
Int. J. Appl. Math. Comput. Sci., 2020, Vol. 30, No. 1, 149–160
DOI: 10.34768/amcs-2020-0012

AN ALGORITHM FOR QUATERNION–BASED 3D ROTATION

ALEKSANDR CARIOW a, GALINA CARIOWA a, DOROTA MAJORKOWSKA-MECH a,∗

aFaculty of Computer Science and Information Technology
West Pomeranian University of Technology in Szczecin

ul. Żołnierska 49, 71-210 Szczecin, Poland
e-mail: dmajorkowska@wi.zut.edu.pl

In this work a new algorithm for quaternion-based spatial rotation is presented which reduces the number of underlying real
multiplications. The performing of a quaternion-based rotation using a rotation matrix takes 15 ordinary multiplications,
6 trivial multiplications by 2 (left-shifts), 21 additions, and 4 squarings of real numbers, while the proposed algorithm can
compute the same result in only 14 real multiplications (or multipliers—in a hardware implementation case), 43 additions,
4 right-shifts (multiplications by 1/4), and 3 left-shifts (multiplications by 2).

Keywords: quaternions, space rotation, design of algorithms.

1. Introduction

Currently, quaternions (Kantor and Solodovnikov, 1989)
are widely used for data processing in various fields of
science and engineering including navigation (Fenwick,
1992), orbital mechanics of satellites (Kuipers, 1999;
Andreis and Canuto, 2004), robotics and computer vision
(Hu et al., 2006; Çakir and Bütün, 2010; Wareham
et al., 2005; Terzakis et al., 2014), autonomous vehicles
(Roberts et al., 2006; Fresk and Nikolakopoulos, 2013),
digital signal and image processing (Bülow and Sommer,
2001; Sangwine and Bihan, 2007; Alfsmann et al.,
2007; Pei et al., 2001; 2011; Ell, 1993; Witten and
Shragge, 2006; Bayro-Corrochano, 2006), 3D game
programming and computer graphics (Pletinckx, 1989;
Nüchter, 2009; Angel and Shreiner, 2012; Abbena
et al., 2006; Mukundan, 2002; Markley, 2008; Shuster
and Natanson, 1993; Vince, 2011; Lengyel, 2011;
Hanson, 2006), wireless communications (Wysocki et al.,
2006), public-key cryptography (Malekian et al., 2011),
crystallographic texture analysis (Kunze and Schaeben,
2004), etc.

The most important property of quaternions is the
fact that every unit quaternion represents a rotation of
objects in three dimensions (3D). This plays an essential
role in applying quaternions to perform 3D rotations
in various machine vision applications (Rousseau et al.,

∗Corresponding author

2002; Terzakis et al., 2014; Kanade, 1987). Using unit
quaternions is a most natural, elegant, and practical way
to describe rotation in three-dimensional vector spaces
(Çakir and Bütün, 2010; Funda et al., 1990; Huynh,
2009). However, the direct applying of quaternions
to rotation in three dimensions requires a relatively
large amount of computation. For that reason this
operation is usually implemented via multiplication of
a vector by the so-called “rotation matrix”, which
is simply calculated based on the coefficients of the
quaternion (Markley, 2008; Shuster and Natanson, 1993).
Nevertheless, even this way requires a relatively large
amount of computations. In some applications, reducing
the number of multiplications is especially important. In
this article we will show a new algorithm that requires
fewer multiplications than the one that uses a rotation
matrix.

The paper is organized in the following way.
Section 2 describes a rotation in 3D space and introduces
a rotation matrix. Section 3 introduces quaternions and
describes a rotation in 3D space using quaternions. It
also explains a representation of quaternions as 4×4
matrices and clarifies the description of rotation in such
a representation. Section 4 details the transformation
and the derivations of the final algorithm that turns the
vector into the rotation outcome. Section 5 compares
the computational complexity of the presented algorithm
with other methods of description of rotation in 3D space.

© 2020 A. Cariow et al.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

mailto:dmajorkowska@wi.zut.edu.pl

150 A. Cariow et al.

The last section summarizes the introduced solution and
describes possible applications of the presented algorithm.

2. Rotations in three-dimensional space and
the rotation matrix

Rotation is a concept coming from geometry and it is
also a basic kind of motion in physics. Any rotation is
a motion of a certain space that preserves at least one
point. It can describe, for example, the motion of a rigid
body around a fixed point. A rotation is different from
other types of motion: translations, which have no fixed
points, and reflections, each of them having an entire
two-dimensional flat of fixed points in three-dimensional
space. In geometry, Euler’s rotation theorem states that,
in 3D, any displacement of a rigid body such that a point
on the rigid body remains fixed is equivalent to a single
rotation about some axis that runs through the fixed point.
It also means that the composition of two rotations is also
a rotation.

Generally rotations are not commutative. The axis of
rotation is known as an Euler axis, typically represented
by a unit vector n. Let P be chosen point of a rigid body,
which rotates according to the right hand rule by the angle
ϕ about the rotation axis, represented by the unit vector n.
Let a reference frame be connected with a point O, which
lies on the rotation axis. In this reference frame, pointP is
represented by the vector x, as shown in Fig. 1. When we

O

S

Q

P

R
.

.

n

x

y

Fig. 1. Illustration of rotation of the vector x by the angle ϕ
around the rotation axis represented by the unit vector
n, according to the right hand rule.

rotate the point P about the rotation axis, we get the point
Q—an image of P , which is represented by the vector y.
Let the point R be an orthogonal projection of the point
P onto the rotation axis and the point S be an orthogonal
projection of the point Q onto the vector r which starts at
point R and ends at point P . The vectors

−→
RP and

−−→
RQ are

equal in length |RP | = |RQ| = r. It is easy to see that

−−→
OQ =

−−→
OR +

−→
RS +

−→
SQ. (1)

The first vector can be written in the following way:

−−→
OR = n|OR| = n(n · x),

where · denotes the operator of the classical dot product.
The second vector which occurs in Eqn. (1) may be
presented as

−→
RS =

−→
RP

|RP | |RS|

=

−−→
OP −−−→

OR

r
r cosϕ

= [x− n(n · x)] cosϕ.

The last component in Eqn. (1) is perpendicular to the
plane defined by the vectors

−−→
OR and

−−→
OP , so its direction

is defined by the vector n × x, where × denotes the
operator of the classical cross product. Its length is
|SQ| = |RQ| sinϕ = r sinϕ. Hence, we can write

−→
SQ =

n× x

|n× x|r sinϕ = (n× x) sinϕ.

Using the above relationships, after some basic
transformation, Eqn. (1) may be presented in the
following way:

y = x cosϕ+ n(n · x)(1− cosϕ) + (n× x) sinϕ, (2)

which is well known as the rotation formula (Goldstein,
1980) or Rodrigues’ rotation formula.

If we chose a Cartesian coordinate system with the
origin at the point O and a standard base, then Eqn. (2)
would be as follows:

⎡
⎣
y1
y2
y3

⎤
⎦ =

⎡
⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦
⎡
⎣
x1

x2

x3

⎤
⎦ , (3)

An algorithm for quaternion-based 3D rotation 151

where y = [y1, y2, y3]
T, x = [x1, x2, x3]

T,

r11 = cosϕ+ n2
1(1 − cosϕ),

r12 = n1n2(1− cosϕ)− n3 sinϕ,

r13 = n1n3(1− cosϕ) + n2 sinϕ,

r21 = n1n2(1− cosϕ) + n3 sinϕ,

r22 = cosϕ+ n2
2(1 − cosϕ),

r23 = n2n3(1− cosϕ)− n1 sinϕ,

r31 = n1n3(1− cosϕ)− n2 sinϕ,

r32 = n2n3(1− cosϕ) + n1 sinϕ,

r33 = cosϕ+ n2
3(1 − cosϕ),

and n = [n1, n2, n3]
T.

The matrix which occurs in (3) is known as the
rotation matrix. This provides an algebraic description
of rotations, and is used extensively for computations in
geometry, physics, and computer graphics.

A general rotation can be composed out of particular
rotations along some specified (coordinate) axes, as is
done, for example, in Euler-angle parametrization.

3. Quaternions and their connection with
rotations

A quaternion is a hypercomplex number which can be
presented as a four-element vector or as a sum (Kantor
and Solodovnikov, 1989):

q =

⎡
⎢⎢⎣

q1
q2
q3
q4

⎤
⎥⎥⎦ = q1i+ q2j + q3k + q4,

where {ql}, l = 1, . . . , 4, are real numbers, while i, j,
k are imaginary units whose products are defined by the
following equations:

ij = k, jk = i, ki = j, ji = −k,

kj = −i, ik = −j, ijk = −1.

Addition and multiplication of quaternions are
defined exactly analogously to complex addition
and multiplication, but it must be remembered that
multiplication is not commutative. A quaternion has
a real part q4 and an imaginary part q1i + q2j + q3k.
The latter has three components and, thus, can be used
as a vector quantity. For this reason, the real part is
sometimes referred to as the scalar part of the quaternion
and the whole quaternion may be represented by the
sum of its vector and scalar parts. A quaternion with a
zero real or scalar part is called a pure quaternion. Since
q1i + q2j + q3k is a three-dimensional vector, clearly
there is a one-to-one correspondence between vectors
in 3D space and the quaternion sub-space consisting of

pure quaternions. The modulus (norm) and conjugate of
a quaternion follow the definitions for complex numbers,

|q| =
√
q21 + q22 + q23 + q24 ,

q∗ = −q1i− q2j − q3k + q4.

A quaternion with a unit modulus is called a unit
quaternion. The conjugate of a quaternion is obtained,
like the complex conjugate, by negating the imaginary
or vector part. For every non-zero quaternion, an inverse
quaternion is given by

q−1 =
q∗

|q|2 .

Similarly to complex numbers, the quaternion has
also trigonometric form,

q = |q|(n sinα+ cosα),

where n = n1i + n2j + n3k is a unit pure quaternion.
From this representation it follows that every quaternion
is connected with a unit vector n, which may be treated
as a vector in 3D space and an angle, so it has the same
parameters as rotations.

Quaternions are widely used to describe rotations in
3D space. Compared with rotation matrices, they are
more compact, more numerically stable, and may be more
efficient. Compared with Euler angles, they are simpler to
compose and avoid the problem of gimbal lock.

We can interpret the rotation of the vector x =
[x1, x2, x3]

T by the angle ϕ about the axis represented by
the unit vector n = [n1, n2, n3]

T using the quaternion
product as follows (Mukundan, 2002; Markley, 2008;
Shuster and Natanson, 1993):

y = qxq−1, (4)

where q = in1 sin
ϕ
2 + jn2 sin

ϕ
2 + kn3 sin

ϕ
2 + cos ϕ

2 is
a unit quaternion, while x = x1i + x2j + x3k and y =
y1i+ y2j+ y3k are quaternion counterparts of the vectors
x and y. Since the quaternion q is a unit quaternion, the
inverse q−1 = q∗. A full justification of (4) can be found
in many online sources (e.g., Jia, 2015; Vicci, 2001).

If we calculate the product of quaternions q =
q1i + q2j + q3k + q4, x = x1i + x2j + x3k and
q∗ = −q1i − q2j − q3k + q4, according to the formula
(4), without taking into account the relation between the
quaternions q and q∗, we must perform 12 multiplications
and 8 additions of real numbers when determining the
product qx (since x is determined by only 3 real numbers),
and 12 multiplications and 9 additions of real numbers
when determining the product (qx)q∗ (since y has only 3
real components). The total number of multiplications and
additions of real numbers in the calculation of quaternion
y will be equal to 24 and 17, respectively.

152 A. Cariow et al.

If we take into account the relation between
quaternions q and q∗, and do the quaternion multiplication
according to Eqn. (4), then we obtain

y = y1i+ y2j + y3k

=
[
(q21 − q22 − q23 + q24)x1

+ 2(q1q2 − q3q4)x2

+ 2(q1q3 + q2q4)x3

]
i

+
[
2(q1q2 + q3q4)x1

+ (−q21 + q22 − q23 + q24)x2

+ 2(−q1q4 + q2q3)x3

]
j

+
[
2(q1q3 − q2q4)x1

+ 2(q1q4 + q2q3)x2

+ (−q21 − q22 + q23 + q24)x3

]
k.

(5)

While we calculate the quaternion y, 6 conventional
multiplications, 4 operations of squaring, 6 trivial
multiplications by 2 (shifts), and 15 additions are required
to calculate the expressions in parentheses. Then
multiplying these results by the components x1, x2 and
x3 of quaternion x require further 9 multiplications, and
in the end obtaining the sums in square brackets require
another 6 additions. Thus, 15 multiplications, 4 squaring
operations, 6 multiplications by 2 (which we do not count)
and 21 additions are required to rotate the vector in 3D
space. Then the implementation of such computations
requires 15 + 4 = 19 multipliers.

From now on we will write subscripts to emphasise
the sizes of vectors and matrices. Using the matrix-vector
notation, Eqn. (5) can be written as follows:

y4 = Q4Q
∗
4x4, (6)

where

Q4 =

⎡
⎢⎢⎣

q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

⎤
⎥⎥⎦ ,

Q∗
4 =

⎡
⎢⎢⎣

q4 −q3 q2 −q1
q3 q4 −q1 −q2
−q2 q1 q4 −q3
q1 q2 q3 q4

⎤
⎥⎥⎦ ,

x4 = [x1, x2, x3, 0]
T and y4 = [y1, y2, y3, 0]

T are input
and output vectors, respectively. In this context, Q4 is
a well-known matrix representation of the quaternion q
and “conjugation” of a matrix, marked with an asterisk, is
not a matrix representation of a conjugate quaternion but
means the change of the signs of the fourth row and the
fourth column entries of this matrix (the entry which is in
the fourth row and in the fourth column will change the
sign twice, i.e., it will not change).

To show that Eqn. (5) can be written equivalently as
(6), we calculate the product of the matrices Q4 and Q∗

4

in the expression (6),

⎡
⎢⎢⎣
y1
y2
y3
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

⎤
⎥⎥⎦

·

⎡
⎢⎢⎣

q4 −q3 q2 −q1
q3 q4 −q1 −q2
−q2 q1 q4 −q3
q1 q2 q3 q4

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 r44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

0

⎤
⎥⎥⎦ ,

where

r11 = q21 − q22 − q23 + q24 ,

r12 = 2(q1q2 − q3q4),

r13 = 2(q1q3 + q2q4),

r21 = 2(q1q2 + q3q4),

r22 = −q21 + q22 − q23 + q24 ,

r23 = 2(q2q3 − q1q4),

r31 = 2(q1q3 − q2q4),

r32 = 2(q2q3 + q1q4),

r33 = −q21 − q22 + q23 + q24 ,

r44 = q21 + q22 + q23 + q24 .

Then we can write
⎡
⎣

y1
y2
y3

⎤
⎦ =

⎡
⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦
⎡
⎣

x1

x2

x3

⎤
⎦ . (7)

It is an exact equivalent of Eqn. (5) in vector-matrix
notation.

It can be directly checked that the matrix in the
expression (7) is equal to the rotation matrix from Eqn. (2)
when we use the relations q1 = n1 sin

ϕ
2 , q2 = n2 sin

ϕ
2 ,

q3 = n3 sin
ϕ
2 , q4 = cos ϕ

2 . That is why we use the same
symbols for the entries of the rotation matrix.

It is easy to see that the calculation of the entries
of the rotation matrix, which occurs in (7), requires 6
conventional multiplications, 4 operations of squaring,
6 trivial multiplications by 2 (shifts), and 15 additions.
Multiplication of a vector by this matrix requires 9 more
multiplications and 6 additions. Thus, 15 multiplications,
4 squaring operations, 6 multiplications by 2, and 21
additions are required to rotate the vector in space.
It should be noted that squares are a special case of
multiplication where both operands are identical. For

An algorithm for quaternion-based 3D rotation 153

this reason, digital circuits designers often use embedded
general-purpose multipliers to implement the squaring
units by connecting a multiplier’s inputs together. Then
a completely parallel hardware implementation of such
computations requires 15 + 4 = 19 multipliers. The
multiplier is the most critical unit, so reducing the number
of multipliers plays a significant role. We will show how
this can be done.

Since the starting point of the described algorithm
of rotation in 3D space is Eqn. (6), we will discuss
how this description can be applied to the sequence of
rotations. It is well known that a vector connected to a
pure quaternion x undergoing two rotations, represented
by the unit quaternions p and q, respectively, will have
the same outcome as undergoing a single rotation. This
rotation is related to the quaternion qp, because the result
of these rotations is equal to

q(pxp∗)q∗ = (qp)x(p∗q∗) = (qp)x(qp)∗. (8)

In this equation, we used the facts that quaternion
multiplication is associative and has the following
property:

(qp)∗ = p∗q∗. (9)

Thus, if we want to find the result of many rotations,
it is enough to calculate the product of quaternions
corresponding to these rotations, but in reverse order.

In the matrix-vector notation of rotation in 3D space,
as in Eqn. (6), if the quaternions p = p1i+p2j+p3k+p4
and q = q1i + q2j + q3k + q4 correspond to the matrices
P4 and Q4, respectively, where

P4 =

⎡
⎢⎢⎣

p4 −p3 p2 p1
p3 p4 −p1 p2
−p2 p1 p4 p3
−p1 −p2 −p3 p4

⎤
⎥⎥⎦ ,

Q4 =

⎡
⎢⎢⎣

q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

⎤
⎥⎥⎦ ,

then, according to (6), the result of composition of rotation
will be described by the vector

Q4Q
∗
4(P4P

∗
4x4). (10)

It is easy to directly check that

Q∗
4P4 = P4Q

∗
4 (11)

and, unlike the case of the quaternions,

(Q4P4)
∗ = Q∗

4P
∗
4. (12)

These two properties allow us to represent the
expression (10) in the following form:

(Q4P4)(Q4P4)
∗x4. (13)

It should be noted that the product Q4P4 is the
matrix equivalent of the quaternion product qp. Thus,
similarly as in the case of quaternion notation, to find
the result of many rotations, it is enough to calculate the
product of matrices being the matrix representation of the
corresponding quaternions, but in reverse order. It might
seem that calculating the product of two 4×4 matrices
requires more operations on real numbers than calculating
the product of two quaternions. However, among the 16
entries in each such matrix, only 4 entries differ (e.g.,
entries of a selected row or column), and the remaining
entries repeat these values. Therefore, to perform a
set of consecutive rotations using matrix-vector products,
the same number of operations with real numbers is
required as in the case of using conventional quaternion
multiplication.

4. Synthesis of a rationalized algorithm for
quaternion-based 3D rotation

The idea is that both matrices Q4 and Q∗
4 in the

expression (6) can be decomposed as an algebraic sum
of a symmetric Toeplitz matrix and another matrix
which has many zero entries. The Toeplitz matrix is
shift-structured, and a number of algorithms exist for fast
matrix-vector multiplication. For instance, the matrix
can be diagonalized using the fast Hadamard transform
(FHT), and thus matrix-vector products can be computed
efficiently.

Let us multiply the last column of Q∗
4 by (−1). The

effect of this multiplication is equivalent to changing the
last coordinate of the vector through which the matrix Q∗

4

is multiplied to the opposite. This treatment is undertaken
so that the obtained matrix can be written as an algebraic
sum of the block-symmetric Toeplitz-type matrix and
some sparse matrix, i.e., a matrix containing only a small
number of nonzero entries. We can easily see that such
transformation leads to minimization of the computational
complexity of the final algorithm. We will denote by
z4 = [z1, z2, z3, z4]

T the product Q∗
4x4, which occurs in

Eqn. (6). Then we can rewrite z4 in the following form:

z4 = Q∗
4x4 = (Q̂4 − 2Q̌4)x̄4, (14)

where

Q̂4 =

⎡
⎢⎢⎣

q4 q3 q2 q1
q3 q4 q1 q2
q2 q1 q4 q3
q1 q2 q3 q4

⎤
⎥⎥⎦ ,

Q̌4 =

⎡
⎢⎢⎣

0 q3 0 0
0 0 q1 0
q2 0 0 0
0 0 0 q4

⎤
⎥⎥⎦ ,

and x̄4 = [x1, x2, x3,−x4]
T. In this case the

matrix-vector product Q̂4x̄4 (with the Toeplitz-type

154 A. Cariow et al.

matrix) can now be calculated using one of the
well-known fast algorithms. Indeed, it is not hard to see
that the matrix has the following structure:

Q̂4 =

[
A2 B2

B2 A2

]
,

where

A2 =

[
q4 q3
q3 q4

]
, B2 =

[
q2 q1
q1 q2

]
.

The matrix possessing such a structure can be
effectively factorized (Cariow, 2014), and we can
calculate the product of Q̂4x̄4 with the following
decomposition:

Q̂4x̄4 =
{
(H2 ⊗ I2)

1

2
[(A2 +B2)

⊕ (A2 −B2)] (H2 ⊗ I2)
}
x̄4, (15)

where

A2 +B2 =

[
q4 + q2 q3 + q1
q3 + q1 q4 + q2

]
,

A2 −B2 =

[
q4 − q2 q3 − q1
q3 − q1 q4 − q2

]
,

H2 =

[
1 1
1 −1

]

is the second-order Hadamard matrix, IN is the identity
matrix of orderN , and “⊗” and “⊕” denote the Kronecker
product and the direct sum of two matrices, respectively
(Steeb and Hardy, 2011).

It is easy to see that the matrices A2+B2 and A2−B2

possess a structure that provides “good” factorization, too.
Therefore, we can write as previously:

A2 +B2 = H2

{1

4

[(
q4 + q2 + q3 + q1

)

⊕ (
q4 + q2 − q3 − q1

)]}
H2,

A2 −B2 = H2

{1

4

[(
q4 − q2 + q3 − q1

)

⊕ (
q4 − q2 − q3 + q1

)]}
H2.

Combining partial decompositions in a single procedure,
we can rewrite (15) as follows:

Q̂4x̄4 = W
(0)
4 W

(1)
4 D4W

(1)
4 W

(0)
4 Î4x4, (16)

where

W
(0)
4 = H2 ⊗ I2 =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ ,

W
(1)
4 = I2 ⊗H2 =

⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦,

D4 = diag (s1, s2, s3, s4) ,

Î4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦ .

The diagonal entries of the matrix D4 are as follows:

s1 =
1

4
(q4 + q2 + q3 + q1) ,

s2 =
1

2
(q4 + q2−q3−q1) ,

s3 =
1

4
(q4 − q2 + q3 − q1) ,

s4 =
1

2
(q4 − q2 − q3 + q1) .

It is easy to check that the entries of the matrix D4 can be
calculated using the following matrix-vector procedure,
which reduces the number of underlying real additions:

d4 =
1

4
W

(1)
4 W

(0)
4 J4q4, (17)

where

d4 = [s1, s2, s3, s4]
T,

J4 =

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦

is the exchange matrix, and

q4 = [q1, q2, q3, q4]
T.

Unfortunately, the computational complexity of the
product 2Q̌4x̄4, which occurs in Eqn. (14), cannot be
reduced and this product is calculated directly, without
any tricks. Combining the calculations for both products
Q̂4x̄4 and 2Q̌4x̄4 in a single procedure, we finally obtain

z4 = Q∗
4x4

= Σ4×8W
(0)
8 W

(1)
8 D8W

(1)
8 W̌

(0)
8 P

(0)
8×4x4, (18)

An algorithm for quaternion-based 3D rotation 155

where

Σ4×8 = (1̄1×2 ⊗ I4)

=

⎡
⎢⎢⎣

1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

⎤
⎥⎥⎦ ,

1̄1×2 = [1,−1],

W
(0)
8 = (H2 ⊗ I2)⊕ I4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

04

04

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W
(1)
8 = (I2⊗H2)⊕ I4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 −1

02

02
1 1
1 −1

04

04

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D8 = diag(s1, s2, s3, s4, s5, s6, s7, s8),

s5 = 2q3, s6 = 2q1, s7 = 2q2, s8 = 2q4,

and s1, s2, s3, s4 are the diagonal entries of matrix D4,

W̌
(0)
8 = (H2⊗I2)⊕P

(0)
4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

04

04

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P
(0)
4 =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

P
(0)
8×4 = 12×1 ⊗ Î4=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

12×1 = [1, 1]T.

It is not hard to see that the entries of the matrix
D8 can be calculated using the following matrix-vector
procedure:

d8 = D̂
(0)
8 W

(1)
8 W̃

(0)
8 P

(1)
8×4J4q4, (19)

where

d8 = [s1, s2, s3, s4, s5, s6, s7, s8]
T,

D̂
(0)
8 = diag

(
1

4
,
1

4
,
1

4
,
1

4
, 2, 2, 2, 2

)
,

W̃
(0)
8 = (H2⊗I2)⊕P

(1)
4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

04

04

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P
(1)
4 =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎤
⎥⎥⎦ ,

P
(1)
8×4 = 12×1 ⊗ I4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we will go back to Eqn. (6). First, we
have shown how to calculate the product Q∗

4x4 = z4.
Subsequently, we will focus on calculation of the product
Q4z4. We multiply the last row of Q4 by (−1). Then it
is not hard to see that the matrix-vector product Q4z4 can
be represented in the following form:

y4 = Q4z4 = Î4(Q̂4 − 2Q̌4)z4. (20)

156 A. Cariow et al.

It is easy to see that we are again dealing with the same
matrices. Thus, in this case all the previous steps related to
the synthesis of the algorithm for calculating the product
z4 = Q∗

4x4 can be repeated for calculating the product
Q4z4, too. Thus, we can describe the final procedure for
computing the vector y4 as follows:

y4 = Î4Σ4×8W
(0)
8 W

(1)
8 D8W

(1)
8 W̌

(0)
8 P

(1)
8×4

·Σ4×8W
(0)
8 W

(1)
8 D8W

(1)
8 W̌

(0)
8 P

(0)
8×4x4. (21)

Realization of computations via (21) requires 16
multiplications and 48 additions of real numbers.
However, taking into account that x4 = 0 and y4 = 0,
the number of operations can be further reduced. Then the
expression (21) can be rewritten in the following refined
form:

y3 = Σ3×7W̄
(0)
7 W

(1)
7 D7W

(1)
7 Ŵ

(0)
7 P

(1)
7×4

·Σ4×7W
(0)
7 W

(1)
7 D7W

(1)
7 W̌

(0)
7 P

(0)
7×3x3, (22)

where

Σ3×7 =

⎡
⎣

1 0 0 0 −1 0 0
0 1 0 1 0 −1 0
0 0 1 0 0 0 −1

⎤
⎦,

W̄
(0)
7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 0
1 0 −1 0
0 0 0 1

04×3

03×4

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W
(1)
7 = (I2⊗H2)⊕ I3

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 −1

02

02
1 1
1 −1

04×3

03×4

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D7 = diag(s1, s2, s3, s4, s5, s6, s7),

Ŵ
(0)
7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 0
1 0 −1 0
0 0 0 1

04×3

03×4

0 1 0
0 0 1
1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P
(1)
7×4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ4×7 =

⎡
⎢⎢⎣

1 0 0 0 −1 0 0
0 1 0 0 0 −1 0
0 0 1 0 0 0 −1
0 0 0 1 0 0 0

⎤
⎥⎥⎦,

W
(0)
7 = (H2 ⊗ I2)⊕ I3

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

04×3

03×4

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W̌
(0)
7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 0
1 0 −1 0
0 0 0 1

04×3

03×4

0 1 0
0 0 1
1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P
(0)
7×3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 1 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In turn, the entries of the matrix D7 = diag(d7) can
be calculated using the following improved matrix-vector
procedure:

d7 = D
(1)
7 W

(1)
7 W

(2)
7 P

(2)
7×4J4q4, (23)

where
d7 = [s1, s2, s3, s4, s5, s6, s7]

T,

D
(1)
7 = diag

(
1

4
,
1

4
,
1

4
,
1

4
, 2, 2, 2

)
,

W
(2)
7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

04×3

03×4

1 0 0
0 0 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

An algorithm for quaternion-based 3D rotation 157

P
(2)
7×4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 2 shows a data flow diagram of the
rationalized algorithm for quaternion-based 3D rotation
and Fig. 3 shows a data flow diagram of the process for
calculating entries of the matrix D7 in accordance with
the procedure (23). In this paper, data flow diagrams
are oriented from left to right. Straight lines in the
figures denote the operations of data transfer. Points
where lines converge denote summation. The dotted
lines indicate the subtraction operation. We use the
usual lines without arrows intentionally, so as not to
clutter the picture. The circles in these figures show
the operation of multiplication by a number (variable
or constant) inscribed inside a circle. In turn, the
rectangles indicate the matrix-vector multiplications with
the Hadamard matrices of order 2.

5. Performance evaluation

Let us now consider the data flow diagrams, presented
in Figs. 2 and 3. One can observe that realization of
computations in accordance with (22) and (23) requires
only 14 multiplications, 43 additions, 4 right-shifts
(multiplications by 1/4), and 3 left-shifts (multiplications
by 2).

Table 1 presents a comparison of the number of
multiplications and additions of real numbers, which are
necessary for calculating the rotated vector in 3D space,
using the quaternion multiplication, the rotation matrix
and the proposed algorithm.

As we can see, the implementation of our algorithm
requires fewer multiplications than the implementation of
calculations based on the rotation matrix-vector product.
Reducing the number of multiplications is especially
important in the design of specialized VLSI fully parallel
processors because minimizing the number of necessary
multipliers also reduces the power dissipation and lowers
the cost implementation of the entire system being
implemented. This is because a hardware multiplier is
more complicated unit than an adder and occupies much

Table 1. Number of multiplications and additions of real num-
bers needed to calculate the rotated vector.

type of quaternion rotation proposed
operation multiplication matrix algorithm

× 24 19 14
+ 17 21 43

more of the chip area than the adder. It is proved
that the hardware complexity of an embedded multiplier
grows quadratically with the operand size, while the
hardware complexity of a binary adder increases linearly
with the operand size. Thus, we want to note that our
algorithm is mainly focused on a fully parallel hardware
implementation. In the case of software implementation
on modern computers, when multiplication and addition
can take about the same time, the proposed algorithm does
not give a gain in speed.

6. Conclusion

We presented a new algorithm for quaternion-based
spatial rotation. During the synthesis of the discussed
algorithm we use the fact that the quaternion-based
spatial rotation may be represented as the matrix-vector
product y4 = Q4Q

∗
4x4. The matrices participating in

the product have unique structural properties that allow
performing its advantageous decompositions. Namely,
these decompositions lead to reducing the multiplicative
complexity of computations. If we compare the
effectiveness of the discussed two approaches, we can
conclude the following. The algorithm using the rotation
matrix is more efficient when the set of points (vectors)
of a solid body performs the same rotation, because in
this case the rotation matrix is calculated only once and
is the same for all points (vectors) of this body. But
if we are dealing with a set of bodies or objects which
could be treated as ideal particles and rotate at different
angles or around different axes, the rotation matrix must
be calculated for each element separately and then the
algorithm using this matrix loses in comparison with our
algorithm. In particular, such a case occurs when we
are dealing with a swarm of unmanned aerial vehicles,
each of which performs an independent movement and
is controlled from a common center (Alfeo et al., 2018;
Choutri et al., 2018; Avellar et al., 2015; Joordens
and Jamshidi, 2009). Another effective application of
our approach is quaternion-based information security
(Czaplewski et al., 2014; Dzwonkowski et al., 2015;
Czaplewski and Rykaczewski, 2015). Thus, in some cases
the presented algorithm may appear to be more applicable
and convenient from the implementation point of view.

References
Abbena, E., Salamon, S. and Gray, A. (2006). Modern Differen-

tial Geometry of Curves and Surfaces with Mathematica,
3rd Edition, Chapman & Hall/CRC, Boca Raton, FL.

Alfeo, A., Cimino, M., Francesco, N.D., Lazzeri, A., Lega, M.
and Vaglini, G. (2018). Swarm coordination of mini-UAVs
for target search using imperfect sensors, Intelligent Deci-
sion Technologies 12(2): 149–162.

Alfsmann, D., Göckler, H.G., Sangwine, S.J. and Ell,
T.A. (2007). Hypercomplex algebras in digital signal

158 A. Cariow et al.

3

2

1

x

x

x

7

6

5

4

3

2

1

s

s

s

s

s

s

s
2H

2H

2H
2H

2H
2H 2H

7

6

5

4

3

2

1

s

s

s

s

s

s

s
2H

2H

2H

2H

2H

3

2

1

y

y

y

Fig. 2. Data flow diagram for a rationalized quaternion-based 3D rotation algorithm.

4

3

2

1

q

q

q

q

2

2

2

41

41

41

41

7

6

5

4

3

2

1

s

s

s

s

s

s

s

2H

2H

2H

Fig. 3. Data flow diagram describing the process of calculating entries of the matrix D7.

processing: Benefits and drawbacks (tutorial), EURASIP
15th European Signal Processing Conference (EUSIPCO
2007), Poznań, Poland, pp. 1322–1326.

Andreis, D. and Canuto, E.S. (2004). Orbit dynamics and
kinematics with full quaternions, Proceedings of the
2004 American Control Conference, Boston, MA, USA,
pp. 3660–3665.

Angel, E. and Shreiner, D. (2012). Interactive Computer Graph-
ics: A Top-Down Approach with Shader-Based OpenGL,
6th Edition, Pearson, Harlow.

Avellar, G., Pimenta, G.P.L. and Iscold, P. (2015). Multi-UAV
routing for area coverage and remote sensing with
minimum time, Sensors 15(11): 27783–27803.

Bayro-Corrochano, E. (2006). The theory and use of the
quaternion wavelet transform, Journal of Mathematical
Imaging and Vision 24(1): 19–35.

Bülow, T. and Sommer, G. (2001). Hypercomplex
signals—a novel extension of the analytic signal to the
multidimensional case, IEEE Transactions on Signal Pro-
cessing 49(11): 2844–2852.

Çakir, M. and Bütün, E. (2010). Constrained trajectory
planning for cooperative work with behavior based genetic
algorithm, in A. Ponce de Leon F. de Carvalho et al.

(Eds), Computing and Artificial Intelligence, Advances
in Intelligent and Soft Computing, Vol. 79, Springer,
Berlin/Heidelberg, pp. 497–508.

Cariow, C. (2014). Strategies for the synthesis of fast algorithms
for the computation of the matrix-vector products, Journal
of Signal Processing Theory and Applications 3(1): 1–19.

Choutri, K., Lagha, M., Dala, L. and Lipatov, M. (2018).
Quadrotors UAVs swarming control under leader-followers
formation, 22nd International Conference on System The-
ory, Control and Computing (ICSTCC), Sinaia, Romania,
pp. 794–799.

Czaplewski, B., Dzwonkowski, M. and Rykaczewski, R. (2014).
Digital fingerprinting based on quaternion encryption
scheme for gray-tone images, Journal of Telecommunica-
tions and Information Technologies 2: 3–11.

Czaplewski, B. and Rykaczewski, R. (2015). Receiver-side
fingerprinting method for color images based on a series
of quaternion rotations, Przegląd Telekomunikacyjny +
Wiadomości Telekomunikacyjne (8–9): 1127–1134.

Dzwonkowski, M., Papaj, M. and Rykaczewski, R. (2015). A
new quaternion-based encryption method for DICOM
images, IEEE Transactions on Image Processing
24(11): 4614–4622.

An algorithm for quaternion-based 3D rotation 159

Ell, T.A. (1993). Quaternion-Fourier transforms for analysis
of two-dimensional linear time-invariant partial differential
systems, Proceedings of the 32nd IEEE Conference on
Decision and Control, San Antonio, TX, USA, Vol. 2,
pp. 1830–1841.

Fenwick, E.H. (1992). Quaternions and the art of navigation, In-
ternational Journal of Mathematical Education in Science
and Technology 23(2): 273–279.

Fresk, E. and Nikolakopoulos, G. (2013). Full quaternion based
attitude control for a quadrotor, European Control Confer-
ence (ECC), Zürich, Switzerland, pp. 3864–3869.

Funda, J., Taylor, R. and Paul, R. (1990). On homogeneous
transforms, quaternions, and computational efficiency,
IEEE Transactions on Robotics and Automation
6(3): 382–388.

Goldstein, H. (1980). Finite rotations, Classical Mechanics, 2nd
Edn, Addison-Wesley, Reading, MA, pp. 164–166.

Hanson, A.J. (2006). Visualizing Quaternions, Series in
Interactive 3D Technology, Morgan Kaufmann Publishers,
San Francisco, CA.

Hu, C., Meng, M. Q.-H., Mandal, M. and Liu, P.X. (2006).
Robot rotation decomposition using quaternions, Proceed-
ings of the 2006 International Conference on Mechatronics
and Automation, Luoyang, Henan, China, pp. 1158–1163.

Huynh, D. (2009). Metrics for 3D rotations: Comparison
and analysis, Journal of Mathematical Imaging and Vision
35(2): 155–164.

Jia, Y.-B. (2015). Quaternions and rotations, Lecture
Notes, Iowa State University, Ames, IO, http://
web.cs.iastate.edu/~cs577/handouts/
quaternion.pdf.

Joordens, M. and Jamshidi, M. (2009). Underwater swarm
robotics consensus control, 2009 IEEE International Con-
ference on Systems, Man and Cybernetics, San Antonio,
TX, USA, pp. 3163–3168.

Kanade, T. (1987). Three-Dimensional Machine Vision,
Springer International Series in Engineering and Computer
Science, Vol. 21, Kluwer Academic Publishers, Norwell,
MA.

Kantor, I.L. and Solodovnikov, A.S. (1989). Hypercomplex
Numbers, Springer-Verlag, New York, NY.

Kuipers, J.B. (1999). Quaternions and Rotation Sequences: A
Primer with Applications to Orbits, Aerospace, and Virtual
Reality, Princeton University Press, Princeton, NJ.

Kunze, K. and Schaeben, H. (2004). The Bingham distribution
of quaternions and its spherical radon transform in texture
analysis, Mathematical Geology 36(8): 917–943.

Lengyel, E. (2011). Mathematics for 3D Game Programming
and Computer Graphics, 3rd Edition, Course Technology
Cengage Learning PTR, Boston, MA.

Malekian, E., Zakerolhosseini, A. and Mashatan, A. (2011).
QTRU: Quaternionic version of the NTRU public-key
cryptosystems, ISC International Journal of Information
Security 3(1): 29–42.

Markley, F.L. (2008). Unit quaternion from rotation
matrix, Journal of Guidance, Control, and Dynamics
31(2): 440–442.

Mukundan, R. (2002). Quaternions: From classical mechanics
to computer graphics, and beyond, Proceedings of the 7th
Asian Technology Conference in Mathematics, Melaka,
Malaysia, pp. 97–106.

Nüchter, D. (2009). Robotic Mapping, Springer Tracts
in Advanced Robotics, Vol. 52, Springer-Verlag,
Berlin/Heidelberg, pp. 35–76.

Pei, S.-C., Ding, J.-J. and Chang, J. (2001). Color pattern
recognition by quaternion correlation, Proceedings of the
2001 International Conference on Image Processing, Thes-
saloniki, Greece, Vol. 1, pp. 894–897.

Pei, S.-C., Ding, J.-J. and Chang, J.-H. (2011). Efficient
implementation of quaternion Fourier transform,
convolution, and correlation by 2-d complex FFT, IEEE
Transactions on Signal Processing 49(11): 2783–2797.

Pletinckx, D. (1989). Quaternion calculus as a basic tool in
computer graphics, The Visual Computer 5(2): 2–13.

Roberts, G.N., Sutton, R. and Ye, M. (2006). Advances in Un-
manned Marine Vehicles, Institution of Engineering and
Technology, Stevenage.

Rousseau, P., Desrochers, A. and Krouglicof, N. (2002).
Machine vision system for the automatic identification
of robot kinematic parameters, IEEE Transactions on
Robotics and Automation 17(6): 972–978.

Sangwine, S.J. and Bihan, N.L. (2007). Hypercomplex analytic
signals: Extension of the analytic signal concept to
complex signals, EURASIP 15th European Signal Pro-
cessing Conference (EUSIPCO 2007), Poznań, Poland,
pp. 621–624.

Shuster, M.D. and Natanson, G.A. (1993). Quaternion
computation from a geometric point of view, The Journal
of Astronautical Sciences 41(4): 545–556.

Steeb, W.-H. and Hardy, Y. (2011). Matrix Calculus and Kro-
necker Product: A Practical Approach to Linear and Mul-
tilinear Algebra, 2nd Edition, World Scientific Publishing
Company, Singapore.

Terzakis, G., Culverhouse, P., Bugmann, G., Sharma, S. and
Sutton, R. (2014). On quaternion based parameterization
of orientation in computer vision and robotics, Journal of
Engineering Science and Technology Review 7(1): 82–93.

Vicci, L. (2001). Quaternions and rotations in 3-space: The
algebra and its geometric interpretation, Technical Re-
port TR01-014, University of North Carolina at Chapel
Hill, Chapel Hill, NC, http://www.cs.unc.edu/
techreports/01-014.pdf.

Vince, J. (2011). Quaternions for Computer Graphics, 1st Edi-
tion, Springer, London.

Wareham, R., Cameron, J. and Lasenby, J. (2005). Applications
of conformal geometric algebra in computer vision and
graphics, in H. Li et al. (Eds), Computer Algebra and
Geometric Algebra with Applications, Springer-Verlag,
Berlin/Heidelberg, pp. 329–349.

http://web.cs.iastate.edu/~cs577/handouts/quaternion.pdf
http://web.cs.iastate.edu/~cs577/handouts/quaternion.pdf
http://web.cs.iastate.edu/~cs577/handouts/quaternion.pdf
http://www.cs.unc.edu/techreports/01-014.pdf
http://www.cs.unc.edu/techreports/01-014.pdf

160 A. Cariow et al.

Witten, B. and Shragge, J. (2006). Quaternion-based signal
processing, Proceedings of the New Orleans Annual Meet-
ing, New Orleans, LA, USA, pp. 2862–2865.

Wysocki, B.J., Wysocki, T.A. and Seberry, J. (2006).
Modeling dual polarization wireless fading channels using
quaternions, Joint IST Workshop on Mobile Future and the
Symposium on Trends in Communications SympoTIC’06,
Bratislava, Slovakia, pp. 68–71.

Aleksandr Cariow received his PhD and DSc
degrees in computer science from LITMO Uni-
versity in St. Petersburg, Russia, in 1984 and
2001, respectively. In 1999, he joined the Faculty
of Computer Science and Information Technol-
ogy, West Pomeranian University of Technology
in Szczecin, Poland, where he currently works in
the Department of Computer Architectures and
Telecommunications. His research interests in-
clude digital signal processing algorithms, VLSI

architectures, and data processing parallelization.

Galina Cariowa received the MSc degree in
mathematics from Moldavian State University,
Chişinǎu, in 1978 and the PhD degree in com-
puter science from the West Pomeranian Univer-
sity of Technology in Szczecin, Poland, in 2007.
She is currently working as an assistant professor
at the Department of Computer Architectures and
Telecommunications there. Her scientific inter-
ests include numerical linear algebra and digital
signal processing algorithms, VLSI architectures,

and data processing parallelization.

Dorota Majorkowska-Mech received the MSc
degree in physics in 1994 and the MSc degree
in mathematics in 1996 from the University of
Szczecin. In 2008 she obtained the PhD degree
in computer science from the West Pomeranian
University of Technology in Szczecin, where she
currently works in the Department of Computer
Architectures and Telecommunications. She is
interested in algorithms of discrete orthogonal
transforms.

Received: 21 March 2019
Revised: 22 July 2019
Re-revised: 10 October 2019
Accepted: 18 October 2019

	Introduction
	Rotations in three-dimensional space and the rotation matrix
	Quaternions and their connection with rotations
	Synthesis of a rationalized algorithm for quaternion-based 3D rotation
	Performance evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

