the evolution of a sensor fault,
its estimate and the estimation error.

Since fault estimation is achieved accurately,
the most suitable effective control law is chosen.
Consequently, the FTC strategy is actively concerned and
the reactor’s temperature is maintained. The accuracy of
the model relies on the best states estimation established
by the proposed unknown input multiobserver.

The evolution of state variables, their estimates
and the estimation errors are illustrated in Figs. 14–18
to prove the efficiency of the proposed unknown input
multiobserver in terms of accuracy.

7. Conclusion

An active fault tolerant control for a nonlinear system
subject to a sensor fault was developed. A decoupled
state multimodel was retained to represent the nonlinear
system. An unknown input multiobserver was designed
to estimate both state variables and sensor fault. Once
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Fig. 13. Evolution of the sensor fault, its estimate and the esti-
mation error.
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accurate estimation was achieved, an additive control
law was computed to tolerate the fault effect. Thanks
to the features of the multimodel approach, a bank of
controllers corresponding to local models was designed.
Then, the most suitable controller was selected, based on a
switching mechanism, in order to generate the appropriate
control law that compensates the fault effect and improves
the closed loop performances. The simulation results
demonstrate the efficiency of the proposed control
scheme. A real time application on a chemical reactor
was realized to further evaluate, again, the efficiency of
the adopted FTC strategy.

In future works, a multimodel structure considering
noise will be adopted, a multimodel identification
procedure will be developed and a robust multiobserver
for nonlinear systems subject to external (habitual and
harmonic) disturbances will be synthesized.
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