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Data clustering is one of the most popular methods of data mining and cluster analysis. The goal of clustering algorithms is
to partition a data set into a specific number of clusters for compressing or summarizing original values. There are a variety
of clustering algorithms available in the related literature. However, the research on the clustering of data parametrized
by unit quaternions, which are commonly used to represent 3D rotations, is limited. In this paper we present a quaternion
clustering methodology including an algorithm proposal for quaternion based k-means along with quaternion clustering
quality measures provided by an enhancement of known indices and an automated procedure of optimal cluster number
selection. The validity of the proposed framework has been tested in experiments performed on generated and real data,
including human gait sequences recorded using a motion capture technique.
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1. Introduction

Data clustering is an extensively explored area in the field
of data mining. Roughly speaking, the problem is to group
a given set of data points into a fixed number of clusters
in such a way that points within the cluster are similar
and those from two different clusters are dissimilar. In
most cases the clustering operation is based on attributes
of investigated objects. The distance function is also
frequently used as a similarity dissimilarity measure. A
very good reference on clustering concepts is provided
by Han et al. (2011). A survey of clustering data mining
techniques can be found in the work of Berkhin (2006) or
Liao (2005) for a time series case.

Clustering has applications in many fields, e.g.,
image processing (Wu and Leahy, 1993; Bandyopadhyay
and Maulik, 2002; Koster and Spann, 2000), sociology
(Cantador and Castells, 2006; Austin et al., 2005),
medicine (Himberg et al., 2004), traffic analysis
(Reumerman et al., 2005), criminology (Grubesic, 2006)
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or space science (Gariel et al., 2011). In each case,
different clustering concepts are used. Very often
the choice of the method is tightly coupled with the
investigated domain. We are primarily interested here in
the gait kinematic data domain, especially unit quaternion
parametrization of kinematic data. Within the field of
quaternion clustering techniques, one can observe limited
research.

There are many clustering algorithms available in the
literature. The best-known clustering methods include
hierarchical methods, partitioning methods, density-based
methods and grid-based methods. Very often an even
more detailed breakdown is available, but for the purpose
of this paper there is no need to provide a comprehensive
categorization of the existing methods, only to have a clear
understanding of the underlying subject.

Specifically, partitioning methods are in the scope of
the presented research. These methods for the input set
of n objects partition those into k-groups such that each
group must contain at least one object and each object is
assigned to only one group. Usually, partitioning criteria
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are a distance measure. It is also worth emphasizing
that very often these methods use an iterative relocation
technique. This means that it moves already assigned
objects between the clusters with the goal of finding a
better assignment. One of the most popular partitioning
methods is the k-means algorithm, widely used in
scientific and industrial applications. The popularity
of the method is caused by its relative simplicity of
understanding, implementation and application to the
requested domain.

The main goal of this paper is to present a quaternion
clustering methodology. The approach is an outcome of
analysis of chaotic properties of processes described by
quaternions presented in the work of Piórek (2018), where
the initial idea of quaternion clustering appeared. Here
this idea is enriched and wrapped up into a framework
including the k-means algorithm generalization to the
quaternion domain, a generalized set of methods to
investigate clustering results, an automated procedure for
estimation of the number of clusters and a test data
generation framework.

The proposed methodology was tested on generated
data and human gait data obtained from the Center
for Research and Development of the Polish-Japanese
Academy of Information Technology (www.bytom.p
ja.edu.pl). Based on the observation that human
gait rotations can be grouped into several primitives, the
presented approach can group the set of rotations from a
single body bone separately. The numerical tests of the
method were performed on several bones: tibia, femurs
and feet. In this sense this approach can be called
bone-wise data clustering since it is performed on data
recorded from each body part separately.

The paper is organized in the following way. In
Section 2 the state of the art for clustering in the
quaternion domain is presented. Section 3 describes
quaternion data parametrization details. In Section 4 the
original definition of the k-means algorithms is recalled,
along with the proposal to generalize the algorithm
for quaternion parametrization. Section 5 provides
quaternion clustering quality measures. Section 6 defines
the test data generation framework. The numerical
results and conclusions are discussed in Sections 7 and
8 respectively.

2. State of the art

Clustering techniques are a widely explored field of
research. Despite the abundance of generic clustering
methods (surveyed, e.g., by Berkhin (2006)), there is
a limited amount of research performed for clustering
algorithms adapted fully to the quaternion domain—well
suited for rotation clustering. As methods fully adapted
to the quaternions domain we treat those where all
operations in the clustering algorithm are based on

quaternion algebra and quaternion properties, e.g., the
distance function is the quaternion distance function,
initial random cluster center generation is random
quaternion generation, and selection of new cluster
centers is performed based on the quaternion properties.

In the paper by Shi and Funt (2007), a quaternion
clustering application is used for quaternion color
segmentation. In this approach the quaternion mean
is applied in a modified k-means algorithm, although
the distance function is not a quaternion metric. This
is natural since quaternion feature vectors used there
represent the RGB color and may consist of quaternions
which are not necessarily unit quaternions. As a
consequence, this approach is not suitable for rotation
clustering.

Another approach to partial clustering in the
quaternion domain is by using face landmark labeling in
3D (Creusot et al., 2010). The distance function applied
here is indeed a quaternion distance; however, it seems
that new cluster centers and initial cluster centers are not
computed based on quaternion properties.

A kernel-based quaternion k-means application has
been proposed for aligned cluster analysis for temporal
segmentation of human motion by Zhou et al. (2008).
In this case the similarity matrix used in the clustering
process is not computed using a quaternion metric.

In the paper of Risojević and Babić (2013), k-means
clustering is used in unsupervised learning of quaternion
features for image classification, though the quaternion
vectors are not unit quaternions and are clustered as 4D
vectors.

The reason for research on quaternion clustering
is to propose an algorithm based only on quaternion
algebra and quaternion properties. All the previously
mentioned approaches seem at some point to step out
from the quaternion domain and use operations not
based on quaternion properties. In many cases the
proposed algorithms even use the quaternion domain
distance measure, but a new cluster generation or a
cluster assignment is not based on the quaternions domain.
Sometimes, even though the input data are represented
in the quaternion form, in the clustering process they are
treated as a 4-dimensional vector and the classic version
of k-means is used.

To the best of our knowledge, measures of clustering
quality were not previously generalized and analyzed for
quaternion parametrization, so that both the clustering
algorithm and the clustering quality assessment could be
performed in the quaternion domain. This was the second
motivation for the proposed approach.

It is also worth emphasizing that application of
quaternions to color representation in image processing is
also very commonly used (e.g., Pei and Cheng, 1999; Shi,
2005), which in the presence of the quaternions clustering
technique can open new fields of research.

www.bytom.pja.edu.pl
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3. Data parametrization

Recently quaternions have been gaining importance and
many practical applications could be observed. This
includes, but is not limited to, areas such as aerospace
or underwater attitude control (Chaturvedi et al., 2011),
motion capture data processing (Jabłoński, 2011), color
image transformation (Ell and Sangwine, 2007) and many
others.

Quaternions are hyper-complex numbers defined as
Q = w + v, where w is called the real part (scalar) and
v ∈ R

3 is the imaginary part. One can find a detailed
description and analysis of quaternion properties in the
work of Johnson (2003).

Specifically, unit quaternions are a commonly used
parametrization for 3D rotations. Unit quaternions are a
subset of the quaternion group whose magnitude equals
one,

||q|| = √
qq∗ =

√
w2

1 + v · v = 1. (1)

Assuming that qr defines a vector in the 3D
space, one can calculate a rotated vector by quaternion
multiplication of

q′r = qqrq
−1, (2)

where q defines the rotation angle and axis.
Datasets taken into consideration in this paper

concern some type of parametrization of rotations.
All 3D rotations form SO(3), which is a special
orthogonal group. Quaternions can be considered one
parametrization of this group.

For the discussed clustering algorithm, it is crucial
to have a well-defined distance function (metric) between
two elements of a dataset. Any distance function d used
for handling rotation data needs to satisfy both usual
axioms for metrics and SO(3) properties (Huynh, 2009):

• d(R1, R2) = 0 ↔ R1 = R2,

• d(R1, R2) = d(R2, R1),

• d(R1, R3) ≤ d(R1, R2) + d(R2, R3),

• function d preserves the topology of SO(3),

• function d is left/right invariant or bi-invariant.

Huynh (2009) provides a survey for various
distance functions for the SO(3) group and specifically
quaternions. Let us summarize the formulas collected
therein:

• Euclidean distance between angles,

d1((α1, β1, γ1), (α2, β2, γ2))

=
√
d(α1, α2)2 + d(β1, β2)2 + d(γ1, γ2)2; (3)

Fig. 1. Sphere of rotation to visualize rotational data sets
(Jabłoński, 2008a).

• difference of quaternions,

d2(q1, q2) = min {||q1 − q2||, ||q1 + q2||}; (4)

• inner product,

d3(q1, q2) = arccos(|q1 · q2|); (5)

• inner product without inverse cosine,

d4(q1, q2) = 1− |q1 · q2|; (6)

• deviation from the identity matrix,

d5(R1, R2) = ||I −R1R
T
2 ||F ; (7)

• geodesic on the unit sphere,

d6(R1, R2) = || log(R1R
T
2 )||. (8)

Distance measure d6 is functionally equivalent to
d3 and has all the required properties (metric axioms,
bi-variance, respecting the SO(3) topology). It was used
in some of our previous research (Jabłoński, 2008a; 2011)
and provided very good results in practical applications.
It can be interpreted as the length of the geodesic curve
on the quaternion unit sphere. It also denotes the amount
of energy or rotation needed to rotate quaternion q1 to the
rotation defined by quaternion q2.

In the following presentation of results, we are
going to visualize the rotational data using the concept
previously proposed by Jabłoński (2012; 2008b) called the
sphere of rotations; see Fig. 1.

The visualization is independent from the
parametrization for the rotational space. Specifically, it is
valid for quaternions, which is the default parametrization
used throughout the paper. In all experiments presented
here, we are dealing with data sets consisting of multiple
rotational data points.

In the selected approach (presented in Fig. 1), there
are three axes in the figure—each corresponds to one
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Fig. 2. Comparison of a sample data set visualized using the
sphere of rotations (left) and raw Euler angles (right).

operation of rotation. All data items are represented as
the directed arrow located on the sphere. Its purpose
is to visualize the rotational item in comparison with
the reference orientation presented as a gray item. This
could be visualised by any object, which allows us to
distinguish the direction (hence the arrow instead of just
a ball). For each data item, its orientation is parametrized
as three consecutive rotations around the axes described
by Euler angles (x, y, z). There are three basic examples
in the figure visualized as arrows of different shades with
the corresponding rotations: medium gray for (90, 0, 0),
light gray for (0, 90, 0) and dark gray for (0, 0, 90). The
white-gray arrow represents the data point of rotations
(45, 150, 0). In some cases we may need to present a large
amount of data. In such a case, some elements of a data
set can be presented as dots instead of arrows to improve
readability.

In Fig. 2 one can observe the difference and
visualization properties of the sphere of rotation (left)
versus the raw Euler angles plot (right). In both the cases
the same set of rotational data points were visualized
(note that for the left figure only every 5 items are
displayed for better visibility). As one can observe, the
sphere of rotations preserves the rotational character of the
underlying data model, including the spatial relationship
and the distance between elements. This will help us in
visualizing the relationship between data items in clusters
in a more direct way.

4. Quaternion k-means algorithm

The classic version of the k-means algorithm is the
main example of partitioning methods of data clustering
algorithms to classify an input data set through a fixed
(known a priori) number of clusters k. Assume that we
have an input data set D which contains n objects in a
Euclidean space. The k-means algorithm, by partitioning,
distributes all objects from the input data set into k clusters
C1, C2, . . . , Ck in such a way that Ci ⊂ D and Ci∩Cj =
∅ for 1 ≤ i, j ≤ k. Each of the clusters is represented by
a centroid—the central point of the cluster. The centroid
is calculated as the mean of all objects assigned to this

cluster. For cluster assignment, an objective criterion
is used. Typically, it is one of the distance measures.
The algorithm is an iterative procedure; in each step it
attempts to find new clusters with the goal of obtaining
a better assignment. Once the choice of the cluster center
is stabilized, the algorithm ends (Han et al., 2011).

We can summarize the algorithm steps in the
following way:

1. Randomly choose k points in a given space.
These points represent the centers of the clusters
(centroids).

2. Assign each point from the input set to the closest
centroid based on the distance measure.

3. Once all objects are labeled, recalculate the position
of the centers.

4. Repeat Steps 2 and 3 until the positions of the centers
change no longer.

This form of the k-means approach is not sufficient
for gait kinematic quaternion data clustering. Several
enhancements need to be incorporated to apply the
algorithm in the mentioned domain. Therefore, we
propose a generalization of k-means clustering for the
quaternion domain.

Quaternion time series can describe a particular body
rotation in time (e.g., human gait recordings captured on
a treadmill). While observing (but not only human) gait
from each bone perspective in time, we can observe that
some rotations appear periodically. This is because during
normal walking we repeat some movements. This hint
leads to checking whether we can group bone rotations
into a fixed number of groups.

We take into consideration the unit quaternion data
set created from samples of unit quaternions time series:

Q(n) = (q1, q2, . . . , qN )

= (w1 + ix1 + jy1 + kz1,

w2 + ix2 + jy2 + kz2, . . . ,

wN + ixN + jyN + kzN).

(9)

We have to ensure that clustering results remain in
the quaternion domain. This requires several extensions
to be introduced. In the first step, examine a random
generation of initial clusters centers. To keep the physical
sense of rotational data, which are the input set of the
clustering, the randomly generated cluster center has to
fulfill a couple of requirements:

• The input data set consists of rotations described by
unit quaternions only, hence the randomly generated
cluster center has to be a unit quaternion as well (it
should be taken from the unit quaternion sphere).
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• Since we consider rotational data captured from real
systems (e.g., a particular part of the skeleton), we
have to bear in mind that the rotated body has its own
range of available rotations.

• We assume the above-mentioned range will be
defined as a rotation interval [qa, qb], where qa and
qb are minimal and maximal rotations, respectively.

• As the minimal rotation qa we treat the rotation
described by the quaternion with a minimal
quaternion’s angle (similarly for maximal).

qa = argmin
q

2 arccos(Re(q)), (10)

qb = argmax
q

2 arccos(Re(q)). (11)

Consequently, we initialize k centroids by random
selection from the existing input data set based on a
uniformly distributed index (the position of the quaternion
in the data set).

The second area of k-means application to the
quaternion and rotation domain is cluster assignment. The
classic k-means approach assumes the Euclidean distance
measure as an objective function while labelling the data
set into clusters. In the case of a unit quaternion, treating
a quaternion as a 4D-vector loses its rotational sense. In
the light of this fact, we propose to use one of distance
measures from the quaternion domain. In the proposed
algorithm the distance d6 described in the previous section
is used. The distance function can be then interpreted as
the minimum length of a geodesic line connecting two
quaternions in the four-dimensional unit sphere. After
some transformations we obtain a simplified formula:

d(q1, q2) = 2 arccos(Re(q∗1q2)). (12)

Finally, to each rotation in the input data set we assign
the cluster Ci (where i = 1, . . . , k), which minimizes the
distance between the center of the cluster and the rotation.

Once all input rotations in one iteration of the
k-means algorithm are assigned to one of the clusters, we
have to find a new center of each cluster, which should
improve the clustering quality. In the classic version of
the k-means algorithm, the new center for the cluster is
calculated as an average of all samples from the input
data set belonging to this cluster. For quaternion domain
clustering, the averaging method should be taken from
this domain as well. Quaternion averaging is a subject
of many publications. A survey of the existing methods
can be found in the work of Markley et al. (2007).
For the purposes of this research, algebraical quaternion
averaging has been selected. A new quaternion cluster
center is the algebraic mean of all samples belonging
to the particular cluster. Its worth emphasizing that the
choice of the method might be a crucial factor affecting

the clustering quality evaluation (as well as the choice
of the method of random initialization and the distance
function), which can be a direction of further research.

5. Generalization of clustering quality
measures for quaternion data

In the paper by Maulik and Bandyopadhyay (2002),
one can find performance evaluation of clustering
algorithms based on the analysis of selected validity
indices: the Davies–Bouldin index (DB) (Davies and
Bouldin, 1979), Dunn’s index (DI) (Dunn, 1974), and the
Calinski–Harabasz index (CH) (Caliński and Harabasz,
1974). In the following experiments we will employ these
indices to analyze properties of the proposed clustering
algorithm for quaternions.

Based on the compact description by Maulik and
Bandyopadhyay (2002) and appropriate references, we
propose the following measures for quaternion clustering
indices:

• QDB index (generalized Davies–Bouldin index),

• QDI index (Dunn’s generalized index),

• QCH index (generalized Calinski–Harabasz index).

All of the proposed indices are adjusted to work
in the quaternion domain. They are based on distance
measures and hence to apply them to the quaternion
domain, the appropriate quaternions distance measure
should be used. We propose to use the distance measure
between two rotations parametrized by unit quaternions,
described in Table 1 as d6 with its simplified formula
described in Eqn. (12).

In the case of the Davis–Bouldin index, the scatter
within the i-th cluster is used. For the quaternion’s
domain we propose to use distance d6, which results in
the following formula:

Si =
1

|Ci|
∑
x∈Ci

{d(x, zi)}

=
1

|Ci|
∑
x∈Ci

{2 arccos(Re(x∗zi))}.
(13)

The distance between quaternion clusters Ci and Cj is
defined using the proposed quaternion distance:

di,j = d(zi, zj) = 2 arccos(Re(z∗i zj)), (14)

where zi denotes the i-th quaternion cluster center.
The final form of the Davies–Bouldin index formula
generalized for quaternions can be denoted as

QDB =
1

K

K∑
i=1

Ri,qt, (15)
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where

Ri,qt = max
j,j �=i

{
Si,q + Sj,q

dij,t

}
.

Dunn’s index also requires significant changes to
enhance it and use during quaternion clustering index
validation. First of all, the computation of the diameter
of the quaternion set and of the distance between two
quaternion sets has to be incorporated. Suppose that S
and T are nonempty subsets of H.

The diameter Δ of S is defined as

Δ(S) = max
x,y∈S

{d(x, y)}
= max

x,y∈S
{2 arccos(Re(x∗y))} . (16)

The distance δ between two quaternion sets S and T
can be defined using a quaternion distance measure:

δ(S) = min
x∈S,y∈T

{d(x, y)}
= min

x∈S,y∈T
{2 arccos(Re(x∗y))} (17)

As a result, Dunn’s index for quaternion clustering can be
computed using the original formula:

QDI = min
1≤i≤K

{
min

1≤j≤Kj �=i

{
δ(Ci, Cj)

max
1≤k≤K

{Δ(Ck)}

}}
.

(18)
The last of the listed indices, the Calinski–Harabasz

one, is computed based on the traces of two matrices: the
between-clusters scatter matrix B and the within-clusters
scatter matrix W . The following formula describes the
CH index:

CH =
[traceB/(K − 1)]

[traceW/(n−K)]
, (19)

where

traceB =

K∑
k=1

nk ‖zk − z‖2. (20)

and

traceW =
K∑

k=1

nk∑
i=1

‖xi − zk‖2 (21)

To compute the same traces in the quaternion domain,
we propose to replace the Euclidean distance with the
respective distance function from the quaternion domain:

traceB =
K∑

k=1

nk(2 arccos(Re(z
∗
kz)))

2 (22)

and

traceW =

K∑
k=1

nk∑
i=1

2 arccos(Re(x∗
i zk))

2
. (23)

Finally, the formula of the proposed QCH index can be
written as

QCH =

1

K − 1

K∑
k=1

nk(2arccos(Re(z
∗
kz)))

2

1

n−K

K∑
k=1

nk∑
i=1

2arccos(Re(x∗
i zk))

2

. (24)

The objectives are to minimize the QDB index,
maximize the QDI index and maximize the QCH index
to establish proper clustering.

5.1. Multi-index selection algorithm for an expected
number of clusters. One of the tasks of clustering
quality indices is to select an optimal number of clusters
for the given data set. This is possible by finding the
minimum or maximum of index values.

We observed that, in many practical cases of
quaternion clustering, these measures do not always have
a well-defined global optimum. Depending on data
diversity, some indices may not possess any extrema. For
any kind of automated clustering tasks, we must to have an
algorithm for selection of the optimal number of clusters
based on given measures. Hence, we propose to construct
a heuristic measure of this kind.

We propose to base the selection algorithm on a
multi-index local extrema analysis.

Algorithm 1. Selecting the expected number of clusters.

Input: QDB, QDI, QCH arrays 1, . . . , k
Output: KE—expected number of clusters

Initialization: A—accumulator array 1, . . . ,K
1: for i = 2 to K − 1 do
2: if QDB[i−1] > QDB[i] and QDB[i+1] > QDB[i]

then
3: A[i-1]++
4: A[i]++
5: A[i+1]++
6: end if
7: if QDI[i − 1] < QDI[i] and QDI[i + 1] < QDI[i]

then
8: A[i-1]++
9: A[i]++

10: A[i+1]++
11: end if
12: if QCH[i−1] < QCH[i] and QCH[i+1] < QCH[i]

then
13: A[i-1]++
14: A[i]++
15: A[i+1]++
16: end if
17: end for
18: return KE argmaxi A[i]
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This kind of routine is based on a multi-criteria
voting mechanism for the optimal number of clusters.
Initial experiments indicate that using a relaxed version
of the method (in which each local optimum votes for its
and neighboring indices) can lead to more reliable results.
In the case of observation of the cumulative effect of lines
2, 7 and 12, one should select the middle value (median)
as an optimal clusters number. It is also possible to use
a strict voting mechanism, in which each optimum votes
only for its own index.

The returned value KE is not guaranteed to be an
optimal number of clusters. Nevertheless, this heuristic
approach yields a good indication of the automatic cluster
selection approach based on multi-index criteria. In the
following numerical analysis, we will use it to analyze the
properties of the proposed clustering algorithm.

6. Test data preparation

To be able to test the properties of the proposed approach,
we have to prepare test data sets. Since there are no well
established test data sets for quaternions, we propose to
use the following test data generation approach.

In each case, the elementary task was to generate two
or more clusters of quaternions. Each cluster consisted
of a defined number of samples generated from normal
distribution. The parameters for a generation single
cluster set was the following family: the cluster center,
the number of samples, and the distribution variance.

The goal of data preparation is to obtain a data set
containing the number of randomly distributed clusters of
quaternions. There are several ways to define quaternion
random variables (Loots et al., 2013). We will follow the
wrapping approach discussed by Johnson (2003).

The multivariate non-degenerate normal distribution
in k-dimensional case is defined as

fx(x, μ)

=
1√

(2π)k|K| exp
(
− 1

2
(x− μ)TK−1(x− μ)

)
,

(25)

where K is a positive definite symmetric covariance
matrix.

The wrapping approach assumes that the random
quaternion element is calculated as a regular zero
mean multivariate normal distribution in tangent space
TS3 rotated at selected qm quaternion representing the
distribution mean. The approach is presented in Fig. 3.

Having a simplified model and making use of
quaternion properties, we obtain the following formula for
the probability density function:

p(q) = c exp
(
− 1

2
log (qM · q)TK−1 log (qM · q)

)
,

(26)

Fig. 3. Visualization of the probability distribution function for
quaternions (Jabłoński, 2008b).

where c is a normalization parameter (in this case, equal
to 1) and K is the covariance matrix. In the following
experiments, we will make use of a simplified random
model with fixed variance at value σq for all dimensions.

Several groups of data sets have been generated:

Data set 1. The data set QnC consists of n clusters,
each containing 1000 elements generated from a Gaussian
distribution with variance 0.005 and a defined quaternion
mean. Each set is described by the list of clusters centres
described by three Euler angles (rx, ry, rz):

Q2C = {(0, 0, 30); (0, 0, 60)},
Q3C = {(0, 0, 30); (0, 0, 60); (−30, 0, 60)},
Q4C = {(0, 0, 30); (0, 0, 60); (−30, 0, 60);

(30, 0, 60)},
Q5C = {(0, 0, 30); (0, 0, 60); (−30, 0, 60);

(30, 0, 60); (0, 0, 90)},
Q7C = {(0, 0, 30); (0, 0, 70); (−50, 0, 60);

(30, 0, 70); (0, 0, 110); (0, 0,−30)},
Q10C = {(0, 0, 30); (0, 0, 60); (−30, 0, 60);

(30, 0, 60); (0, 0, 90); (0, 0,−30);

(0, 0,−60); (−30, 0,−60); (30, 0,−60);

(0, 0,−90)}

(27)

One can observe visualization of a sample data set
Q5C in Fig. 4. Each cluster is marked with a different
shade. See Fig. 1 for convention of the sphere of rotation.

Data set 2. Overlapping clusters: QnDist consists of 2
clusters, each containing 1000 elements generated from
a Gaussian distribution with variance 0.005 and the angle
distance of cluster centres nDist for a selected axis. Each
set is described by the list of clusters centres described by
3 angles (rx, ry, rz):

Q10Dist = {(0, 0, 30); (0, 0, 40)} ,
Q20Dist = {(0, 0, 30); (0, 0, 50)} ,
Q30Dist = {(0, 0, 30); (0, 0, 60)} ,
Q40Dist = {(0, 0, 30); (0, 0, 70)} ,
Q50Dist = {(0, 0, 30); (0, 0, 80)} ,
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Fig. 4. Visualization of the test dataset called Q5C (Piórek,
2018).

(a) Q10Dist (b) Q40Dist (c) Q70Dist

Fig. 5. Visualization of three datasets with a variable amount of
overlapping clusters (Piórek, 2018).

(a) QDB index

(b) QDI index

(c) QCH index

Fig. 6. Procedure of finding an optimal number of clusters for
data generated around 5 clusters.

Q60Dist = {(0, 0, 30); (0, 0, 90)} ,
Q70Dist = {(0, 0, 30); (0, 0, 100)}.

Having these kinds of data sets available for the
experiment, it is possible to reconstruct the parameters
of normal distribution of the given data set using
maximum likelihood estimators for quaternions described
by Markley et al. (2007). However, in the present paper,
we will limit the usage of these methods to find an average
as described in Section 5.

7. Numerical results

Three kinds of experiments were performed to test
the proposed quaternion’s domain clustering k-means
algorithm:

1. Finding optimal clustering for the data generated
with the proposed quaternion’s test data generation
framework.

2. Finding optimal clustering for the generated data
with different degrees of data overlapping.

3. Finding optimal clustering for live recorded real data.

Each experiment consists of two stages:

• Testing the proposed quaternion’s clustering quality
measures against the number of clusters with the aim
of minimizing QDB, maximizing QDI and QCH.

• Performing the clustering for the selected number of
clusters and visualizing the results.

In the first stage the procedure was to iterate through
the number of cluster values from Cnmin to Cnmax (here
arbitrarily selected as Cnmin = 2 and Cnmax = 15),
repeat the clustering Nrep = 3 times and averaging each
of the quaternion’s clustering quality measure (QDB, QDI
and QCH). In consequence we obtain three dependencies:
averaged QDB, QDI and QCH with respect to the number
of clusters. Figure 6 illustrates the procedure established
for the calculation of the number of clusters for data
spread out around 5 clusters.

Calculations of the same set of metrics for ground
truth original clustering data sets resulted in QDBoriginal =
2.0678, QDIoriginal = 0.00051, QCHoriginal = 1118.37.
These values are of the same magnitude as the ones
obtained with k-means clustering. However, the absolute
values differ significantly from those calculated after the
clustering procedure. After a quick analysis of the original
cluster positions (see Fig. 5), we conclude that it is a result
of the amount of data points overlapping between clusters.

Once these dependencies were computed, the
multi-index selection algorithm described in Section 5.1
was run to obtain a valid number of clusters.

In the second stage of the procedure, clustering was
performed again for the numbers of clusters selected
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in the previous stage. Several results were selected to
visualize the results using the sphere of rotations. We
did not visualize every performed test case, but only those
which are a good basis for the analysis of the results as
regards comparison of the similarity or dissimilarity of the
original ground truth clusters for the given datasets.

7.1. Testing clustering for a varying number of
clusters and randomly generated data. The first
investigation was performed on 6 data sets used in the
test framework described in Section 6. The data were
generated around 2, 3, 4, 5, 7 and 10 cluster centres,
respectively, each containing 1000 elements generated
from a Gaussian distribution with variance 0.005 and a
specified quaternion mean. The calculation of the number
of clusters with respect to the quality measure used for
the generated data is summarized in Table 1 (using the
algorithm proposed in Section 5.1).

Figures 7, 8 and 9 present the k-means clustering
results for the four data sets (containing 2, 3, 4 and 5
generated clusters) for the selected number of clusters
collected in Table 1.

It is interesting to see how the clusters align with the
original centres of random generation of quaternions in
the quaternion sphere. The comparison of the clustered
data against the originally generated case for 3 clusters is
presented in Fig. 9.

In all performed experiments the criteria of selecting
an optimal number of clusters were to locally minimize
or maximize all of the quaternion validity indices at
the same time. The actual calculation is based on the
algorithm described in Section 5.1. Apparently, this is
more suitable than selection based on global suprema of
quality measures dependencies. In Fig. 10 the number
of clusters for the data generated around 7 clusters is
depicted. Calculations of the same set of metrics for
ground truth original clustering data sets resulted in
QDBoriginal = 2.8798, QDIoriginal = 0.0695, QCHoriginal =
1265.45. Similarly to the case of five clusters, also these
values are difficult to compare with the results obtained
for k-means clusters.

Selecting the number of clusters based on the

Table 1. Calculated number of clusters obtained from multi-
index criteria (see Algorithm 1, Section 5.1).

Dataset No. of
clusters

QCluster02C1000S0.005v.mat 2
QCluster03C1000S0.005v.mat 3
QCluster04C1000S0.005v.mat 3
QCluster05C1000S0.005v.mat 4
QCluster07C1000S0.005v.mat 8
QCluster10C1000S0.005v.mat 8

(a) 2 groups of generated data (b) 3 groups of generated data

Fig. 7. Clustered rotations for the generated data set (2 and 3
groups).

(a) 4 groups of generated data (b) 5 groups of generated data

Fig. 8. Clustered rotations for the generated data set (4 and 5
groups).

(a) generated data (b) clustered data

Fig. 9. Generated data versus the same data clustered.

global extrema provides two clusters as a valid number,
while selection based on the proposed algorithm provides
8 clusters, which complies more with reality. The
clusterings for both possible numbers of clusters are
visualized in Fig. 11.

7.2. Testing quaternion k-means clustering against
Euler angles baseline k-means clustering. As a part of
this experiment block, one more exercise was performed.
To address advantages of the proposed quaternion
k-means clustering approach, its results were compared
against the baseline k-means algorithm clustering for the
same rotations given in Euler angle parametrization. We
repeated this test for all previously mentioned cluster
numbers and observed that with a growing cluster
number, quaternion-based k-means seems to perform
more promisingly. It can be nicely depicted by clustering
7 or 10 clusters data sets. Figures 12 and 13 present
rotation clustering into 7 and 10 clusters for data sets
containing 7 and 10 clusters, respectively.

In the case of quaternion k-means, the computed
clusters seem to be separated better from each other than
in the case of Euler angles baseline k-means. In the figures
presenting results for Euler angles clustering several areas
with low separability between cluster are highlighted
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Table 2. Number of clusters calculated using multi-index criteria for different data overlapping degrees.

Dataset No. of clusters

QCluster2C1000S0.005v_10dist.mat 2
QCluster2C1000S0.005v20dist.mat 2
QCluster2C1000S0.005v30dist.mat 2
QCluster2C1000S0.005v40dist.mat 2
QCluster2C1000S0.005v50dist.mat 3
QCluster2C1000S0.005v60dist.mat 3
QCluster2C1000S0.005v70dist.mat 3

(a) QDB index

(b) QDI index

(c) QCH index

Fig. 10. Procedure of finding the number of clusters for data gen-
erated around 7 clusters.

(a) 2 clusters (b) 7 clusters

Fig. 11. Clustering results for two differently estimated numbers
of clusters.

(circle lines). The same effect was not observed in the
case of quaternions k-means. To confirm this property one
would need to perform more numerical experiments and
compare cluster separability using some measure. This
can be a subject of further research.

7.3. Testing clustering for a varying degree of data
overlapping. In the second experiment the performance
of the proposed algorithm was tested against various
degrees of data overlapping. The experiment was carried
out on data sets generated around 2 clusters with different
amounts of overlapping, from 10 to 70 degrees.

The main goal of this experiment is to see how valid
the proposed algorithm is with the increased complexity
of the input data set and what is the biggest amount
of overlapping when the proposed quaternion clustering
quality measures provide the real number of clusters of
underlying data. The calculation of the number of clusters
for the generated data with respect to different degrees of
data overlapping is collected in Table 2.

7.4. Testing clustering for recorded real gait
kinematic data. The proposed method and clustering
validity indices were also tested on gait kinematic data,
which were recorded in the Human Motion Laboratory
(HML) of the Polish-Japanese Academy of Information
Technology. The recordings were taken using the Vicon
Motion Kinematics Acquisition and Analysis system
equipped with 10 NIR (near infrared) cameras registering
movements of a subject wearing a suit with attached
markers. The whole process is called the motion capture
process.

Three bones from the human kinetic chain were
recorded: femurs, tibia and feet. The calculated number
of clusters for all bones is gathered in Table 3.

As highlighted in the previous testing, we employed
the algorithm described in Section 5.1 for selecting the
number of clusters, which is based on the local maxima
of the quality measures dependencies that can provide
a more reasonable number of clusters than using global
ones.



A quaternion clustering framework 143

(a) quaternion k-means

(b) Euler angles k-means

Fig. 12. Quaternion vs. Euler angles k-means: 7 clusters.

The clustering results for the respective number of
clusters from Table 3 for all available bones are presented
in Figs. 16, 17 and 18.

7.5. Applying gait data clustering for automatic
gait phase recognition. According to Abhayasinghe
and Murray (2014), the human stride cycle can be further
divided into sub-phases. Based on the clustering results
and the stride analysis, we propose to use clustering to
detect the stride phase.

In the next experiment we relied on the results
obtained for a data set consisting of 921 samples of
the right femur motion of one subject, which was
automatically clustered into 3 classes (see Fig. 18).

Table 3. Number of clusters calculated using multi-index criteria
for live gait kinematic data.

Dataset No. of clusters

lfemur.mat 9
lfoot.mat 2
ltibia.mat 12
rfemur.mat 3
rfoot.mat 2
rtibia.mat 3

(a) quaternion k-means

(b) Euler angles k-means

Fig. 13. Quaternion vs. Euler angles k-means: 10 clusters.

Table 4 presents the list of subphases, their average end
of the interval (relative to the whole stride length) and
the classification criteria based on clustering results for 3
classes.

Based on the feature points of the gait cycle (local
minima and maxima) defined by Abhayasinghe and
Murray (2014), the subphases described in Table 4 were
identified for gait kinematic data visualized in Fig. 19.
For clarity, only the angle component of the femur motion
was used. Additionally, clusters computed by the method
introduced in Section 4 were marked using the following
convention: Cluster 1—light grey, Cluster 2—medium
grey, Cluster 3—dark grey.

Based on the clustering results obtained in
Section 7.4 we compared automatic stride phase
recognition accuracy against ground truth phases
labelling performed manually. The results are presented
in Table 5.

Automatically clustered data with the appropriate
classification criteria lead to detection of gait sub-phases
with high accuracy. This is a solid basis for future
research and numerous practical applications including,
but not limited to, tasks like spinal diseases detection,
patient rehabilitation results assessment or personal
identification.
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Table 4. Stride sub-phases, their average length and classification criteria.

Stride phase Avg. end of interval Classification criteria

Initial contact 2 Maximum value in stride cycle
Loading response 12 Cluster 1 following initial contact
Mid stance 31 Cluster 2 following Cluster 1
Terminal stance 50 Cluster 3
Pre-swing 62 Cluster 2 following Cluster 3
Swing 100 Cluster 1 following Cluster 2

Table 5. Stride cycle phase classification results.

Stride cycle Length (samples) Correctly classified samples Accuracy

Stride cycle 1 113 98 86,7
Stride cycle 2 114 95 83,3
Stride cycle 1 227 193 85,0

(a) 70 degrees (b) 50 degrees

Fig. 14. Clustering results for two different data overlapping
amounts (70 and 50 degrees).

8. Conclusion

In the paper a complete framework for quaternion
clustering was presented, which consists of a clustering
algorithm along with test data generation framework,
quaternion clustering quality measures and the quaternion
clustering number of the cluster selection algorithm.

The proposed quaternion clustering algorithm works
fully in the quaternion domain. It employs random
clusters generation, data assignment to clusters and
quaternions averaging based on quaternions domain
operations only (e.g., random quaternion generation and
the quaternion distance measure). Similarly, clustering
validity indices were adapted for use in the quaternion
domain. The proposed visualization method allows us to
observe that similar rotations described by quaternions are
within the same cluster.

Three experiments were carried out using the
provided methods: testing clustering against different
numbers of clusters for randomly generated data, testing
clustering against different degrees of data overlapping,
testing clustering against recorded real gait kinematic
data. All of those experiments were aimed at observing
quaternion clustering and quality index properties.
Results obtained from the first experiment are summarized
in Table 1. One may conclude that the QDB, QDI
and QCH indices employed all together in the voting

(a) 30 degrees (b) 10 degrees

Fig. 15. Clustering results for two different data overlapping
amounts (30 and 20 degrees).

algorithm described in Section 5.1 provide a reliable
number of clusters for the tested data sets. It is worth
noticing that the number of cluster selections was derived
in an automated procedure.

It is worth highlighting that local criteria have been
used, and it is to be noticed that selecting the number
of clusters based on local minima and maxima of quality
indices can provide a more adequate number of clusters.
Figures 7 and 8 visualize clustering results for the
data generated using the proposed method. Figure 9
compares the clustered data against that original randomly
generated, and it looks like they are very much in-line.
The clusters obtained from k-means clustering are similar
to the originally generated clusters.

From the results of the additional experiment
comparing clustering results obtained from quaternions
k-means versus Euler angles baseline k-means, one can
conclude that quaternion clustering seems to provide
better clusters separability, which is an interesting
observation pointing to further research on the subject.

The second test provides results helping to judge
how valid the clustering criteria are with increasing
data overlapping (data complexity). The proposed
methodology performed well. Up to the data overlapping,
an amount equal to 50 degrees of the real number of
clusters was computed. When the input data overlapping
amount was higher than 50 degrees, the estimation of the
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underlying number of clusters was very close to the actual
one.

In the third experiment, all previously verified
methods were tested on recorded real gait kinematic
data. As presented in Figs. 16, 17 and 18, the
proposed methodology allowed grouping similar rotations
recorded from respective bones into a fixed number of
clusters. Additionally, we conducted an experiment
to automatically detect stride subphases based on the
obtained gait data clustering. The phase classification
task was performed with 85% accuracy, which is a solid
basis for further research and practical applications of the
proposed method.

The presented approach forms a quaternion
clustering framework consisting of a quaternion k-means
method, a test data generation method, a set of validity
indices and an automated multi-index selection algorithm
for an expected number of clusters. The performed set
of experiments verified algorithm and index properties
for artificial and real data sets. Specifically, we tested
the approach for use with recorded real gait kinematic
data. The presented framework can have multiple areas
of applicability for motion capture and motion tracks
analysis including, but not limited to, human motion
similarity comparison and analysis of large datasets,
motion-based person recognition techniques, detection
of anomalies in motion track as a result of disorder or
disease. Quaternion-based clustering can be also used as
a part of more complex algorithms, for example, analysis
of chaotic behaviour (Piórek, 2018).
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Jabłoński, B. (2012). Quaternion dynamic time warping, IEEE
Transactions on Signal Processing 60(3): 1174–1183.

Johnson, M. (2003). Exploiting Quaternions to Support Ex-
pressive Interactive Character Motion, PhD thesis, MIT,
Cambridge, MA.

Koster, K. and Spann, M. (2000). MIR: An approach to robust
clustering-application to range image segmentation, IEEE
Transactions on Pattern Analysis and Machine Intelligence
22(5): 430–444.

Liao, T.W. (2005). Clustering of time series data—a survey, Pat-
tern Recognition 38(11): 1857–1874.

Loots, M.T., Bekker, A., Arashi, M. and Roux, J.J.
(2013). On the real representation of quaternion
random variables, Statistics 47(6): 1224–1240, DOI:
10.1080/02331888.2012.695376.

Markley, F.L., Cheng, Y., Crassidis, J.L. and Oshman, Y. (2007).
Averaging quaternions, Journal of Guidance, Control, and
Dynamics 30(4): 1193–1197.

Maulik, U. and Bandyopadhyay, S. (2002). Performance
evaluation of some clustering algorithms and validity
indices, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 24(12): 1650–1654.

Pei, S.-C. and Cheng, C.-M. (1999). Color image processing by
using binary quaternion-moment-preserving thresholding
technique, IEEE Transactions on Image Processing
8(5): 614–628.

Piórek, M. (2018). Analysis of Chaotic Behavior in Non-linear
Dynamical Systems, Springer, Cham.

Reumerman, H.-J., Roggero, M. and Ruffini, M. (2005). The
application-based clustering concept and requirements for
intervehicle networks, IEEE Communications Magazine
43(4): 108–113.
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