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Consideration is given to three different analytical methods for the computation of upper bounds for the rate of convergence
to the limiting regime of one specific class of (in)homogeneous continuous-time Markov chains. This class is particularly
well suited to describe evolutions of the total number of customers in (in)homogeneous M/M/S queueing systems with
possibly state-dependent arrival and service intensities, batch arrivals and services. One of the methods is based on the
logarithmic norm of a linear operator function; the other two rely on Lyapunov functions and differential inequalities,
respectively. Less restrictive conditions (compared with those known from the literature) under which the methods are
applicable are being formulated. Two numerical examples are given. It is also shown that, for homogeneous birth-death
Markov processes defined on a finite state space with all transition rates being positive, all methods yield the same sharp
upper bound.
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1. Introduction

In this paper we revisit the problem of finding the upper
bounds for the rate of convergence of (in)homogeneous
continuous-time Markov chains. Consideration is given
to classic inhomogeneous birth-death processes and to
special inhomogeneous chains with transitions intensities,
which do not depend on the current state.

Specifically, let {X(t), t ≥ 0} be an inhomogeneous
continuous-time Markov chain with the state space
X = {0, 1, 2, . . . , S}, where 1 ≤ S ≤ ∞. Denote by

∗Corresponding author

pij(s, t) = P {X(t) = j |X(s) = i}, i, j ≥ 0, 0 ≤
s ≤ t, the transition probabilities of X(t) and by pi(t) =
P {X(t) = i} the probability that X(t) is in state i at time
t. Let p(t) = (p0(t), p1(t), . . . , pS(t))

T be a probability
distribution vector at instant t. Throughout the paper it
is assumed that in a small time interval h the possible
transitions and their associated probabilities are

pij(t, t+ h)

=

⎧
⎨

⎩

qij(t)h+αij (t, h) if j �= i,

1− ∑

k∈X ,k �=i

qik(t)h+αi (t, h) if j = i,
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where transition intensities qij(t) ≥ 0 are arbitrary1

non-random functions of t, locally integrable on [0,∞),

satisfying supi∈X
(∑

k∈X ,k �=i qik(t)
)

≤ L < ∞ for

almost all t ≥ 0, and |αi(t, h)| = o(h) for S < ∞
and supi∈X |αi(t, h)| = o(h) for S = ∞. The results
of this paper are applicable to Markov chains X(t) with
the following transition intensities:

(i) qij(t) = 0 for any t ≥ 0 if |i − j| > 1 and both
qi,i+1(t) and qi,i−1(t) may depend on i;

(ii) qi,i−k(t) = 0 for k ≥ 2, qi,i−1(t) may depend on i
and qi,i+k(t), k ≥ 1, depend only on k;

(iii) qi,i−k(t) = 0 for k ≥ 1 depend only on k, qi,i+1(t)
may depend on i and qi,i+k(t) = 0, k ≥ 2;

(iv) both qi,i−k(t) and qi,i+k(t), k ≥ 1, depend only on
k and do not depend on i.

Motivated by the application of the obtained results
in the theory of queues2, in what follows it is convenient
to think of X(t) as of the process describing the evolution
of the total number of customers of a queueing system.
Then type (i) transitions describe Markovian queues with
possibly state-dependent arrival and service intensities
(for example, the classical Mt(n)/Mt(n)/1 queue); type
(ii) transitions allow consideration of Markovian queues
with state-independent batch arrivals and state-dependent
service intensity; type (iii) transitions lead to Markovian
queues with possible state-dependent arrival intensity
and state-independent batch service; type (iv) transitions
describe Markovian queues with state-independent batch
arrivals and batch service.

For details concerning possible applications of
Markovian queues with time-dependent transitions we can
refer to the work of Schwarz et al. (2016), which contains
a broad overview and a classification of time-dependent
queueing systems considered up to 2016 and also the
works of Crescenzo et al. (2018), Giorno et al. (2014),
Granovsky and Zeifman (2004), Schwarz et al. (2016),
Zeifmann et al. (2006; 2014a), Vvedenskaya et al. (2018),
Olwal et al. (2012), Wieczorek (2010), Li et al. (2007),
Almasi et al. (2005), Moiseev and Nazarov (2016),
Brugno et al. (2017), Trejo et al. (2019) and the references
therein.

In this paper we propose three different analytical
methods for the computation of the upper bounds3 for

1It is not required (as, for example, in the work of Zeifman et al.,
(2018c)), that qi,i+k(t) and qi,i−k(t) be monotonically decreasing in
k for any t ≥ 0.

2Yet the scope of the obtained results is not limited to queueing sys-
tems and includes a number of other stochastic systems occurring, for
example, in medicine and biology, which satisfy the adopted assump-
tions.

3That is, bounds which guarantee that, after a certain time, say t∗ ,
the probability characteristics of the process X(t) do not depend on the

the rate of convergence to the limiting regime (provided
that it exists) of any process X(t) belonging to one of the
classes (i)–(iv). The first one is based on the logarith-
mic norm of a linear operator function. The second one
uses simplest Lyapunov functions and the third one relies
on differential inequalities. Even though the methods are
not new, it is the first time it is shown how they can
be applied for the analysis of Markov chains with the
transition intensities specified by (i)–(iv). This constitutes
the main contribution of the paper. Another is the fact that
in the case of periodic intensities the bounds on the rate of
convergence depend on the intensities only through their
mean values over one period.

It is worth noting here that, except for the upper
bounds for the rate of convergence, we may also be
interested in the lower bounds, stability (perturbation)
bounds or truncation bounds (with error estimation). But
the exact estimates of the rate of convergence yield
exact estimates of stability bounds (see, for example,
the works of Kartashov (1985), Liu (2012), Mitrophanov
(2003; 2004), Rudolf and Schweizer (2018), Zeifman
(1985), Mitrophanov (2018) and the references therein).
Moreover, as our research shows (Zeifman et al.,
2006; 2014a; 2018c; Zeifman and Korolev, 2014),
in some cases, all these quantities can be constructed
automatically, given that some good upper bounds for the
rate of convergence are provided. This makes us believe
that the upper bounds are of primary interest.

Estimation of the convergence rate by virtue of the
methods proposed in this paper heavily relies on the
notion of the reduced intensity matrix, say B(t), of a
Markov chain X(t). The matrix B(t) can be obtained
by considering the probabilistic dynamics of the process
X(t), given by the forward Kolmogorov system

d

dt
p(t) = A(t)p(t), (1)

where A(t) is the transposed intensity matrix, i.e.,
aij(t) = qji(t), i, j ∈ X . Due to the normalization
condition p0(t) = 1 −∑S

i=1 pi(t), we can rewrite4 the
system (1) as follows:

d

dt
z(t) = B(t)z(t) + f(t), (2)

where

f(t) = (a10(t), a20(t), . . . )
T
,

z(t) = (p1(t), p2(t), . . . )
T ,

initial conditions (up to a given discrepancy). Since the proposed meth-
ods are analytic, we do not compare them here from the numerical point
of view (i.e., memory requirement, speed, running time, etc.).

4For a detailed discussion of the transformation (2), see the works of
Granovsky and Zeifman (2004) or Zeifman et al. (2006).
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B(t)=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a11−a10 a12−a10 · · · a1r−a10 · · ·
a21−a20 a22−a20 · · · a2r−a20 · · ·

· · · · · · · · · · · · · · ·
ar1−ar0 ar2−ar0 · · · arr−ar0 · · ·

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(3)
Here and henceforth each entry of B(t) may depend

on t but, for the sake of brevity, the argument is
omitted. We note that the matrix B(t) has no probabilistic
meaning. All bounds of the rate of convergence to the
limiting regime for X(t) correspond to the same bounds
of the solutions of the system

d

dt
y(t) = B(t)y(t), (4)

because y(t) = z∗(t) − z∗∗(t) is the difference
of two solutions of the system (2), and y(t) =

(y1(t), y2(t), . . . , yS(t))
T is the vector with the

coordinates of arbitrary signs. As firstly noticed by
Zeifman (1989), it is more convenient to study the rate
of convergence using the transformed version B∗(t) of
B(t) given by B∗(t) = TB(t)T−1, where T is the S ×S
upper triangular matrix of the form

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5)

Let u(t) = Ty(t). Then the system (4) can be
rewritten in the form

d

dt
u(t) = B∗(t)u(t), (6)

where u(t) = (u1(t), u2(t), . . . , uS(t))
T is the vector

with the coordinates of arbitrary signs. If one of the
two matrices B∗(t) or B(t) is known, the other is also
(uniquely) defined.

The method based on the logarithmic norm of a
linear operator function and the corresponding bounds for
the Cauchy operator of the reduced forward Kolmogorov
system has already been applied successfully in many
settings (see, e.g., Granovsky and Zeifman, 2004;
Zeifman et al., 2006). Moreover, Zeifman et al.
(2018c) obtained the bounds for the rate of convergence
and perturbation bounds for a process X(t) belonging
to classes (i)–(iv) under the assumption that B∗(t) is
essentially non-negative, i.e., b∗ij(t) ≥ 0, i �= j, i, j ∈
X\(0). The obtained bounds are tight for the non-negative
difference of the initial probability distributions of X(t).
In this paper it is no longer assumed that B∗(t) must
be essentially non-negative. Thus the discussed class of
eligible processes X(t) is wider than the one considered
by Zeifman et al. (2018c).

It may happen that the difference of the initial
probability distributions of X(t) has coordinates of
different signs and/or B∗(t) contains negative elements.
In such situations the upper bounds provided by the
method based on the logarithmic norm may not be sharp.
Having alternative estimates, provided by the other two
methods considered in this paper, we can choose the
best one. The idea to apply Lyapunov functions for
the analysis of Markov chains is not new5 (see, e.g.,
Kalashnikov, 1971; Malyshev and Menshikov, 1982). Yet,
to the best of our knowledge, in the setting considered they
have not been applied yet (see Zeifman et al., 2018a). The
approach based on differential inequalities (see Zeifman
et al., 2019) seems to be the most general: it can
be applied both in the case when B(t) is essentially
non-negative (and can yield the same results as the method
based on the logarithmic norm) and in cases in which the
other two methods are not applicable.

Usually the three methods lead to different upper
bounds and the quality (sharpness) of the bounds depends
on the properties of B∗(t). All three methods are
applicable when the state space S < ∞. For countable
X the method based on Lyapunov functions no longer
applies. Note also that for a X(t) with a finite state
space belonging to classes (i)–(iv) apparently no general
method for the construction of Lyapunov functions can be
suggested. Thus here consideration is given only to such
X(t) for which it can be guessed how Lyapunov functions
can be constructed.

The paper is structured as follows. In the next section
the explicit forms of the reduced intensity matrix B∗(t)
for each class (i)–(iv) are given. In Section 3 we review the
upper bounds on the rate of convergence, obtained by the
method based on the logarithmic norm. Alternative upper
bounds provided by Lyapunov functions and differential
inequalities for some X(t) from classes (i)–(iv) are given
in Sections 4 and 5. Section 6 concludes the paper.

2. Explicit forms of the reduced intensity
matrix

As mentioned above, estimation of the convergence rate
of X(t) to the limiting regime is based on the reduced
intensity matrix B(t), given by (3), or its transform
B∗(t) = TB(t)T−1. In this section the explicit form of
B∗(t) for each class (i)–(iv) is given.

2.1. B∗(t) for X(t) belonging to class (i). Consider
a process X(t) with aij(t) = 0 for any t ≥ 0 if
|i − j| > 1, ai,i+1(t) = μi+1(t) and ai+1,i(t) = λi(t).
Then X(t) is the inhomogeneous birth-death process
with state-dependent transition intensities λi(t) (birth)

5For a detailed description of the approach we can also refer to Meyn
and Tweedie (1993; 2012).
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and μi+1(t) (death). In the queueing theory context, X(t)
describes the evolution of the total number of customers
in the Mn(t)/Mn(t)/1/S queue. For such X(t) in the
case of countable state space (i.e., S = ∞) the matrix
B∗(t) has the form (7). In the case of finite state space
(i.e., S < ∞) it has the from (8). Note that the matrix
B∗(t) is essentially non-negative for any t ≥ 0, i.e., all its
off-diagonal elements are non-negative for any t.

2.2. B∗(t) for X(t) belonging to class (ii).
Consider a process X(t) with aij(t) = 0 for i < j − 1,
ai+k,i(t) = ak(t) for k ≥ 1 and ai,i+1(t) = μi+1(t).
Such X(t) describes the evolution of the total number
of customers in a queue with batch arrivals and single
services (ak(t) are the (state-independent) intensities
of group arrivals and μi+1(t) are the (state-dependent)
service intensities). Such processes in the simplest forms
were first considered by Nelson et al. (1988) and, under
the assumption of decreasing ak(t), studied by Zeifman
et al. (2018c). In the case of a countable state space (i.e.
S = ∞) the matrix B∗(t) has the form

B∗(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 μ1 0 · · · 0
a1 a22 μ2 · · · 0
a2 a1 a33 μ3 · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9)

In the case of a finite state space (i.e., S < ∞) the
matrix B∗(t) is given by (10). Note that the matrix B∗(t)
is essentially non-negative for any t ≥ 0 if the arrival
intensities ak(t) are decreasing in k.

2.3. B∗(t) for X(t) belonging to class (iii).
Consider a process X(t) with aij(t) = 0 for i >
j + 1, ai,i+k(t) = bk(t), k ≥ 1 and ai+1,i(t) =
λi(t). Such X(t) describes the evolution of the total
number of customers in a queue with batch services and
single arrivals (λi(t) are the (state-independent) arrival
intensities and bk(t) are the (state-independent) intensities
of service of a group of k customers). Such processes
were considered to some extent by Nelson et al. (1988) or
Li and Zhang (2017). In the case of a countable state space
(i.e., S = ∞) the matrix B∗(t)is given by (11). In the
case of a finite state space (i.e., S < ∞) the matrix B∗(t)
is given by (12). Note that the matrix B∗(t) is essentially
non-negative for any t ≥ 0 if the service intensities bk(t)
are decreasing in k.

2.4. B∗(t) for X(t) belonging to class (iv).
Consider a process X(t) with ai+k,i(t) = ak(t)
and ai,i+k(t) = bk(t) for k ≥ 1. Such X(t)
describes the evolution of the total number of customers

in an inhomogeneous queue with (state-independent)
batch arrivals and group services (ak(t) are the
(state-independent) intensities of group arrivals and bk(t)
are the (state-independent) intensities of group services).
Such a process under the assumption of a decrease in k
intensities ak(t) and bk(t) was studied by Zeifman et al.
(2014a). In the case of countable state space (i.e., S = ∞)
the matrix B∗(t) has the form

B∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 b1 − b2 b2 − b3 · · · · · ·
a1 a22 b1 − b3 · · · · · ·

. . .
. . .

. . .
. . .

. . .
ar−1 · · · · · · a1 arr · · ·
· · · · · · · · · · · · · · · · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(13)
In the case of a finite state space (i.e., S < ∞) the matrix
B∗(t) is given by (14). Note that the matrix B∗(t) is
essentially non-negative for any t ≥ 0 if the intensities
ak(t) and bk(t) are decreasing in k.

3. Upper bounds using the logarithmic
norm

Throughout this section by ‖ · ‖ we denote the
l1-norm, i.e., ‖p(t)‖ =

∑
i∈X |pi(t)| and ‖A(t)‖ =

supj∈X
∑

i∈X |aij(t)|. Let Ω be a set of all stochastic
vectors, i.e., l1 vectors with non-negative coordinates and
a unit norm. Recall that a Markov chain X(t) is called
weakly ergodic if ‖p∗(t)− p∗∗(t)‖ → 0 as t → ∞ for
any initial conditions p∗(0) and p∗∗(0), where p∗(t) and
p∗∗(t) are the corresponding solutions of (1).

Recall that the logarithmic norm6 of the operator
function B(t) is defined as

γ(B(t)) = lim
h→+0

h−1 (‖I + hB(t)‖ − 1) .

Denote by V (t, s) = V (t)V −1(s) the Cauchy operator
of Eqn. (4). Then ‖V (t, s)‖ ≤ e

∫ t
s
γ(B(u)) du. For an

operator function from l1 to itself we have the formula

γ(B(t)) = sup
j∈X

(
bjj(t) +

∑

i∈X ,i�=j

|bij(t)|
)
. (15)

Note that, if the matrix B(t) is essentially non-negative,
then γ(B(t)) = supj∈X

(∑
i∈X bij(t)

)
.

Assume that the state space X is countable, i.e., S =
∞. Let {di, i ≥ 1} be a sequence of positive numbers
and let D = diag(d1, d2, . . . ) be the diagonal matrix, with
the off-diagonal elements equal to zero. Setting w(t) =
Du(t) in (6), we obtain

d

dt
w(t) = B∗∗(t)w(t), (16)

6A number of queueing applications of this approach were studied by
Granovsky and Zeifman (2004) as well as Zeifman et al. (2006; 2018c).
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B∗(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− (λ0 + μ1) μ1 0 · · · 0 · · · · · ·
λ1 − (λ1 + μ2) μ2 · · · 0 · · · · · ·
. . .

. . .
. . .

. . .
. . . · · ·

0 · · · · · · λr−1 − (λr−1 + μr) μr · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (7)

B∗(t) =

⎛

⎜
⎜
⎜
⎝

− (λ0 + μ1) μ1 0 · · · 0
λ1 − (λ1 + μ2) μ2 · · · 0
. . .

. . .
. . .

. . .
. . .

0 · · · · · · λS−1 − (λS−1 + μS)

⎞

⎟
⎟
⎟
⎠

. (8)

B∗(t) =

⎛

⎜
⎜
⎜
⎝

a11 − aS μ1 0 · · · 0
a1 − aS a22 − aS−1 μ2 · · · 0

. . .
. . .

. . .
. . .

. . .
aS−1 − aS · · · · · · a1 − a2 aSS − a1

⎞

⎟
⎟
⎟
⎠
. (10)

B∗(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− (λ0 + b1) b1 − b2 b2 − b3 · · · · · ·
λ1 −(λ1 +

∑

i≤2

bi
)

b1 − b3 · · · · · ·
. . .

. . .
. . .

. . .
. . .

0 · · · · · · λr−1 −(λr−1 +
∑

i≤r

bi
) · · ·

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11)

B∗(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− (λ0 + b1) b1 − b2 b2 − b3 · · · bS−1 − bS
λ1 −(λ1 +

∑

i≤2

bi
)

b1 − b3 · · · bS−2 − bS

. . .
. . .

. . .
. . .

. . .
0 · · · · · · λS−1 −(λS−1 +

∑

i≤S

bi
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (12)

B∗(t) =

⎛

⎜
⎜
⎜
⎝

a11 − aS b1 − b2 b2 − b3 · · · bS−1 − bS
a1 − aS a22 − aS−1 b1 − b3 · · · bS−2 − bS

. . .
. . .

. . .
. . .

. . .
aS−1 − aS · · · · · · a1 − a2 aSS − a1

⎞

⎟
⎟
⎟
⎠

. (14)
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where B∗∗(t) = DB(t)∗D−1. Set7

αi (t) = −
∞∑

j=1

b∗∗ji (t), i ≥ 1, (17)

and let α(t) and β(t) denote the least lower and the least
upper bound of the sequence of functions {αi(t), i ≥ 1}
i.e.,

α (t) = inf
i≥1

αi (t) , β (t) = sup
i≥1

αi (t) . (18)

The next theorem and corollary were proved by (Zeifman
et al., 2018c, Theorem 1) and are stated here for the sake
of completeness.

Theorem 1. Assume that there exists a sequence {di, i ≥
1} of positive numbers such that d1 = 1, d = infi≥1 di >
0 and B∗(t) is essentially non-negative. Let α(t), defined
by (18), satisfy

∫ ∞

0

α(t) dt = +∞. (19)

Then the Markov chain X(t) is weakly ergodic and for
any initial conditions s ≥ 0, w(s) and any t ≥ s the
following upper bound holds:

‖w (t) ‖ ≤ e−
∫ t
s
α(u) du‖w(s)‖. (20)

If in addition all components of the vector w (s) are non-
negative, then for any 0 ≤ s ≤ t the following lower
bound holds:

‖w (t) ‖ ≥ e−
∫ t
s
β(u) du‖w(s)‖. (21)

Corollary 1. Let under the assumptions of Theorem 1 the
sequence {di, i ≥ 1} be such that no αi (t) depends on i,
i.e., they are the same for any i. Thenα (t) = β (t) and the
upper bound (20) is tight. If in addition all components of
the vector w(s) are non-negative, for any 0 ≤ s ≤ t we
have

‖w (t) ‖ = e−
∫

t
s
α(u) du‖w (s) ‖. (22)

If the Markov chain X(t) is homogeneous, then the
expressions in (17) and (18) do not depend on t. In
such a case the upper and lower bounds (20), (21) can
be improved. The following result is due to Zeifman et al.
(2018c, Theorem 2).

Theorem 2. Assume that there exist a sequence {di, i ≥
1} of positive numbers such that d1 = 1, d = infi≥1 di >
0 and B∗(t) is essentially non-negative. Let α, defined by
(18), be positive. Then X(t) is ergodic and for any initial

7It is possible to obtain explicit expressions for αi(t) for all of the
classes considered (i)–(iv) (see the details in the work of Zeifman et al.
(2018c)).

condition w(0) and any t ≥ 0 the following upper bound
holds:

‖w (t) ‖ ≤ e−αt‖w (0) ‖. (23)

If in addition all components of the vector w (0) are non-
negative, then for any t ≥ 0 the following lower bound
holds:

‖w (t) ‖ ≥ e−βt‖w (0) ‖. (24)

If α = β, then the bound (23) is tight.

Assume now that the state space is finite, i.e., S <
∞. Then di can be arbitrary positive numbers and we can
find constants, say C1 and C2, such that

‖w(t)‖ = ‖DTy(t)‖ ≤ C1‖y(t)‖,
‖y(t)‖ = ‖T−1D−1w(t)‖ ≤ C2‖w(t)‖.

Hence Theorems 1 and 2 provide bounds on the rate of
convergence in the l1-norm. The explicit expressions for
the constants can be found in the works of Granovsky
and Zeifman (2004) or Zeifman et al. (2006). If the
Markov chain X(t) is homogeneous and α∗ is the decay
parameter, defined as

lim
t→∞(pij(t)− πj) = O(e−α∗t),

where {πj , j ≥ 0} are the stationary probabilities of the
chain, then α ≤ α∗ ≤ β.

Notice that some additional results for finite
homogeneous Markov chains X(t) belonging to class (i)
are provided by Doorn et al. (2010). In particular they
proved that the exact estimate of the rate of convergence
can be obtained. In the next theorem we provide an
alternative proof of this fact.

Theorem 3. Let X(t) be a homogeneous birth-death
process with a finite state space of size S and let all
birth and death intensities be positive. Then there exists
a set {di, 1 ≤ i ≤ S} of positive numbers such that
α = α∗ = β, where α∗ is the decay parameter of X(t),
and α and β are defined by (18).

Proof. Let C be an essentially non-negative irreducible
matrix such that there exists n0 > 0 with Cn0 > 0.
Denote by λ0 its maximal eigenvalue. It is simple and
positive. Then there exists a diagonal matrix with positive
entries D = diag(d1, . . . , dS) such that all column sums
for matrix CD = DCD−1 are equal to λ0. Indeed, let
m = max1≤j≤S |cjj |.

Consider the irreducible matrix C′ = CT + mI .
It has a simple eigenvalue λ∗ = λ0 + m and the
corresponding eigenvector x = (x1, . . . , xS)

T has strictly
positive coordinates. Set di = x−1

i , 1 ≤ i ≤ S.
Then e = (1, . . . , 1)

T is the eigenvector of the matrix
C′

D = DC′D−1. Therefore all row sums in the matrix
C′

D are equal to λ∗. Thus all row sums in the matrix
CT

D = C′
D − mI are equal to λ∗ − m = λ0, and all

column sums of the matrix CD are equal to λ0. �
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4. Upper bounds using Lyapunov functions

As mentioned in the Introduction, the method based on
Lyapunov functions no longer applies in the case of a
countable state space X . In this section, under the
assumption that X is finite, i.e., S < ∞, it is shown how
(quadratic) Lyapunov functions can be applied to obtain
the explicit upper bounds on the rate of convergence of
some X(t) belonging to classes (i)–(iii). Unlike the
case of bounds provided by the method based on the
logarithmic norm, Lyapunov functions yield bounds in the
l2-norm (Euclidean norm) and thus are somewhat weaker.

Throughout this section denote by ‖ · ‖ the l2-norm,
i.e., ‖p(t)‖ =

√∑
i∈X pi(t)2. Consider the system

(16). Let V (t) =
∑S

k=1 w
2
k(t), where w(t) =

(w1(t), w2(t), . . . , wS(t))
T is the solution of (16). By

differentiating V (t) we obtain

dV (t)

dt
=

S∑

k=1

2wk(t)
dwk(t)

dt

= −2

S∑

i=1

S∑

j=1

(−b∗∗ij (t)
)
wi(t)wj(t). (25)

If we find a set of positive numbers {di, 1 ≤ i ≤ S} and
a function β∗(t) satisfying

dV (t)

dt
≤ −2β∗(t)V (t) (26)

for any w(t), being the solution of (16), then for a X(t)
belonging to classes (i)–(iv) and for any initial condition
w(0) it we have

‖w(t)‖ ≤ e−
∫ t
s
β∗(τ) dτ‖w(0)‖. (27)

For a finite homogeneous Markov chain X(t) belonging
to class (i) such a set {di, 1 ≤ i ≤ S} is given in the next
theorem.

Theorem 4. Let X(t) be a homogeneous birth-death
process defined on a finite state space X with possibly
state-dependent birth intensities λk and possibly state-
dependent death intensities μk. Assume that λk > 0 and
μk > 0 for each k ∈ X . Then there exist a set of positive
numbers {di, 1 ≤ i ≤ S}, a positive number β∗ and a set
of numbers {αi, 1 ≤ i ≤ S} such that

dV (t)

dt
= −2β∗

S∑

k=1

w2
k

− 2

S−1∑

k=1

(αkwk − αk+1wk+1)
2.

(28)

Proof. If X(t) is a homogeneous birth-death process,
then B∗(t) does not depend on t and thus it is constant

tridiagonal matrix. Let d1 = 1, dk+1 = dk
√
μk/λk,

k ≥ 1. Remembering that D = diag(d1, . . . , dS) and
B∗∗(t) = DB(t)∗D−1, we immediately obtain (29).
Note that B∗∗ is a symmetric matrix. Setting Φ(t) =
−0.5 dV (t)/dt in (25), we obtain

Φ(t) = λ0w
2
1 + μSw

2
S

+

S−1∑

k=1

(
√
μkwk −

√
λkwk+1)

2.

Choose a positive number β such that β <
min(λ0, λ1, . . . , λS) and put φ0 = λ0 − β. Then the
terms on the right-hand side of the previous relation can
be rearranged to give

Φ(t) = βw2
1 +

(
√
μ1 + φ0w1 −

√
λ1μ1√

μ1 + φ0
w2

)2

+ λ1

(
φ0

μ1 + φ0

)

w2
2

+

S−1∑

k=2

(
√
μkwk −

√
λkwk+1)

2 + μSw
2
S .

Consider the coefficient of w2
2 . Note that it can always8 be

represented as β+φ1 with φ1 > 0. Thus we can rearrange
the terms in the previous relation and obtain

Φ(t) = β(w2
1 + w2

2)

+

(
√
μ1 + φ0w1 −

√
λ1μ1√

μ1 + φ0
w2

)2

+

(
√
μ2 + φ1w2 −

√
λ2μ2√

μ2 + φ1

w3

)2

+ λ2

(
φ1

μ2 + φ1

)

w2
3

+

S−1∑

k=3

(
√
μkwk −

√
λkwk+1)

2

+ μSw
2
S .

Proceeding in a similar manner (i.e., choosing a
suitable value of β, representing each coefficient of wk

as β + φk−1, φk−1 > 0, and rearranging the terms), we

8Indeed, if β is larger than the coefficient of w2
2 , it suffices to

make one step back and choose a new value of β (satisfying β <
min(λ0, λ1, . . . , λS)) smaller than the current one.
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B∗∗ =

⎛

⎜
⎜
⎜
⎝

− (λ0 + μ1)
√
λ1μ1 0 · · · 0√

λ1μ1 − (λ1 + μ2)
√
λ2μ2 · · · 0

. . .
. . .

. . .
. . .

. . .
0 · · · · · · √

λS−1μS−1 − (λS−1 + μS)

⎞

⎟
⎟
⎟
⎠
. (29)

arrive at the following representation of Φ(t):

Φ(t) = β

S−1∑

k=1

w2
k

+

S−1∑

k=1

(√
μk + φk−1wk

−
√
λkμk

√
μk + φk−1

wk+1

)2

+

(

μS + λS−1
φS−2

μS−1 + φS−2

)

w2
S .

If the coefficient of w2
S is larger than

β, then we can choose any β∗ such that
β∗ ∈ (β;μS + λS−1φS−2/(μS−1 + φS−2)).
Therefore β < β∗ < β + ε, where β + ε =
μS +λS−1φS−2/(μS−1+φS−2). Set β1 = β+0.5ε and
continue the process of selecting squares in the opposite
direction (starting from w2

S). If the coefficient of w2
S is

less than β, then we can choose β∗ ∈ (β − ε;β). In this
case we put β1 = β − 0.5ε and continue the process of
selecting squares, starting from w2

1 . In such a way we get
a sequence of nested segments converging to β∗. �

Note that the existence of the upper bound ‖w(t)‖ ≤
e−β∗t‖w(0)‖ also follows from (26), (27) and Theorem 4.
The inequality turns into an equality once the set of
numbers {αi, 1 ≤ i ≤ S} is chosen in such a way that
the second sum in (28) is equal to zero.

Let us specify the upper bound (27) for some finite
homogeneous Markov chains X(t) belonging to class (ii).
Specifically, let in a process X(t) belonging to (ii) the
arrival intensities be such that λ1 = 0 and λk = λ for
2 ≤ k ≤ S. From the queueing perspective this means
that only arrivals in batches are possible. Then the matrix
B∗(t) given by (10) does not depend on t and takes the
following form:

B∗ =

⎛

⎜
⎜
⎜
⎜
⎝

a11 − λ μ1 0 · · · 0
−λ a22 − λ μ2 · · · 0
0 −λ a33 − λ · · · 0
· · ·
0 0 0 · · · aSS

⎞

⎟
⎟
⎟
⎟
⎠
.

(30)
Let d1 = 1, dk+1 = dk

√
μk/λ, k ≥ 1.

Remembering that D = diag(d1, . . . , dS) and B∗∗(t) =
DB(t)∗D−1, we immediately obtain (31).

For such a matrix B∗∗ Eqn. (25) can be rewritten as

dV (t)

dt
= 2

S∑

k=1

(akk − λ)w2
k(t),

which implies the next theorem9.

Theorem 5. Let X(t) be a homogeneous Markov chain
defined on a finite state space X with state-independent
group arrival intensities qk,k+i = λ, i ≥ 2, qk,k+1 = 0,
and possibly state-dependent service intensities qk,k−1 =
μk, 1 ≤ k ≤ S. Then the following bound on the rate of
convergence holds:

‖w(t)‖ ≤ e−β∗t‖w(0)‖, (32)

where β∗ = min (Sλ+ μ1, . . . , 2λ+ μS−1, μS), i.e., β∗,
is the decay parameter (spectral gap) of the Markov chain.

Note that a similar result can be obtained for the
homogeneous Markov chains X(t) belonging to class
(iii). The following example shows that Lyapunov
functions lead to explicit uppers bounds for the rate
of convergence also for finite inhomogeneous Markov
chains.

Example 1. Consider the Markov process X(t) that
describes the evolution of the total number of customers
in the M(t)/M(t)/1/S queue with bulk arrivals, when all
transition intensities are periodic functions of time. Let
the arrival intensities be a1(t) = 1 + sin 2πt, ak(t) =
2 + sin 2πt + cos 2πt for 2 ≤ k ≤ S and all the service
intensities be μk(t) = m2 (1 + cos 2πt) for 1 ≤ k ≤ S
and some m ≥ 1. Such X(t) belongs to class (ii). By
setting d1 = 1, dk+1 = mdk, k ≥ 1, we obtain the matrix
B∗∗(t) in the form B∗∗(t) = (b∗∗ij (t)), where

b∗∗i,i+1(t) = m (1 + cos 2πt) ,

b∗∗i,i(t) = aii(t)− aS−i+1,

b∗∗i+1,i(t) = −m (1 + cos 2πt) .

Then

dV (t)

dt
= 2

S∑

k=1

(akk(t)− aS+1−k(t))w
2
k(t),

9Note that in the case considered we can also obtain the lower bound
on the rate of convergence using the approach of Zeifman et al. (2018b).
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B∗∗ =

⎛

⎜
⎜
⎜
⎝

− (Sλ+ μ1)
√
λμ1 0 · · · 0

−√
λμ1 − ((S − 1)λ+ μ2)

√
λμ2 · · · 0

. . .
. . .

. . .
. . .

. . .
0 · · · · · · −√λμS−1 −μS

⎞

⎟
⎟
⎟
⎠
. (31)

and from (31) it follows that for any initial condition w(0)
the tight upper bound on the rate of convergence is

‖w(t)‖ ≤ e−
∫ t
0
β∗(τ) dτ‖w(0)‖,

where β∗(t) = 2 + sin 2πt + cos 2πt. Note that, for the
case considered, the method based on Lyapunov functions
yields the best (among the three methods discussed in
this paper) possible upper bound. It is also worth noting
that we can apply the obtained upper bound for the
computation of the limiting distribution of X(t). For
example, let S = 199 andm = 90. Then, using truncation
techniques, which were developed by Zeifman et al.
(2006; 2014b), any limiting probability characteristic of
X(t) can be computed with the given approximation
error. In Figs. 1–8 we can see the behaviour of the
conditional expected numberE(X(t)|X(0)) of customers
in the queue at instant t, and the state probabilities p0(t),
p99(t) and p199(t) as functions of time t under different
initial conditions X(0). The approximation error is 10−3.

�
Note that one general framework for the computation

of the limiting characteristics of time-dependent queueing
systems is described in detail in the recent paper by Satin
et al. (2019). Particularly, having the bounds on our
rate of convergence we can compute the time instant, say
t∗, starting from which probabilistic properties of X(t)
do not depend on the value of X(0) (assuming that the
process starts at time t = 0). Thus, for example, if the
transition intensities are periodic (say, 1-time-periodic),
we can truncate the process on the interval [t∗, t∗ + 1]
and solve the forward Kolmogorov system of differential
equations on this interval with X(0) = 0. In such
a way, we can build approximations for any limiting
probability characteristics of X(t) and estimate stability
(perturbation) bounds.

5. Upper bounds using differential
inequalities

As first shown by Zeifman et al. (2019), there are
situations when the previous two methods for bounding
the rate of convergence do not work well (either lead
to poor upper bounds or do not yield upper bounds at
all). Here we present probably the most general method,
which is based on differential inequalities and which can
be applied to X(t) belonging to classes (i)–(iv) with a

finite state space (i.e., S < ∞) and all transition intensity
functions being analytic functions of time t.

Throughout this section we denote by ‖ · ‖ the
l1-norm. Consider a finite system of linear differential
equations

d

dt
x(t) = A(t)x(t), t ≥ 0, (33)

where A(t) is some matrix10 with all entries aij(t) being
analytic functions of t and x(t) = (x1(t), . . . , xS(t))

T .
Let x(t) be an arbitrary solution of (33). Consider an
interval [t1, t2] with fixed signs of coordinates of x(t) (i.e.,
xi(t) �= 0 for all 1 ≤ i ≤ S and for all t ∈ [t1, t2]).
Choose the set of numbers {di, 1 ≤ i ≤ S} such that
the sign of each di coincides with that of xi(t). Then
dixi(t) ≥ 0 for all t ∈ [t1, t2] and hence

∑S
k=1 dkxk(t) =

‖x(t)‖ can be considered the l1-norm.
Set z(t) = Dx(t) and Ã(t) = DA(t)D−1, where

D = diag(d1, . . . , dS), and consider the following system
of differential equations:

d

dt
z(t) = Ã(t)z(t) (34)

for t ∈ [t1, t2]. If for the chosen matrix D there exists
a function11 αD(t) such that

∑S
i=1 ãij(t) ≤ −αD(t) for

each 1 ≤ j ≤ S, then the following bound holds:

d

dt
‖z(t)‖ =

S∑

j=1

S∑

i=1

ãij(t)zj(t) ≤ −αD(t)‖z(t)‖. (35)

Choose α∗(t) such that α∗(t) = minαD(t), where the
minimum is taken over all time intervals [t1, t2], 0 < t1 <
t2, with different combinations of coordinate signs of the
solution x(t). For any such combination there exists a

particular inequality ‖z(t)‖ ≤ e−
∫ t2
t1

α∗(τ) dτ‖z(t1)‖.
From the fact that there exist constants, say C1

and C2, such that ‖x(t)‖ ≤ C1‖z(t)‖ and ‖z(t)‖ ≤
C2‖x(t)‖ for any interval [t1, t2], 0 < t1 < t2, and
any corresponding diagonal matrix D, the following result
follows.

Theorem 6. For α∗(t) = minαD(t) and the correspond-
ing constants C1 and C2, the following upper bound for
the rate of convergence holds:

‖x(t)‖ ≤ C1C2e
− ∫ t

0
α∗(τ) dτ‖x(0)‖. (36)

10This matrix A(t) must not be confused with the matrix in (1).
11The lower index in αD(t) is used to explicitly indicate that this

function depends on the choice of the matrix D.
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Note that, if the matrix A(t) is essentially
non-negative, then that based on differential inequalities
yields the same results as the method based on the
logarithmic norm. Thus the result of Theorem 3 can also
be obtained using differential inequalities.

For some processes X(t) belonging to classes
(i)–(iv) the method based on differential inequalities leads
to upper bounds which are better than those obtained
using the both previous methods. Several such settings
are illustrated below. Consider a homogeneous Markov
chainX(t) belonging to class (iii) with the constant arrival
intensity λ and constant bulk service intensity bS(t) = b
and bk(t) = 0, 1 ≤ k ≤ S − 1. In this case both
the method based on the logarithmic norm and that based
on Lyapunov functions do not yield any upper bound,
whereas with the differential inequalities we can obtain
a meaningful result. Indeed, the matrix B∗, given by (12),
and the matrix B∗∗ take the following form:

B∗ =

⎛

⎜
⎜
⎜
⎝

−λ 0 0 · · · 0 −b
λ −λ 0 · · · 0 −b
. . .

. . .
. . .

. . .
. . .

. . .
0 0 0 · · · λ − (λ+ b)

⎞

⎟
⎟
⎟
⎠
,

(37)

B∗∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ 0 0 0 · · · 0 −b d1
dS

λ d2
d1

−λ 0 0 · · · 0 −b d2
dS

0 λ d3
d2

−λ 0 · · · 0 −b d3
dS

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 0 · · · −λ −b
dS−1

dS

0 0 0 0 · · · 0 −λ− b

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(38)

Assume that {di, 1 ≤ i ≤ S} are given and put zk(t) =
dkxk(t). Then we have

S∑

i=1

dzi(t)

dt
= −λ

S−1∑

i=1

(

1− di+1

di

)

zi(t)

−
(

λ+ b

S∑

i=1

di
dS

)

zS(t).

Since xi(t) can be of different signs, we have to
consider all the possible sign changes. It is convenient
to start with the case when there are no changes in signs.
Let all xi(t) be positive. Set di = εi, 1 ≤ i ≤ S, for some
0 < ε < 1. Then

S∑

i=1

dzi(t)

dt
= −λ(1 − ε)

S−1∑

i=1

zi(t)

−
(

λ+ b

S∑

i=1

1

εi−1

)

zS(t),

and we obtain α = λ (1− ε).

Another case is when there is a single change in
signs. Let all x1(t), . . . , xk(t) be positive for some k,
1 ≤ k ≤ S − 1, and all xk+1(t), . . . , xS(t) be negative.
Set di = εS−k+i, 1 ≤ i ≤ k, and di = −εi−k,
k + 1 ≤ i ≤ S. Then

S∑

i=1

z′i(t)

= −λ
(
1− d2

d1

)
z1(t)− λ

(
1− d3

d2

)
z2(t)

− λ
(
1− d4

d3

)
z3(t)− · · ·

−
(

λ+ b

(

1 +
d1
dS

+
d2
dS

+ · · ·+ dS−1

dS

))

zS(t)

= −λ(1− ε)z1(t)− λ(1− ε)z2(t)

− λ(1 − ε)z3(t)− · · ·
− λ(1 − ε)zk−1(t)− λ(1 +

1

εS−1
)zk(t)− · · ·

−
(

λ+ b

(

1− ε− ε2 − · · · − εk +
1

εS−k−1

+
1

εS−k−2
+ · · ·+ 1

ε

))

zS(t)

≤ −λ (1− ε)

S∑

i=1

zi(t),

and we have that α = λ (1− ε).

Now consider the case when there are exactly two
changes in signs. Let all x1(t), . . . , xk(t) be positive for
some 1 ≤ k ≤ S − 2, all xk+1(t), . . . , xs(t) be negative
for some k + 1 ≤ s ≤ S − 1 and all xs+1(t), . . . , xS(t)
be positive. Let di = εS−k+i for 1 ≤ i ≤ k, di =
−εS−s−k+i for k + 1 ≤ i ≤ s and di = εi−s, for
s+ 1 ≤ i ≤ S. We have

S∑

i=1

z′i(t)

= −λ
(
1− d2

d1

)
z1(t)

− λ
(
1− d3

d2

)
z2(t)− λ

(
1− d4

d3

)
z3(t)− · · ·

−
(

λ+ b

(

1 +
d1
dS

+
d2
dS

+ · · ·+ dS−1

dS

))

zS(t)
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= −λ(1− ε)z1(t)− λ(1 − ε)z2(t)

− λ(1 − ε)z3(t)− · · ·
− λ(1 − ε)zk−1(t)− λ

(
1 +

1

εs−1

)
zk(t)

− λ(1 − ε)zk+1(t)− · · ·
− λ(1 − ε)zs−1 − λ(1 +

1

εS−k
)zs(t)

− λ(1 − ε)zs+1(t)− · · ·
− (λ+ b

(
1 + εs−k+1 + εs−k+2 + · · ·+ εs

−ε− ε2 − · · · − εs−k +
1

εS−k−1

+
1

εS−k−2
+ · · ·+ 1

ε

))

zS(t)

≤ −λ (1− ε)

S∑

i=1

zi(t),

and α = λ (1− ε). Note that the total number of
sign changes does not exceed S − 1. On each change
of sign when going from xs(t) to xs+1(t) we set
ds+1 equal to εS−m+1, where m is the number of the
last element in the current period of consistency (i.e.,
when there is no change of signs). Then eventually
we arrive at the following upper bound: ‖x(t)‖ ≤
C1C2e

−λ(1−ε)t‖x(0)‖, with C1C2 = ε1−S .

The example below shows how the method based on
differential inequalities can be applied for inhomogeneous
Markov chains with a finite state space.

Example 2. Consider the Markov process X(t) that
describes the evolution of the total number of customers
in the M(t)/MX(t)/1/S queue with bulk services,
when all transition intensities are periodic functions of
time. Let the arrival intensities be λk(t) = λ(t) =
10 (2 + sin(2πt)), and the service intensities be bk(t) = 0
for 1 ≤ k < S, and bS(t) = m−2 (2 + cos 2πt) for some
m ≥ 1. Such X(t) belongs to class (iii). The matrix B∗∗

for such X(t) has the form B∗∗(t) = (b∗∗ij (t)), where

b∗∗i,i(t) = −10(2 + sin(2πt)),

b∗∗i+1,i(t) = 10(2 + sin(2πt))
di+1

di
,

b∗∗i,S(t) = −m−2 (2 + cos(2πt))
di
dS

, i < S,

b∗∗SS(t) = −10(2 + sin(2πt))

−m−2 (2 + cos(2πt)) , i = S.

Then for any initial condition x(0) we can deduce the
following two upper bounds on the rate of convergence:

‖x(t)‖ ≤ ε1−Se−
∫

t
0
(1−ε)λ(τ) dτ‖x(0)‖,

‖x(t)‖ ≤ ε1−Se−10(1−ε)t‖x(0)‖.

These bounds are not tight (the leftmost is better among
the two) but the other two methods give essentially worse
results. As in Example 1, these bounds can be used in the
approximation of the limiting distribution of X(t). For
example, let S = 40 and m = 1. In Figs. 9–16 we
can see the behaviour of the conditional expected number
E(X(t)|X(0)) of customers in the queue at instant t and
the state probabilities p0(t), p20(t) and p40(t) as functions
of time t under different initial conditions X(0). �

We conclude the section by emphasizing that the
method of differential inequalities may lead to meaningful
upper bounds for the rate of convergence even in the
case of a countable state space X . For example,
consider a homogeneous countable (i.e., S = ∞) Markov
process X(t) belonging to class (iii) with constant arrival
intensities λ and batch service intensities b2(t) = μ > 0
and bk(t) = 0 for k �= 2. Hence (12) takes the form

B∗ =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ −μ μ · · · · · ·
λ − (λ+ μ) 0 μ · · ·
...

. . .
. . .

. . .
. . .

... · · · · · · λ − (λ+ μ) · · ·
· · · · · · · · · · · · · · · · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(39)

In such a case, to the best of our knowledge, the method of
differential inequalities is the only one, with which we can
obtain the ergodicity of the chain and explicit estimates
of the rate of convergence (see the details in the work by
Satin et al. (2019)).

6. Conclusion

The three methods considered in this paper provide
various alternatives for the computation of the upper
bounds for the rate of convergence to the limiting regime
of (in)homogeneous continuous-time Markov processes.
Yet even for the four discussed classes (i)–(iv) of Markov
processes a single unified framework cannot be suggested:
special cases do exist when none of the methods works
well.
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Fig. 1. Example 1: the expected number E(X(t)|X(0)) of cus-
tomers in the queue for t ∈ [0, 5] with the initial condi-
tion X(0) = 0.
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Fig. 2. Example 1: the expected number E(X(t)|X(0)) of cus-
tomers in the queue for t ∈ [5, 6] with the initial condi-
tion X(0) = 0.
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Fig. 9. Example 2: the expected number E(X(t)|X(0)) of cus-
tomers in the queue for t ∈ [0, 14] with the initial condi-
tions X(0) = 0 and X(0) = S.
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Fig. 10. Example 2: the expected number E(X(t)|X(0)) of
customers in the queue for t ∈ [14, 15] with the ini-
tial condition X(0) = 0.
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Fig. 13. Example 2: the probability p20(t) for t ∈ [0, 14] with
the initial conditions X(0) = 0 and X(0) = S.
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Fig. 14. Example 2: the probability p20(t) for t ∈ [14, 15] with
the initial condition X(0) = 0.
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Fig. 15. Example 2: the probability p40(t) for t ∈ [0, 14] with
the initial conditions X(0) = 0 and X(0) = S.
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Fig. 16. Example 2: the probability p40(t) for t ∈ [14, 15] with
the initial condition X(0) = 0.
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