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In this paper, a new methodology for simulating bootstrap samples of fuzzy numbers is proposed. Unlike the classical
bootstrap, it allows enriching a resampling scheme with values from outside the initial sample. Although a secondary
sample may contain results beyond members of the primary set, they are generated smartly so that the crucial characteristics
of the original observations remain invariant. Two methods for generating bootstrap samples preserving the representation
(i.e., the value and the ambiguity or the expected value and the width) of fuzzy numbers belonging to the primary sample
are suggested and numerically examined with respect to other approaches and various statistical properties.
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1. Introduction

Forty years ago, Bradley Efron published his seminal
paper “Bootstrap methods: Another look at the jackknife”
(Efron, 1979). The bootstrap is typically used to find
standard errors of estimators, confidence intervals for
unknown parameters or p-values for statistical tests.
However, the ideas suggested by Efron turned out so
important in modern statistics that George Casella on
the silver anniversary of the bootstrap concluded: “The
bootstrap has shown us how to use the power of the
computer and iterated calculations to go where theoretical
calculations cannot, which introduces a different way of
thinking about all of statistics” (Casella, 2003).

The bootstrap usually works out in complicated
models. This is also the case of imprecise data often
modeled with fuzzy random variables. Since there are
not yet suitable models for the distribution of fuzzy
random variables, nor central limit theorems for fuzzy
random variables that can be straightforwardly applied,
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the bootstrap turns out to be an invaluable help in
statistical reasoning with fuzzy data. In particular, it
was widely used in statistical tests with fuzzy data
(Colubi et al., 2002; Gil et al., 2006; González-Rodrı́guez
et al., 2006; Ramos-Guajardo and Lubiano, 2012;
Montenegro et al., 2004), classification (Ramos-Guajardo
and Grzegorzewski, 2016), fuzzy rating in questionnaires
(Lubiano et al., 2016; 2017), quality control in cheese
manufacturing (Ramos-Guajardo et al., 2019), fuzzy
Shewhart control charts (Wang and Hryniewicz, 2015),
etc.

The classical bootstrap involves drawing random
samples with replacement from the initial sample of
observations. Consequently, nearly every bootstrap
sample contains repeated values. What is worse, if
the original sample size is small, all bootstrap samples
consist of only few distinct values, which gives a
strongly unwanted effect especially if the unknown
original distribution is continuous. To overcome this
inconvenience, various improvements of the classical
bootstrap were proposed, like the balanced bootstrap
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(Davison et al., 1986; Graham et al., 1990) or the
so-called smoothed bootstrap (Silverman and Young,
1987; Hall et al., 1989; De Angelis and Young, 1992).
In a fuzzy context various resampling methods based on
incremental increases of α-cuts were given by Romaniuk
and Hryniewicz (2019a; 2019b).

In this paper we propose another modification of the
classical bootstrap to increase the diversity of simulated
fuzzy outcomes. Its key idea is to generate fuzzy numbers
which may differ from the original ones but preserve some
critical characteristics (e.g., the value and ambiguity or the
expected value and width) of fuzzy numbers forming the
primary sample. This contribution contains a substantial
extension of the method introduced by Grzegorzewski
et al. (2019). We not only provide new bootstrap
algorithms, but present also a broad study of statistical
properties of the suggested procedures.

The paper is organized as follows. Basic definitions
and general notation are provided in Section 2. The
so-called flexible bootstrap algorithm is introduced in
Section 3 and its relation to the classical bootstrap is
considered. New resampling methods for triangular and
for trapezoidal fuzzy numbers are thoroughly developed
in Sections 4 and 5, respectively. Then, in Section 6,
the proposed algorithms are numerically examined and
compared with other existing approaches.

2. Fuzzy data

A fuzzy number A is a fuzzy set in R which is normal,
fuzzy-convex, has upper semicontinuous membership
function A(x) and bounded support. An α-cut of a fuzzy
number A, where α ∈ [0, 1], is defined by

A(α) =

{
{x ∈ R : A(x) ≥ α} if α ∈ (0, 1],

cl{x ∈ R : A(x) > 0} if α = 0,

where cl stands for the closure operator. It is easily seen
that the α-cut A(α) of a fuzzy number A is a closed
interval A(α) = [AL(α), AU (α)].

The most often used fuzzy numbers are trapezoidal
fuzzy numbers (sometimes called fuzzy intervals) with
membership functions of the form

A(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x− a1
a2 − a1

if a1 < x ≤ a2,

1 if a2 ≤ x ≤ a3,
a4 − x

a4 − a3
if a3 ≤ x < a4,

0 otherwise,

(1)

where a1, a2, a3, a4 ∈ R such that a1 ≤ a2 ≤ a3 ≤ a4.
A trapezoidal fuzzy number A will be further denoted as
[a1, a2, a3, a4]. If a2 = a3, then A is said to be a trian-
gular fuzzy number and we have A = [a1, a2, a4]. The
families of all fuzzy numbers, trapezoidal fuzzy numbers

and triangular fuzzy number will be denoted by F(R),
F
T (R) and F

Δ(R), respectively. Obviously, FΔ(R) ⊂
F
T (R) ⊂ F(R).

Often, instead of declaring two points a1 and a4
describing the support of A and next two points a2 and
a3 for its core, it is more convenient to use another
parametrization through its location and the spread of its
arm. Namely, let us define the following parameters:

c :=
a2 + a3

2
, s :=

a3 − a2
2

,

l := a2 − a1, r := a4 − a3.

One can easily identify c and s as the center and the half
of the core, respectively, while l and r stand for the spread
of the left and the right arm of the membership function
A(x), respectively. Obviously, c ∈ R, while s, l, r ≥ 0.
Using this notation, a trapezoidal fuzzy number A would
be denoted as A(c, s; l, r). Similarly, A(c; l, r) stands for
a triangular fuzzy number (since then s = 0).

To simplify the representation of fuzzy numbers,
Delgado et al. (1998) suggested two parameters: value
and ambiguity, which represent some basic features of
fuzzy numbers and hence the called the canonical repre-
sentation of fuzzy numbers.

A location of a fuzzy number A is characterized by
its value defined as

Val(A) =

∫ 1

0

α(AU (α) +AL(α)) dα, (2)

whereas the ambiguity of A, given by

Amb(A) =

∫ 1

0

α(AU (α) −AL(α)) dα, (3)

is a measure of the global spread (or vagueness) of a fuzzy
number A.

Since the value and ambiguity represent basic
features of a fuzzy number, two fuzzy numbers with the
same ambiguity and value might be considered similar
(sometimes they are even treated as “almost equal”(see
Delgado et al., 1998)). One can easily find that the value
and ambiguity of a trapezoidal fuzzy number A(c, s; l, r)
are given as follows:

Val(A) = c+
r − l

6
, (4)

Amb(A) = s+
r + l

6
. (5)

If A(c; l, r) is a triangular fuzzy number, then its value is
still given by (4), while its ambiguity reduces to

Amb(A) =
r + l

6
. (6)

Another important characteristic of a fuzzy number is
its expected interval (Dubois and Prade, 1987; Heilpern,
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1992), defined as

EI(A) =

[∫ 1

0

AL(α) dα,

∫ 1

0

AU (α) dα

]
. (7)

The expected interval of a fuzzy number has many
interesting properties and is very useful in many
situations, like defuzzification or approximation of fuzzy
numbers (see, e.g., Ban et al., 2015)).

The middle point of the expected interval is called
the expected value of the fuzzy number and is defined by

EV(A) =
1

2

[∫ 1

0

AL(α) dα +

∫ 1

0

AU (α) dα

]
. (8)

The expected value of a fuzzy number is a characteristic
of its location, i.e., it shows a real value which is (in some
sense) typical for the fuzzy notion modeled by a fuzzy
number under discussion. Thus the expected value of a
fuzzy number is a counterpart of the value (2). We have
also a counterpart of the ambiguity, called the width of a
fuzzy number (Chanas, 2001), defined by

w(A) =

∫ 1

0

(AU (α) −AL(α)) dα. (9)

For the trapezoidal fuzzy number A(c, s; l, r) we obtain

EV(A) = c+
r − l

4
, (10)

w(A) = s+
r + l

4
. (11)

If A(c; l, r) is a triangular fuzzy number, then its expected
value remains as in (10), while its width reduces to

w(A) =
r + l

4
. (12)

For more details on fuzzy numbers, their characteristics
and approximations we refer the reader to the work of Ban
et al. (2015), and for some examples of their applications
to, e.g., those of Gao et al. (2013) or Grzegorzewski and
Hryniewicz (2002).

3. Flexible resampling

The key idea of the classical bootstrap is to construct
new samples drawing n times with replacement from the
original dataset x1, . . . , xn ∈ R. This way, one can
produce any number (say b) of bootstrap samples, as
shown in Fig. 1, where x∗

ij ∈ {x1, . . . , xn} denotes the
j-th element of the i-th sample.

The bootstrap has a serious disadvantage: it produces
only values that belong to the input (primary) sample.
Consequently, nearly every bootstrap sample contains
repeated values. Furthermore, if the original sample is
small, all bootstrap samples consist of only few distinct

values, which might be strongly inadvisable, especially if
the original distribution is continuous.

Actually, the heart of the problem is the
oversimplified nature of the real-valued data. Any element
xi of the primary sample might be characterized only by
its real value (this is why we call it one-dimensional).
Consequently, any attempt to enrich resampling results
beyond members of the primary sample is inextricably
linked with changing its elements. Hence we have to
accept that a secondary sample would consist of values
x∗
i which do not necessarily appear in the original one. Of

course, we should generate those new elements smartly
to preserve some global properties of the whole sample.

In the case of fuzzy data, the situation seems to
be more conductive. Each fuzzy number x̃i ∈ F(R)
has a much more complicated structure than a real one,
unless it is a singletone. Therefore, it seems that we may
enrich resampling by generating new values x̃∗

i which
preserve some crucial properties of x̃i but quite some
other minor ones. This way, resampling may produce a
new sample (x̃∗

1, . . . , x̃
∗
n) of elements which may differ

from the original one (x̃1, . . . , x̃n), but which preserve
both some local and global properties of the primary
sample elements.

The distinction between more or less important
characteristics of a fuzzy number is, of course,
questionable. It might depend on the subjective
preferences of the analyst or more objective reasons
connected with a particular situation. But in a common
feeling, parameters that characterize the location and the
spread (vagueness) are considered the most important
properties of fuzzy numbers, contrary to minor details
in shape of their membership functions. Hence, such
characteristics like the value and the ambiguity (or the
expected value and the width), mentioned in Section 2,
may be of interest. In this paper, we propose a modified
bootstrap based on this idea.

To clarify the idea, let x̃1, . . . , x̃n ∈ Fin(R) ⊆
F(R) denote the original fuzzy sample. We assume that
observations are fuzzy numbers of some type, i.e., they
belong to a given subfamily Fin(R) of all fuzzy numbers
(or, possibly, they are arbitrary fuzzy numbers). In the
case of the improved flexible bootstrap, its scheme looks
like the classical one, shown in Fig. 1. However, now

(x1, x2, . . . , xn)

(x∗
11, x

∗
12, . . . , x

∗
1n)

(x∗
21, x

∗
22, . . . , x

∗
2n)

(x∗
31, x

∗
32, . . . , x

∗
3n)

...
...

...
...

(x∗
b1, x

∗
b2, . . . , x

∗
bn)

Fig. 1. Classical bootstrap scheme.
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we substitute a very restrictive assumption that x̃∗
ij ∈

{x̃1, . . . , x̃n} with the weaker one, which states that each
x̃∗
ij is generated in such a way that it returns a fuzzy

number having the identical location and spread as the one
randomly selected from the original dataset {x̃1, . . . , x̃n}.

To be more specific, suppose that one decides to
preserve the value and the ambiguity. Moreover, let
Fout(R) ⊂ F(R) denote a chosen subfamily of fuzzy
numbers which is not necessarily equivalent to Fin(R).
Now we select randomly an observation x̃i from the
original dataset {x̃1, . . . , x̃n} and compute its value and
ambiguity. Then a new fuzzy number x̃∗

ij ∈ Fout(R)
is generated in such a way that its value and ambiguity
remain the same as for x̃i, i.e., Val(x̃∗

ij) = Val(x̃i) and
Amb(x̃∗

ij) = Amb(x̃i). Alternatively, one can generate a
new fuzzy number x̃∗

ij ∈ Fout(R) sothat it preserves the
mean value and the width of the original observation x̃i,
i.e., EV(x̃∗

ij) = EV(x̃i) and w(x̃∗
ij) = w(x̃i).

A key problem that arises here is how to choose
a suitable subfamily of fuzzy numbers Fout(R). It
seems reasonable to restrict our attention to triangular
or trapezoidal fuzzy numbers only. Although one may
ask why, the reason is straightforward. It has been
noticed by many researchers that trapezoidal or triangular
fuzzy numbers are most common in current applications
mainly because they are both easy to handle and have a
natural interpretation (Ban et al., 2015; Pedrycz, 1994),
since “the problems that arise with vague predicates
are less concerned with precision and are more of a
qualitative type; thus they are generally written as linearly
as possible. Normally it is sufficient to use a trapezoidal
representation, as it makes it possible to define them with
no more than four parameters” (Jimenez and Rivas, 1998).
Moreover, even if the original data set consists of fuzzy
numbers which are neither triangular nor trapezoidal,
one often approximates them by such fuzzy numbers
before further processing. In particular, an approximation
algorithm that preserves the value and the ambiguity of
the original fuzzy number is given by Ban et al. (2011),
while various algorithms for trapezoidal approximations
of fuzzy numbers preserving the expected interval are also
accessible (Grzegorzewski, 2008). A broad collection of
approximation algorithms satisfying various requirements
can be found in the work of Ban et al. (2015).

Further sections provide a detailed description of
the suggested flexible bootstrap for creating secondary
samples of triangular and trapezoidal fuzzy numbers.

4. Triangular fuzzy bootstrap

Let X̃1, . . . , X̃n denote a fuzzy random sample. Assume
that each realization of this sample is given by fuzzy
numbers x̃1, . . . , x̃n ∈ Fin(R). Following Section 3,
we will create bootstrap samples of triangular fuzzy
numbers, i.e., Fout(R) = F

Δ(R), which preserve some

characteristics of the original observations.
Thus, given observation x̃i we generate a new

triangular fuzzy number x̃∗
ij = x̃∗

ij(c
∗
ij ; l

∗
ij , r

∗
ij) such

that Val(x̃∗
ij) = Val(x̃i) and Amb(x̃∗

ij) = Amb(x̃i).
Obviously, although the value and the ambiguity
characterize nicely a fuzzy number, they do not identify
it completely. By fixing the value and the ambiguity
we impose some restrictions on a fuzzy number, but we
have still some room for the choice of the particular
membership function. Let us analyze how it works.

Given (Val(x̃i),Amb(x̃i)) and assuming that
(Val(x̃∗

ij),Amb(x̃∗
ij)) = (Val(x̃i),Amb(x̃i)) we will try

to design formulae for parameters c∗ij ; l
∗
ij , r

∗
ij describing

univocally x̃∗
ij . By (4) and (6), we obtain{
r∗ij − l∗ij = 6Val(x̃i)− 6c∗ij ,
r∗ij + l∗ij = 6Amb(x̃i);

moreover, by definition, r∗ij , l
∗
ij ≥ 0. Some immediate

transformations yield{
l∗ij = 3(Amb(x̃i)−Val(x̃i) + c∗ij),
r∗ij = 3(Amb(x̃i) + Val(x̃i)− c∗ij),

(13)

and hence, by r∗ij , l
∗
ij ≥ 0, we obtain

Val(x̃i)−Amb(x̃i) ≤ c∗ij ≤ Val(x̃i) + Amb(x̃i). (14)

Now we are able to formulate the desired approach
for generating b triangular bootstrap samples. Keeping in
mind Eqns. (13) and (14), we obtain Algorithm 1.

As suggested in Section 3, one may prefer, for
some reasons, basic characteristics of fuzzy number other
then the value/ambiguity, like the expected value and the
width. Then, given observation x̃i, we generate a new

Algorithm 1. VA method for triangular fuzzy numbers.

Require: Fuzzy sample x̃1, . . . , x̃n ∈ Fin(R)
1: for i = 1 to n do
2: Compute Val(x̃i),Amb(x̃i)
3: end for
4: for i = 1 to b do
5: for j = 1 to n do
6: Generate (with equal probabilities) a pair

(Val∗,Amb∗) from{(
Val(x̃1),Amb(x̃1)

)
, . . . ,

(
Val(x̃n),Amb(x̃n)

)}
7: Generate c∗ij from the uniform distribution on the

interval
[
Val∗ −Amb∗,Val∗ +Amb∗

]
8: l∗ij ← 3

[
Amb∗ −Val∗ + c∗ij

]
9: r∗ij ← 3

[
Amb∗ +Val∗ − c∗ij

]
10: x̃∗

ij ← x̃∗
ij(c

∗
ij ; l

∗
ij , r

∗
ij)

11: end for
12: end for
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triangular fuzzy number x̃∗
ij = x̃∗

ij(c
∗
ij ; l

∗
ij , r

∗
ij) such that

EV(x̃∗
ij) = EV(x̃i) and w(x̃∗

ij) = w(x̃i). Similarly, as
in the previous case, we will try to design formulae for
parameters c∗ij ; l

∗
ij , r

∗
ij describing univocally x̃∗

ij . By (10)
and (12), we obtain{

r∗ij − l∗ij = 4EV(x̃i)− 4c∗ij ,
r∗ij + l∗ij = 4w(x̃i),

where r∗ij , l
∗
ij ≥ 0. Hence

{
l∗ij = 2(w(x̃i)− EV(x̃i) + c∗ij),
r∗ij = 2(w(x̃i) + EV(x̃i)− c∗ij),

(15)

so by r∗ij , l
∗
ij ≥ 0 we obtain

EV(x̃i)− w(x̃i) ≤ c∗ij ≤ EV(x̃i) + w(x̃i). (16)

Hence, by (15) and (16), a method for generating b
triangular samples which preserve the expected value and
the width of the primary sample is given in Algorithm 2.

Consider the following example illustrating the
proposed algorithms.

Example 1. Suppose x̃ = (6; 1, 2) is a randomly
chosen triangular observation. Hence Val(x̃) = 6 1

6 and
Amb(x̃) = 1

2 . By Algorithm 1 the core c∗ of the
new fuzzy number x̃∗ is randomly generated from the
uniform distribution on the interval

(
5 2
3 , 6

2
3

)
. Suppose,

e.g., c∗ = 6 1
3 has been selected. Then by (13) we obtain

l∗ = 2 and r∗ = 1, so the resulting fuzzy number is
x̃∗
V A =

(
6 1
3 ; 2, 1

)
.

For the same initial observation we have EV(x̃) =
6 1
4 and w(x̃) = 3

4 . Now, using Algorithm 2, the core
c∗ of x̃∗ is randomly generated from U

(
5 1
2 , 7

)
. If, e.g.,

c∗ = 5 3
4 has been selected, then by (15) we obtain

Algorithm 2. EW method for triangular fuzzy numbers.

Require: Fuzzy sample x̃1, . . . , x̃n ∈ Fin(R)
1: for i = 1 to n do
2: Compute EV(x̃i),w(x̃i)
3: end for
4: for i = 1 to b do
5: for j = 1 to n do
6: Generate (with equal probabilities) a pair

(EV∗,w∗) from{(
EV(x̃1),w(x̃1)

)
, . . . ,

(
EV(x̃n),w(x̃n)

)}
7: Generate c∗ij from the uniform distribution on the

interval
[
EV∗ − w∗,EV∗ +w∗]

8: l∗ij ← 2
[
w∗ − EV∗ + c∗ij

]
9: r∗ij ← 2

[
w∗ + EV∗ − c∗ij

]
10: x̃∗

ij ← x̃∗
ij(c

∗
ij ; l

∗
ij , r

∗
ij)

11: end for
12: end for

5 6 7 8

0.2

0.4

0.6

0.8

1.0

Fig. 2. Initial triangular observation x̃ (solid line) and gener-
ated fuzzy numbers x̃∗

V A and x̃∗
EW for the VA-method

(dashed line) and the EW-method (dotted line), respec-
tively.

l∗ = 1
2 and r∗ = 2 1

2 , so the EW-method produces
x̃∗
Ew =

(
5 3
4 ;

1
2 , 2

1
2

)
. All three fuzzy numbers: x̃, x̃∗

V A

and x̃∗
EW , are shown in Fig. 2. �

5. Trapezoidal fuzzy bootstrap

Similarly as in Section 4, we will create bootstrap samples
of randomly generated trapezoidal fuzzy numbers x̃∗

ij =

x̃∗
ij(c

∗
ij , s

∗
ij ; l

∗
ij , r

∗
ij) ∈ F

T (R) = Fout(R) which preserve
the value and the ambiguity of the original observation,
i.e., Val(x̃∗

ij) = Val(x̃i) and Amb(x̃∗
ij) = Amb(x̃i). As

in Section 4, starting from these fixed parameters, one has
to determine (c∗ij , s

∗
ij ; l

∗
ij , r

∗
ij).

Given (Val(x̃i),Amb(x̃i)), by (4) and (5) we have{
r∗ij − l∗ij = 6Val(x̃i)− 6c∗ij ,
r∗ij + l∗ij = 6Amb(x̃i)− 6s∗ij ,

where sij , rij , lij ≥ 0, which is equivalent to{
l∗ij = 3(Amb(x̃i)−Val(x̃i) + c∗ij − s∗ij),
r∗ij = 3(Amb(x̃i) + Val(x̃i)− c∗ij − s∗ij).

(17)

Since rij , lij ≥ 0, we get

Val(x̃i)−Amb(x̃i) + s∗ij
≤ c∗ij ≤ Val(x̃i) + Amb(x̃i)− s∗ij , (18)

where s∗ij ≥ 0. However, since the upper bound of
(18) may not be smaller than its lower bound, we obtain
additionally that

0 ≤ s∗ij ≤ Amb(x̃i). (19)

Summing up the aforementioned considerations and
Eqns. (17), (18) and (19), we obtain the bootstrap
algorithm for trapezoidal fuzzy data (see Algorithm 3).
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Algorithm 3. VA method for trapezoidal fuzzy numbers.

Require: Fuzzy sample x̃1, . . . , x̃n ∈ Fin(R)
1: for i = 1 to n do
2: Compute Val(x̃i),Amb(x̃i)
3: end for
4: for i = 1 to b do
5: for j = 1 to n do
6: Generate (with equal probabilities) a pair

(Val∗,Amb∗) from{(
Val(x̃1),Amb(x̃1)

)
, . . . ,

(
Val(x̃n),Amb(x̃n)

)}
7: Generate s∗ij from the uniform distribution on the

interval
[
0,Amb∗

]
8: Generate c∗ij from the uniform distribution on the

interval
[
Val∗−Amb∗+s∗ij ,Val

∗+Amb∗−s∗ij
]

9: l∗ij ← 3
[
Amb∗ −Val∗ + c∗ij − s∗ij

]
10: r∗ij ← 3

[
Amb∗ +Val∗ − c∗ij − s∗ij

]
11: x̃∗

ij ← x̃∗
ij(c

∗
i , s

∗
i ; l

∗
i , r

∗
i )

12: end for
13: end for

If one decides to generate bootstrap samples with
the fixed expected value and the width, i.e., EV(x̃∗

ij) =
EV(x̃i) and w(x̃∗

ij) = w(x̃i), then by (10) and (11) we
have {

r∗ij − l∗ij = 4EV(x̃i)− 4c∗ij ,
r∗ij + l∗ij = 4w(x̃i)− 4s∗ij ,

where sij , rij , lij ≥ 0, which is equivalent to{
l∗ij = 2(w(x̃i)− EV(x̃i) + c∗ij − s∗ij),
r∗ij = 2(w(x̃i) + EV(x̃i)− c∗ij − s∗ij).

(20)

Since rij , lij ≥ 0, we get

EV(x̃i)− w(x̃i) + s∗ij ≤ c∗ij ≤ EV(x̃i) + w(x̃i)− s∗ij ,
(21)

where s∗ij ≥ 0. Because the upper bound of (21) may not
be smaller than its lower bound, we additionally obtain

0 ≤ s∗ij ≤ w(x̃i), (22)

which finally leads to Algorithm 4.
Let us illustrate the last two algorithms with the

following example.

Example 2. Suppose that x̃ = (6, 1
2 ; 1, 2) is a randomly

chosen trapezoidal observation from the initial sample;
hence Val(x̃) = 6 1

6 and Amb(x̃) = 1. By Algorithm 3,
half of the core s∗ of x̃∗ is randomly generated from
U [0, 1]. Suppose, e.g., that s∗ = 1

2 is selected, then by
(21) c∗ is generated from U

[
5 2
3 , 6

2
3

]
. Let us assume that

we obtain c∗ = 6 1
3 . Then, by (17), we have l∗ = 2 and

r∗ = 1, so the VA-method produces x̃∗
V A =

(
6 1
3 ,

1
2 ; 2, 1

)
.

Algorithm 4. EW method for trapezoidal fuzzy numbers.

Require: Fuzzy sample x̃1, . . . , x̃n ∈ Fin(R)
1: for i = 1 to n do
2: Compute EV(x̃i),w(x̃i)
3: end for
4: for i = 1 to b do
5: for j = 1 to n do
6: Generate (with equal probabilities) a pair

(EV∗,w∗) from{(
EV(x̃1),w(x̃1)

)
, . . . ,

(
EV(x̃n),w(x̃n)

)}
7: Generate s∗ij from the uniform distribution on the

interval
[
0,w∗]

8: Generate c∗ij from the uniform distribution on the
interval

[
EV∗ − w∗ + s∗ij ,EV

∗ +w∗ − s∗ij
]

9: l∗ij ← 2
[
w∗ − EV∗ + c∗ij − s∗ij

]
10: r∗ij ← 2

[
w∗ + EV∗ − c∗ij − s∗ij

]
11: x̃∗

ij ← x̃∗
ij(c

∗
i , s

∗
i ; l

∗
i , r

∗
i )

12: end for
13: end for

For the same initial observation x̃, we have EV(x̃) =
6 1
4 and w(x̃) = 1 1

4 . Then, by Algorithm 4, s∗ is generated
from U

[
0, 1 1

4

]
. If s∗ = 1

4 is randomly selected, then c∗ is
generated from U

[
5 1
4 , 7

1
4

]
. Suppose that c∗ = 7. Then,

by (20), we get l∗ = 3 1
2 , r

∗ = 1
2 , and the EW-method

result is x̃∗
EW =

(
7, 1

4 ; 3
1
2 ,

1
2

)
. �

6. Simulation study

6.1. Employed models of fuzzy numbers. In our
simulations we use initial samples which consist of
various types of triangular fuzzy numbers, i.e., Fin(R) =
F
Δ(R), or trapezoidal fuzzy numbers, i.e., Fin(R) =

F
T (R). Consequently, we adopt either Fout(R) = F

Δ(R)
or Fout(R) = F

T (R), respectively.

4 5 6 7 8

0.2

0.4

0.6

0.8

1.0

Fig. 3. Initial triapezoidal observation x̃ (solid line) and gener-
ated fuzzy numbers x̃∗

V A and x̃∗
EW for the VA-method

(dashed line) and the EW-method (dotted line), respec-
tively.
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To obtain random samples of triangular or
trapezoidal fuzzy numbers, we simply have to generate
independent tuples consisting of three or four reals
corresponding to (c, l, r) or (c, s, l, r), respectively
(Sinova et al., 2012). Moreover, each element of a
given tuple is an output of a random number generator
for some specified distribution. We also assume that
the elements of each tuple are generated independently.
Therefore, choosing different distributions and their
parameters, we may obtain easily various fuzzy numbers.
The particular distributions applied in our study are
summarized in Table 1. Most of them were previously
used by Lubiano et al. (2017), Romaniuk and Hryniewicz
(2019b), Romaniuk (2019) or Grzegorzewski et al. (2019)
as models of the initial samples in numerical analyses of
the bootstrapped versions of statistical tests.

The notation applied in Table 1 is self-explanatory,
e.g., FΔ

N,χ2,χ2 indicates a triangular fuzzy number with
the center generated from the standard normal distribution
and the spread of the left and the right arms generated
from the two i.i.d. chi-square distributions. On the other
hand,FT

N,E,U,U stands for a trapezoidal fuzzy number with
its center generated from the normal distribution, half of
its core generated from the exponential distribution and
with spreads of the left and the right arms generated by
two independent uniform distributions. The last type,
F
T
B,Ucon, represents a more complex fuzzy number which

involves the beta distribution describing the centers and a
few different conditional uniform distributions for s, l, r,
described in a more detailed way by Lubiano et al. (2017).

In the following, to limit the paper length, we present
only results obtained for some selected types of fuzzy
numbers (other results are available upon request). In
all graphs, the results obtained with the VA-method,
EW-method, d-method and classical bootstrap are marked
by diamonds, triangles, squares, and circles, respectively.

6.2. Standard error estimation. One of the most
widely considered applications of the bootstrap is the
problem of the standard error estimation. Let X1, . . . , Xn

Table 1. Description of types of simulated fuzzy numbers.

FN type c s l r

F
Δ
N,E,E N(0,1) – Exp(2) Exp(4)

F
Δ
N,U,U N(0,1) – U(0,0.4) U(0,0.4)

F
Δ
N′,U′,U′ N(10,9) – U(0,1) U(0,1)

F
Δ
N,χ2,χ2 N(0,1) – χ2(1) χ2(1)

F
T
N,E,U,U N(0,4) Exp(4) U(0,0.1) U(0,0.2)

F
T
Γ,U,E,E Γ(2, 2) U(0,0.2) Exp(4) Exp(2)

F
T
B,Ucon β(1, 1) U (conditional)

F
T
B,Ucon′ β(5, 5) U (conditional)

denote a random sample from the distribution pθ, where
θ ∈ Θ is an unknown parameter. Moreover, let θ̂ denote

an estimator of θ and let SE(θ) =
√
Varθ̂ stand for its

standard error. Since SE(θ) can be calculated exactly
only in some rare cases, it is usually estimated, and the
bootstrap has appeared to be a very useful tool in this
context.

Therefore, we included the problem of the standard
error approximation for the mean estimation into our
study. The algorithms introduced in Sections 4 and 5 are
compared with the d-method proposed by Romaniuk and
Hryniewicz (2019b) and the classical Efron bootstrap.

Fuzzy random samples of different sizes (n =
5, 10, 30, 100) and the types discussed in Section 6.1 were
generated. Moreover, since different numbers of the
bootstrap replications b = 100, 200, 1000 were applied,
we could investigate a possible influence of n and b
on the results. Each numerical experiment was iterated
100000 times to minimize the influence of randomness
and strengthen our reasoning. To calculate the standard
error, an estimator related to the Fréchet-type variance

ŜE(θ̂) =

√√√√ 1

b− 1

b∑
i=1

D2
θ

(
θ̂∗i, θ̄∗

)
, (23)

where Dθ is the mid/spread distance with θ = 1 (Casals
et al., 2013), θ̂∗i is an estimator of θ based on the i-th
boostrap replication, and θ̄∗ =

∑b
i=1 θ̂

∗i, was applied.
Some experimental results can be found in

Tables 2–5 (others are available upon request). To
facilitate the comparison of the results, the lowest values
of the simulated standard errors are given in boldface.

Generally speaking, the results obtained for the
different resampling algorithms do not differ substantially,
especially if the sample size and the number of the
bootstrap iterations are large enough. However, some
conclusions are worth mentioning. Firstly, for FT

N,E,U,U

and F
Δ
N,χ2,χ2 , the VA-method is the only winner. For

F
Δ
N,U,U, FΔ

N,′U′,U′ and FT
N,E,U,U, there is no overall winner

but the d-method is usually the best one. The situation
seems to be more complex in the case of F

T
Γ,U,E,E, but

here the VA-method usually leads to the lowest standard
error.

To compare the resampling methods in a more
synthetic way, a ranking table is also provided (see
Table 6). The ranks are calculated according to a simple
rule: the method giving the lowest standard error most
often is the winner. Usually, either the VA-method
or the d-method appears at the top. The EW-method
seems to be worse, but it behaves in a very stable
manner (it never drops below the third position, which
happens both for the VA-method and the d-method).
In our experiments, the classical bootstrap never wins.
Moreover, when comparing the VA-method and the
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Table 2. Empirical standard errors for FT
N,E,U,U.

n 5 10 30 100

b 100
VA 0.38545 0.29790 0.18145 0.10112
EW 0.38637 0.29910 0.18224 0.10153
d-method 0.38687 0.29930 0.18226 0.10155
bootstrap 0.38645 0.29912 0.18221 0.10158
b 200
VA 0.38576 0.29871 0.18171 0.10124
EW 0.38672 0.29975 0.18248 0.10167
d-method 0.38753 0.29961 0.18238 0.10175
bootstrap 0.38719 0.29928 0.18248 0.10167
b 1000
VA 0.38580 0.29874 0.18210 0.10134
EW 0.38762 0.29965 0.18255 0.10182
d-method 0.38806 0.30049 0.18255 0.10179
bootstrap 0.38765 0.29993 0.18264 0.10181

Table 3. Empirical standard errors for FΔ
N,U,U.

n 5 10 30 100

b 100
VA 0.37633 0.29181 0.17799 0.099224
EW 0.37613 0.29187 0.17806 0.099239
d-method 0.37565 0.29166 0.17794 0.099190
bootstrap 0.37623 0.29176 0.17794 0.099229
b 200
VA 0.37673 0.29262 0.17826 0.09935
EW 0.37635 0.29256 0.17831 0.09938
d-method 0.37635 0.29199 0.17806 0.09939
bootstrap 0.37683 0.29200 0.17823 0.09932
b 1000
VA 0.37684 0.29262 0.17857 0.09946
EW 0.37734 0.29251 0.17839 0.09953
d-method 0.37685 0.29290 0.17822 0.09944
bootstrap 0.37737 0.29260 0.17836 0.09946

classical bootstrap, there are some significant differences
between the estimated values of the standard errors, even
about 3.5%.

6.3. Bootstrap in hypothesis testing. In contrast to
real data usually there are not suitable models for the
distribution of fuzzy random variables. Moreover, central
limit theorems for fuzzy random variables often cannot
be directly applied in statistical inference. Fortunately,
the bootstrap appears here as a powerful tool to redeem
the situation. In particular, it is often used in hypothesis
testing with fuzzy data to support the decision on rejection
or acceptance of the hypothesis under study. This was the

Table 4. Empirical standard errors for FΔ
N,χ2,χ2 .

n 5 10 30 100

b 100
VA 0.47153 0.36174 0.21935 0.12224
EW 0.48644 0.37417 0.22740 0.12680
d-method 0.49244 0.37866 0.22956 0.12798
Bootstrap 0.48825 0.37606 0.22932 0.12780
b 200
VA 0.47179 0.36189 0.21950 0.12229
EW 0.48667 0.37466 0.22756 0.12698
d-method 0.49264 0.37831 0.22986 0.12803
Bootstrap 0.48848 0.37681 0.22947 0.12802
b 1000
VA 0.47263 0.36234 0.21976 0.12235
EW 0.48737 0.37491 0.22783 0.12707
d-method 0.49276 0.37840 0.23008 0.12813
Bootstrap 0.48931 0.37738 0.22960 0.12805

Table 5. Empirical standard errors for FT
Γ,U,E,E.

n 5 10 30 100

b 100
VA 1.02110 0.80425 0.49738 0.27978
EW 1.02121 0.80491 0.49827 0.28001
d-method 1.02232 0.80408 0.49870 0.28005
bootstrap 1.02687 0.80569 0.49890 0.28002
b 200
VA 1.02468 0.80260 0.49920 0.28014
EW 1.02258 0.80541 0.49868 0.28031
d-method 1.02262 0.80628 0.49951 0.28031
bootstrap 1.02101 0.80669 0.49940 0.28033
b 1000
VA 1.02479 0.80547 0.49982 0.28052
EW 1.02491 0.80624 0.49944 0.28050
d-method 1.02599 0.80625 0.49955 0.28068
bootstrap 1.02331 0.80606 0.49962 0.28079

reason to examine the suggested resampling methods also
in this field.

In this section, we present experimental results
concerning the test for the mean equipped with different
resampling algorithms. As the respective statistical test,
we used the procedure developed by Colubi (2009)
and then algorithmically summarized by Lubiano et al.
(2016). From now on it will be called the C-test. For other
examples of statistical tests concerning fuzzy data, see,
e.g., the works of Gil et al. (2006), González-Rodrı́guez
et al. (2006), Ramos-Guajardo and Lubiano (2012) or
Montenegro et al. (2004).

Consider a fuzzy random sample (X̃1, . . . , X̃n) and
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Table 6. Ranking table of resampling methods for empirical
standard errors.

FN type VA EW d-method bootstrap

F
T
N,E,U,U 1 2 3 4

F
Δ
N,U,U 2 2 1 4

F
Δ
N,′U′,U′ 2 3 1 4

F
Δ
N,χ2,χ2 1 2 4 3

F
T
N,E,U,U 4 3 1 2

F
T
Γ,U,E,E 1 2 4 3

the following hypothesis testing the mean problem:

H0 : E X̃ = ṽ vs. H1 : E X̃ �= ṽ, (24)

where E X̃ is the Aumman-type mean (see Puri and
Ralescu, 1986) and ṽ ∈ F(R) is a fixed fuzzy number
corresponding to the true population mean.

6.3.1. Empirical size of a test. As the essential
benchmark we use the empirical size of the test α̂ (i.e., the
percentage of null hypothesis rejections when it is true)
and its relation to the nominal significance level α (we
assume the standard value of 0.05).

Both small and medium initial sample sizes and
different numbers of bootstrap replications (n =
5, 10, 30, 100 and b = 100, 200, 1000) were used. In
each experiment the whole resampling procedure was
iterated 105 times. A similar approach was considered
by Gil et al. (2006), González-Rodrı́guez et al. (2006),
Ramos-Guajardo and Lubiano (2012), Montenegro et al.
(2004), Romaniuk and Hryniewicz (2019b), Romaniuk
(2019) or Grzegorzewski et al. (2019).

Selected results of our simulations can be found in
Tables 7–11 (other results are available upon request).
To emphasize some significant differences, the empirical
size α̂ closest to the true value α = 0.05 is printed in
boldface. It is easily seen that the resampling methods
considered do not differ vastly and no method is the
overall winner. However, one may also conclude that the
classical bootstrap is usually the worst, especially for the
lower values of n and b.

A kind of ranking of the methods considered (similar
to the one shown in Section 6.2) is given in Table 12. Here,
a method giving empirical sizes closest to the true α most
often is considered the winner. In Table 12, the classical
bootstrap never occupies the first position and is the
second one only in the single case. The other resampling
methods are far better, especially the d-method and the
VA-method. The EW-method again behaves in a relatively
stable manner and never drops below the third position. It
should be pointed out that the relative differences for α̂ are
quite significant, even about 0.006 (more than 10% of the

Table 7. Empirical C-test size α̂ for FT
N,E,U,U.

n 5 10 30 100

b 100
VA 0.03223 0.04789 0.05381 0.04939
EW 0.03049 0.04738 0.05641 0.05436
d-method 0.03499 0.05050 0.05716 0.06052
bootstrap 0.02877 0.04821 0.05702 0.06018
b 200
VA 0.02613 0.04299 0.05008 0.04542
EW 0.02620 0.04184 0.05123 0.05089
d-method 0.03029 0.04410 0.05249 0.05531
bootstrap 0.02454 0.04398 0.05330 0.05514
b 1000
VA 0.02365 0.03812 0.04562 0.04173
EW 0.02379 0.03933 0.04717 0.04598
d-method 0.02761 0.04187 0.05124 0.05076
bootstrap 0.02229 0.03967 0.04962 0.05111

Table 8. Empirical C-test size α̂ for FΔ
N,U,U.

n 5 10 30 100

b 100
VA 0.03279 0.04978 0.05803 0.05945
EW 0.03154 0.04848 0.05816 0.05932
d-method 0.05066 0.05050 0.05705 0.06011
bootstrap 0.04920 0.04821 0.05688 0.06080
b 200
VA 0.02651 0.04511 0.05391 0.05404
EW 0.02686 0.04273 0.05407 0.05492
d-method 0.02613 0.04343 0.05262 0.05553
bootstrap 0.02451 0.04436 0.05337 0.05521
b 1000
VA 0.02431 0.04014 0.04930 0.05040
EW 0.02443 0.04075 0.04852 0.05002
d-method 0.02411 0.04123 0.05124 0.05094
bootstrap 0.02261 0.04021 0.04957 0.05121

nominal significance levelα), when the classical bootstrap
approach is compared with other resampling algorithms.

6.3.2. Power analysis. The next step of our
investigation is a power study of the C-test. To examine
the power of this test, we estimate the number of rejections
under increasing shift ε ∈ R of realizations of the initial
fuzzy sample, namely, ε = 0.1, 0.2, 0.3, 0.4, 0.5.

To shorten the paper we provide detailed results only
for FΔ

N,U,U (see Tables 13–15 and Figs. 4–5). Generally,
the power of the C-test equipped with different resampling
techniques is rather similar, especially for bigger values
of n and b (like n = 100 and b = 1000; see Fig. 5).



290 P. Grzegorzewski et al.

Table 9. Empirical C-test size α̂ for FT
N,E,U,U.

n 5 10 30 100

b 100
VA 0.02709 0.04533 0.05433 0.04850
EW 0.02896 0.04770 0.05623 0.05549
d-method 0.02745 0.04775 0.05735 0.05916
bootstrap 0.02714 0.04902 0.05804 0.06018
b 200
VA 0.02293 0.04164 0.04818 0.04455
EW 0.02336 0.04362 0.05094 0.05082
d-method 0.02295 0.04261 0.05271 0.05539
bootstrap 0.02321 0.04380 0.05322 0.05421
b 1000
VA 0.02059 0.03719 0.04581 0.03973
EW 0.02184 0.03840 0.04732 0.04796
d-method 0.02014 0.0388 0.05047 0.05048
bootstrap 0.02036 0.03878 0.04959 0.05115

Table 10. Empirical C-test size α̂ for FT
Γ,U,E,E.

n 5 10 30 100

b 100
VA 0.05154 0.06741 0.05869 0.05569
EW 0.05062 0.06725 0.06086 0.05724
d-method 0.05408 0.06748 0.06310 0.06156
bootstrap 0.05104 0.06634 0.0609 0.05997
b 200
VA 0.04724 0.06181 0.05526 0.05242
EW 0.04520 0.06164 0.05801 0.05348
d-method 0.04941 0.06135 0.05819 0.05408
bootstrap 0.04658 0.06223 0.05833 0.05446
b 1000
VA 0.04371 0.05765 0.05061 0.04747
EW 0.04140 0.05819 0.05425 0.04982
d-method 0.04489 0.05733 0.05428 0.04999
bootstrap 0.04224 0.05864 0.05528 0.05065

Some significant differences appear for smaller n and b.
To emphasize them, the highest power in each experiment
is given in boldface. The results are then summarized in
the form of the ranking list in Table 15. One can notice
that the VA-method and the EW-method usually take the
first or second positions. The power curves for n = 5,
b = 100 and n = 100, b = 1000 (i.e., for the smallest
and the largest values of n and b, respectively) are given
in Figs. 4–5.

Additionally, the power curves for the F
T
N,E,U,U and

F
T
B,Ucon models are given in Figs. 6 and 7, respectively.

It seems that the classical bootstrap leads to lower power
especially for smaller n and b, which are quite common in
real-life applications.

Table 11. Empirical C-test size α̂ for FT
B,Ucon′ .

n 5 10 30 100

b 100
VA 0.03774 0.04790 0.05315 0.04746
EW 0.03601 0.04995 0.05860 0.05883
d-method 0.03496 0.05058 0.05707 0.05974
bootstrap 0.02797 0.04780 0.05742 0.05852
b 200
VA 0.03308 0.04552 0.04969 0.04292
EW 0.03141 0.04532 0.05371 0.05453
d-method 0.02940 0.04484 0.05433 0.05446
bootstrap 0.02435 0.04443 0.05349 0.05431
b 1000
VA 0.03065 0.04068 0.04548 0.04095
EW 0.02923 0.04246 0.05004 0.05042
d-method 0.02622 0.04216 0.05006 0.05057
bootstrap 0.02248 0.03896 0.04967 0.05016

Table 12. Ranking table of resampling methods for empirical C-
test size α̂.

FN type VA EW d-method bootstrap

F
T
N,E,U,U 2 3 1 3

F
Δ
N,U,U 2 1 3 4

F
Δ
N,χ2,χ2 4 2 1 3

F
T
N,E,U,U 4 1 3 2

F
T
Γ,U,E,E 1 3 1 4

F
T
B,Ucon 2 3 1 4

F
T
B,Ucon′ 1 2 4 3

6.4. Real-life example. Lubiano et al. (2016)
considered the data from the TIMSS-PIRLS 2011
questionnaire on reading, mathematics and science.
Statistical tests are conducted for different hypotheses,
e.g., to show potential differences between the Likert and
were fuzzy rating scales.

In the following we use the same data (i.e., the
responses to the item M.2: My math teacher is easy to
understand) and the C-test to compare the four bootstrap
algorithms. We verify the hypothesis (24) for a few
different values of ṽ ∈ F

T (R) or ṽ ∈ F
Δ(R). The number

of the bootstrap replications b is set to 100, 200, and 1000
as in the previous experiments. For the estimated p-values
we refer the reader to Table 16.

If we choose ṽ close to the sample mean, like ṽ =
[6, 7, 8, 9] or ṽ = [7, 8, 9], the p-value corresponding
to each bootstrap method is large enough to indicate no
reason for rejecting the null hypothesis. It can be also
noticed that the estimated p-values for the EW-method,
the d-method and the classical bootstrap are quite similar
and smaller than the results obtained for the VA-method.
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Table 13. C-test power analysis for FΔ
N,U,U.

n 5 10 30 100

ε 0.1

b 100
VA 0.03500 0.05887 0.09293 0.18191
EW 0.03352 0.05664 0.09482 0.18201
d-method 0.03330 0.05861 0.09193 0.18292
bootstrap 0.03125 0.05702 0.09177 0.18431
b 200
VA 0.02858 0.05359 0.08812 0.17566
EW 0.02890 0.05154 0.08706 0.17523
d-method 0.02853 0.05118 0.08646 0.17558
bootstrap 0.02577 0.05197 0.08576 0.17556
b 1000
VA 0.02606 0.04844 0.08035 0.16967
EW 0.02644 0.04864 0.08226 0.16732
d-method 0.02538 0.04805 0.08214 0.16771
bootstrap 0.02458 0.04844 0.08112 0.17015
ε 0.2

b 100
VA 0.04151 0.08519 0.19961 0.52537
EW 0.04011 0.0832 0.20072 0.52775
d-method 0.03991 0.08482 0.19891 0.52207
bootstrap 0.03811 0.08311 0.19921 0.52352
b 200
VA 0.03482 0.07752 0.19022 0.5168
EW 0.03499 0.07639 0.19158 0.51866
d-method 0.03377 0.07649 0.19045 0.51572
bootstrap 0.03217 0.07689 0.18731 0.51777
b 1000
VA 0.03110 0.07258 0.18230 0.50922
EW 0.03165 0.07376 0.18321 0.50867
d-method 0.03062 0.07234 0.18358 0.50806
bootstrap 0.02972 0.07336 0.18139 0.51107

On the other hand, the VA-method produces p-values that
are very stable with respect to the number of the bootstrap
replications b. If ṽ is not too close to the sample mean, like
ṽ = [3 1

3 , 6
2
3 , 6

2
3 , 10], then all methods suggest definitely

the rejection of the null hypothesis.

6.5. Statistical comparison of samples. There are
examples of goodness-of-fit statistical tests that can be
used to compare fuzzy samples in a non-parametric
way in the literature (e.g., Denoeux et al., 2005).
Unfortunately, because of the complexity, their practical
usefulness is questionable. However, since we restrict
our attention to trapezoidal (triangular) fuzzy numbers
which are completely defined through their supports and
cores, in this paper we apply the special version of the
Kolmogorov–Smirnov two-sample test for interval-valued

Table 14. C-test power analysis for FΔ
N,U,U (continuation).

ε 0.3

b 100
VA 0.05246 0.13078 0.37106 0.84990
EW 0.05171 0.12954 0.37092 0.85083
d-method 0.05037 0.13050 0.36915 0.84885
bootstrap 0.04923 0.12823 0.37298 0.84888
b 200
VA 0.04417 0.12067 0.35726 0.84675
EW 0.04437 0.12004 0.36242 0.84709
d-method 0.04365 0.12016 0.36062 0.84745
bootstrap 0.04174 0.12114 0.35801 0.84660
b 1000
VA 0.04004 0.11457 0.35105 0.84271
EW 0.04055 0.11519 0.35334 0.84440
d-method 0.03953 0.11296 0.35249 0.84266
bootstrap 0.03783 0.11454 0.35300 0.84279
ε 0.4

b 100
VA 0.06693 0.19473 0.57805 0.97781
EW 0.06749 0.19259 0.57495 0.97782
d-method 0.06569 0.19438 0.57175 0.97735
bootstrap 0.06471 0.19064 0.57627 0.97709
b 200
VA 0.05831 0.18223 0.56558 0.97749
EW 0.05843 0.18206 0.56591 0.97697
d-method 0.05730 0.18250 0.56568 0.97720
bootstrap 0.05531 0.18330 0.56672 0.97760
b 1000
VA 0.05237 0.17436 0.55527 0.97705
EW 0.05362 0.17481 0.56094 0.97779
d-method 0.05208 0.17243 0.5583 0.97691
bootstrap 0.05042 0.17401 0.5593 0.97663

ε 0.5

b 100
VA 0.08682 0.27607 0.76183 0.99857
EW 0.08712 0.27458 0.75829 0.99860
d-method 0.08618 0.27571 0.75891 0.99853
bootstrap 0.08504 0.27360 0.76030 0.99846
b 200
VA 0.07619 0.26176 0.75311 0.99866
EW 0.07641 0.26190 0.75442 0.99877
d-method 0.07511 0.26334 0.75222 0.99851
bootstrap 0.07230 0.26191 0.75333 0.99872
b 1000
VA 0.06859 0.25156 0.74835 0.99849
EW 0.07068 0.25188 0.75235 0.99862
d-method 0.06901 0.24994 0.74815 0.99875
bootstrap 0.06700 0.25185 0.74892 0.99861
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data, proposed by Grzegorzewski (2018). From now on,
it will be denoted as the K–S–G test.

Consider two fuzzy random samples: X̃1, . . . , X̃1

from the initial distribution F (in) and the bootstrap
sample X̃∗

1 , . . . , X̃
∗
1 from the initial distribution F (out).

We are interested in verifying the hull hypothesis H0 :
F (in) = F (out) of no difference between those two
distributions against the alternative hypothesis H1 :
F (in) �= F (out) that the distributions differ significantly.
Using the K–S–G test we will actually consider a slightly
more specific alternative, namely, that at least one of the
following equalities does not hold:

F
(in)
mid0

= F
(out)
mid0

, F (in)
spr0

= F (out)
spr0

,

F
(in)
mid1

= F
(out)
mid1

, F (in)
spr1

= F (out)
spr1

,

where F
(·)
mid0 and F

(·)
spr0 denote the distributions of the

midpoint and spread of the support of X̃ and X̃∗,
respectively, while F (·)

mid1
and F

(·)
spr1 denote the distributions

of the midpoint and spread of the core of X̃ and X̃∗,
respectively.

This way, our test is a composition of four
one-dimensional goodness-of-fit tests which produce
four p-values: pmid0 , pspr0 , pmid1 , pspr1 . Following
Grzegorzewski (2018), to make a final decision we have
to aggregate these p-values. Obviously, one may apply
various aggregation operators to calculate the overal
p-value. The most restrictive one is the minimum, i.e.,

p = min{pmid0 , pspr0 , pmid1 , pspr1}. (25)

In Table 17 we show some examples of p-values
obtained for different simulated initial samples and
different bootstrap methods. In our study the initial

Table 15. Ranking table of resampling methods for the C-test
power size for FΔ

N,U,U.

(n, b) VA EW d-method bootstrap

(5, 100) 1 2 3 4
(10, 100) 1 3 2 4
(30, 100) 1 2 4 3
(100, 100) 3 1 4 2
(10, 200) 2 1 3 4
(30, 200) 2 4 3 1
(100, 200) 3 1 4 2
(200, 200) 3 1 4 2
(10, 1000) 2 1 3 4
(30, 1000) 3 1 4 2
(100, 1000) 4 1 2 3
(200, 1000) 4 1 3 2

overall 2 1 4 3
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Fig. 4. Power curves of the C-test for FΔ
N,U,U fuzzy numbers for

n = 5, b = 100.
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Fig. 5. Power curves of the C-test for FΔ
N,U,U fuzzy numbers for

n = 100, b = 1000.
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Fig. 6. Power curves of the C-test for FT
N,E,U,U fuzzy numbers

for n = 5, b = 100.

samples consist of 50 elements and the secondary ones
have 100 elements.

It is worth noting that the condition (25) is very
restrictive. For instance, in the case of F

T
N,E,U,U and

for the EW method we have pmid0 = 0.99975, pspr0 =
0.13892, pmid1 = 0.99999 and pspr1 = 0.05880, which
finally gives p = 0.05880. However, if we choose some
less restrictive aggregation operator, like the mean, we
will obtain p = 0.54937. Anyway, as can be seen,
assuming the significance level 0.05 and using even the
most restrictive criteria (25), there are no reasons to reject
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the null hypothesis that there is no significant difference
between the initial and the output distribution for all the
types of fuzzy numbers considered in Table 17.

6.6. Graphs of means and variances. We also
present sample means and variances obtained for various
bootstrap methods as functions of the sample size n of
Fout(R) both for small (5 elements) and moderate (50
elements) initial samples. To shorten the paper, we
provide the results only for FT

N,E,U,U (see Figs. 8–17).
Since the Aumman-type means of the simulated

distributions are trapezoidal fuzzy numbers, we provide
separate plots for the lower and upper bounds of the
supports, and the lower and upper bounds of the cores. In
each of these plots the horizontal thick line corresponds
to the respective means for the bounds of the initial
sample and the x-axes are located at the y-axis exactly
at the value of the mean of the given model of the fuzzy
number. On the other hand, the Fréchet-type variances
based on the mid/spread distance Dθ with θ = 1 (Casals

Table 16. Empirical p-values for the C-test of the item M.2 and
different null hypotheses (***p < 0.001).

b 100 200 1000

ṽ [6, 7, 8, 9]
VA 0.300 0.356 0.321
EW 0.240 0.185 0.186
d-method 0.240 0.175 0.164
bootstrap 0.160 0.185 0.166
ṽ [7, 8, 9]
VA 0.310 0.355 0.332
EW 0.240 0.190 0.192
d-method 0.250 0.175 0.174
bootstrap 0.160 0.200 0.169
ṽ [3 1

3 , 6
2
3 , 6

2
3 , 10]

VA 0.000*** 0.000*** 0.000***
EW 0.000*** 0.000*** 0.000***
d-method 0.000*** 0.000*** 0.000***
bootstrap 0.000*** 0.000*** 0.000***

Table 17. Empirical p-values for testing the difference between
the initial and the output distribution.

FN type VA EW d-method bootstrap

F
T
N,E,U,U 0.89278 0.72315 0.72315 0.95000

F
Δ
N,U,U 0.95000 0.95000 0.95000 0.95000

F
Δ
N,χ2,χ2 0.23030 0.44131 0.53072 0.89278

F
T
N,E,U,U 0.05880 0.05880 0.89278 0.99675

F
T
Γ,U,E,E 0.62623 0.07937 0.23030 0.89278

F
T
B,Ucon′ 0.05880 0.29037 0.36077 0.89278
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Fig. 7. Power curves of the C-test for FT
B,Ucon fuzzy numbers

for n = 5, b = 100.
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Fig. 8. Means for the left endpoint of the support for the small
sample of FT
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et al., 2013) are illustrated on single graphs since they are
real numbers.

Generally speaking, the sample means calculated
for all bootstrap algorithms considered tend to their
population means especially if the initial samples are
small. The sample means generated by the classical
bootstrap are very close to the means of Fin(R), while
those generated by other methods are more diversified.
This conclusion is confirmed also by the graphs of the
variances, where the results obtained for methods other
than the classical bootstrap seem to be higher in the case of
small Fin(R) (but not necessarily in the case of moderate
sample sizes). Interestingly, the means for moderate
Fin(R) seem to be closer to the population mean more
often if the d-method, the VA-method or the EW-method
are compared with the classical bootstrap.

6.7. Graphs of variability of the estimator. To
succeed with our study, we analyse variabilities of the
estimator (i.e., the average) based on various bootstrap
methods as functions of the sample size n of Fout(R) both
for the small and moderate initial samples. To shorten
the paper, we provide the results only for FΔ

N,χ2,χ2 (see
Figs. 18–21).
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Fig. 11. Means for the right endpoint of the support for the small
sample of FT

N,E,U,U.

We calculate the variabilities related to the
Fréchet-type variance (i.e., based on Dθ with θ = 1; see
also (23)) and the Aumman-type mean E X̃ (see also
(24)), whose true value (i.e., estimated value) is known
for the model considered, using

d(1)var(n) =
1

n− 1

n∑
i=1

D2
θ

(
X̃∗

i ,E X̃
)
, (26)

d(2)var(n) = D2
θ

( 1

n

n∑
i=1

X̃∗
i ,E X̃

)
. (27)

Both (26) and (27) tend to be similar for all sampling
methods, but in some cases they are significantly smaller
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Fig. 12. Variances for the small sample of FT
N,E,U,U.
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for both the VA-method and the EW-method than for the
classical boostrap even for lower values of n.

7. Conclusions

A new methodology for flexible generation of the
bootstrap fuzzy samples was proposed. Contrary to the
classical bootstrap, our new algorithms generate samples
that do not necessarily consist of observations forming
the primary sample only, but they are somehow more
diversified. The key idea of the suggested algorithms
is to generate fuzzy numbers that preserve some crucial
characteristics of the original observations (i.e., the value
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and the ambiguity or the expected value and the width),
but ignore other minor ones.

The paper delivers four bootstrap algorithms ready
for direct use by practitioners. However, it is worth noting
that the suggested methodology can be also applied in
respectively modified jackknife algorithms.

An extended simulation study to examine various
statistical properties and approaches (like the standard
error estimation, benchmarking based on the empirical
size of a statistical test, a power analysis, a goodness-of-fit
statistical test between the initial and secondary samples,
and graphs of means and variances) of the proposed
bootstrap algorithms was performed, also in the case of
real-life data. The results of this study, as well as the
simplicity of new algorithms, indicate that the suggested
approaches turn out to be a remarkable and powerful tool
for making an inference and supporting decisions with
fuzzy data.
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