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The paper proposes a solution to an inverse kinematics problem based on dual quaternions algebra. The method, relying
on screw theory, requires less calculation effort compared with commonly used approaches. The obtained kinematic
description is very concise, and the singularity problem is avoided. The dual quaternions formalism is applied to the
problem decomposition and description. As an example, the kinematics problem of a multi-DOF serial manipulator is
considered. Direct and inverse kinematics problems are solved using division into sub-problems. Each new sub-problem
proposed is concerned with rotation about two subsequent axes by a given amount. The presented example verifies the
correctness and feasibility of the proposed approach.
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1. Introduction

Efficient solution of inverse kinematics problems is
essential for real-time control of robotic manipulators. In
real-time control, the end-effector trajectory is generated
on-line considering the manipulator task and current
sensory readings. Considering the needed end-effector
position, joints positions are calculated using inverse
kinematics equations. Such an operation must be
performed extremely fast with a minimal delay of the
robot reaction to the recently obtained sensory readings.
The proposed approach provides an organized and
pre-defined method of solving the inverse kinematics

∗Corresponding author

problem. The solution requires fewer computations, and
the delivered set of equations is less complex than the
one obtained analytically using the Denavit–Hartenberg
(D–H) approach.

At present, kinematic structures are mainly described
using the D–H formalism (Zhu and Zhao, 2019; Singh
et al., 2018) or the screw theory formalism (Chang
et al., 2018; Xiong et al., 2017). The D–H formalism
requires a proper definition of the coordinate system.
Here the inverse kinematics problem can be solved in
many ways. Often, researchers apply the Jacobian-based
approach using different types of matrix pseudo-inverses.
In this approach, the motion, but not the position of
the end-effector, is transformed into the motion of
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internal coordinates. Therefore, in robot controllers, the
position and orientation must be obtained considering
the formula for discrete integration, which introduces
numerical approximation. Hence, if at each time moment,
accurate positioning of the manipulator is relevant, the
Jacobian-based approach is not the best option.

In another approach, the solution to the inverse
kinematics problem is obtained analytically using
the formulas for a direct problem (e.g., with the D–H
formalism). Such an approach delivers complex equations
even for rather simple serial structures, and in the end
it requires solution of sets of conditioned trigonometric
equations. Another possibility is to intuitively analyze
the manipulator geometry delivering inverse kinematics
equations (Craig, 2009). Here the solution plan is not
uniform and can be easily affected by mistakes. In both
cases, singularity causes a problem and must be managed
separately. Therefore, researchers are still searching
for methods with clearer algorithmic schemes and
simpler transformations. These include methods using
screw theory and dual quaternions (Kenwrigth, 2013).
Screw theory avoids singularities. It uses the product of
exponentials (POE) and quaternions algebra as a major
formal tool. Solving inverse kinematics problems based
on screw theory requires appropriate decomposition
to sub-problems (Murray, 1994). A method based on
decomposition to sub-problems brings a clear geometric
meaning (Sariyildiz and Temeltas, 2012).

Currently, the solution of inverse kinematics often
applies the Paden–Kahan sub-problem formulation.
Unfortunately, the method cannot support inverse
kinematics solutions for all configurations. If there
are no crossing axes in the configuration, it will
not work. Yue-sheng and Ai-Ping (2008) proposed a
sub-problems-based method valid for kinematic structures
which have separated axes. The method is, however, still
insufficient to solve the inverse kinematics problem for
a 6DOF manipulator when its structure includes at least
two non-intersecting axes.

Some researchers proposed sub-problems for solving
cases with three parallel rotating axes. Zhao et al. (2018)
introduced a new sub-problems-based method which
uses POE. They solved the inverse kinematics problem
for a configuration with three parallel axes. Chen et al.
(2015) solved the inverse kinematics problem using
the sub-problems approach for the case where three
axes do not intersect and two of them are parallel in
the same plane. The method was applied to a typical
6DOF manipulator. Recently, many researchers have
been exploring screw theory methods further. An et al.
(2018; 2017) provided a new method for analyzing the
motion of a manipulator. A concept of mutual moments
was also introduced. Wang et al. (2018) proposed a
method for solving the inverse kinematics problem of an
arbitrary 3R manipulator (manipulator with three revolute

joints) using the POE model and Rodrigues formula.
However, the POE method is not universal enough.

It is obvious that numerical precision and real-time
calculations efficiency are very relevant for robot control
systems. Having the above in mind, it was decided to
develop a new approach to solving the inverse kinematics
problem using dual quaternions (Clifford, 1882), i.e., the
kinematic transformation method, which is numerically
efficient. The dual quaternions approach provides a
simple form for a rigid body description (Kussaba
et al., 2017; Wang et al., 2013; 2012). It has been
widely used for motion tracking in aeronautics (Gui and
Vukovich, 2016) and for mapping (Mueller, 2017), but it is
less explored for solving kinematics problems in robotics.
Gouasmi et al. (2012) and Vidaković et al. (2014)
proved benefits of kinematic modeling using the dual
quaternions space. They compared formalisms (Euler
angles, axis-angles, unit quaternions, dual quaternions,
homogeneous transformations, etc.) used for kinematic
analysis of rigid bodies including serial manipulators.
Oezguer and Mezouar (2016) described the kinematics
of a manipulator using dual quaternions. Sariyildiz
et al. (2011) analyzed forward and inverse kinematics
problems for a 6DOF manipulator using three methods:
quaternions algebra, exponential mapping method and
dual quaternions. Cariow et al. (2015) elaborated and
implemented a method which improves the computational
efficiency of dual quaternions operations. The obtained
results indicated that dual quaternions provide a compact
and computationally efficient solution.

Based on state-of-the-art knowledge, it must
be concluded that it is very beneficial to apply dual
quaternions in the field of robotics. In this paper,
a general method based on dual quaternions and
Plücker coordinates is applied using decomposition
to sub-problems known from the literature. Applying
the quaternion, multi-degree-of-freedom manipulator
kinematics are divided into parts described by the
corresponding sub-problems. The solution of the inverse
kinematics problem for a multi-DOF manipulator is
obtained in steps, and mathematical operations are
simplified. The presented studies deliver a novel
formalization of the sub-problem, based on the dual
quaternions describing rotation about two subsequent
axes for a given amount. Such transformation supports
the inverse kinematics problem solution for a 3R structure
with two intersecting axes and one which is separated. As
a proof of concept, this method was applied to solving the
inverse kinematics problem for a 6DOF manipulator with
an atypical structure.

Section 2 presents the basics of the dual quaternions
formalism and Plücker coordinates. Section 3 derives the
new sub-problem and presents its general description.
In Section 4 a novel structure of a 6DOF manipulator is
analyzed using the proposed method. Section 5 presents
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simulation results for the inverse kinematics problem,
with an evaluation of computational efficiency. Section 7
concludes the paper and summarizes future research
suggestions.

The presented method was preliminarily described
by Ge et al. (2018; 2019). The current version covers an
improved and expanded formulation and expanded case
studies. Our previous papers (Ge et al., 2018; 2019) were
prepared at an earlier stage of the research. The new
elements of the current work include (i) a detailed and
systematic description of the method fundamentals with
improved graphical illustrations (Sections 2 and 3), (ii)
a comprehensive presentation of the elaborated procedure
for solving the inverse kinematics problems using the dual
quaternions method (Section 4), (iii) expanded testing
examples (Section 5).

2. Mathematical preliminaries

Notation:
�(·) denotes the direction vector,
(̂·) denotes the dual quaternion,

(̂·)∗ denotes the conjugate element of the quaternion,
(̂·) ◦ (̂·) denotes the product of the dual quaternion,
‖(·)‖ denotes the Euclidean norm,
1n(̂·)R denotes the transformation of a rigid body;
the second element of the left superscript 1n is the
transformation stage,
S(·) denotes the scalar part of the dual quaternion,
V (·) denotes the vector part of the dual quaternion,
SD{·} denotes the scalar part in the dual part of the
dual quaternion,
SR{·} denotes the scalar part in the real part of the
dual quaternion,
V D{·} denotes the vector part in the dual part of the
dual quaternion,
V R{·} denotes the vector part in the real part of the
dual quaternion.

The quaternion is represented as the sum of a real and an
imaginary part, in which the latter behaves as a vector,

q = q0 + q1�i+ q2�j + q3�k = (q0, qV ), (1)

where q0 is a scalar and qV = [q1, q2, q3] is a vector.
The dual quaternion is expressed as the sum of two
quaternions:

q̂ = qS + εqV = (qS , qV ), (2)

where qS is the real part and qV is the dual part, and
ε is a dual factor. The real part represents the rotation,
and the dual part represents the translation. According
to (1), each q̂S , q̂V consists of the scalar part (SR{qS},
SD{qV }) and the vector part (V R{qS}, V D{qV }),
therefore S(q̂) = SR{qS} + SD{qV } and V (q̂) =

V R{qS} + V D{qV }. The dual quaternion describes
the screw type motion of a rigid body. The motion of
a rigid body which is first translated and next rotated is
represented by the dual quaternion as

q̂ = q̂T ◦ q̂R =
(
1 +

ε

2
q̂T

)
◦ q̂R. (3)

The dual quaternion can be defined as an operator
(Mukundan, 2002; Tan and Balchen, 1993), and the
formula (3) can be rewritten as

q̂ =

[
cos( θ2 )
sin( θ2 )�r

]
+ ε

[ −k
2 sin(

θ
2 )

sin( θ2 )�m+ k
2 cos(

θ
2 )�r

]
, (4)

where θ is the rotation angle about the screw axis, �r is
the direction of screw axis, k is the translation along the
screw axis, �m-is the moment of the screw axis (obtained
from the vector cross product).

It must be added that in the Plücker coordinate
system a line is denoted by l̂ = (�m,�r). The intersection
point P of two lines (�m1, �r1) and (�m2, �r2) is expressed
by

P = �r1 × �m1 + ((�r2 × �m2)�r1) · �r1
= �r2 × �m2 + ((�r1 × �m1)�r2) · �r2. (5)

Let l̂R denote any line (in this case it is an axis). After
applying rigid body transformations, this line using the
dual quaternions form is expressed by (Mukundan, 2002;
Tan and Balchen, 1993)

1n l̂R = q̂n ◦ l̂R ◦ q̂∗
1n, (6)

where q̂1n = q̂1 ◦ q̂2 ◦ · · · ◦ q̂n and n is the number
of transformations, e.g., q̂12 denotes the transformation
obtained by the two first degrees of freedom.

Let us assume that P is the end-effector point (the
intersection point of the X , Y , Z axes of the end-effector
coordinates system). Based on Eqns. (5) and (6) and using
the definition of the dual quaternion, this intersection
point P is expressed by

P = V R{1n l̂x} × V R{1n l̂x}+ ((V R{1n l̂z}
×V D{1n l̂z}) · V R{1n l̂x}) · V R{1nl̂x}.

(7)

Note that the intersection point of each pair of three axes
is the intersection of the two axes as well; therefore,
following (Ge et al., 2018), in (7) just two axes are
considered, namely, X and Z .

3. New sub-problem solution and a general
formula

3.1. Solving inverse kinematics using a sub-problem.
The classical Paden–Kahan sub-problems describing
kinematic transformations are (i) rotation about a
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Fig. 1. Structure of the new sub-problem.

Fig. 2. Structure of the extended sub-problem.

single axis, (ii) rotation about two subsequent axes,
(iii) rotation by a given amount. The decoupling is
introduced by selecting special points, such as (a) the
point on the axis and (b) the intersection point of two
or more axes (Murray, 1994). The inverse kinematics
problem can be converted into such sub-problems
accordingly. Unfortunately, the existing methods for
Paden–Kahan sub-problems solution cannot be applied
to all configurations. Therefore a new sub-problem
formulation was introduced. It is based on the second
Paden–Kahan sub-problem, which is a point rotation
around two intersecting axes for a given amount.
With two known rotations of such a point around two
intersecting axes and with one more rotation around
a separated axis, this problem is equivalent to the 3R
situation.

3.2. General description of kinematic tran-
sformations using dual quaternions. A key for

solving the inverse kinematics problem by using
sub-problems is to divide the configuration into
appropriate parts (sub-problems). Sometimes, when
solving the inverse kinematics problem using screw
theory, the Plücker coordinate system is applied. The dual
quaternion is another possible representation leading to a
computationally efficient solution. The general formula
describing kinematic transformations based on dual
quaternions and Plücker coordinates is the following:

r1 =
∥∥∥
(
V R{12 l̂2} × V R{12 l̂2}+ ((V R{12 l̂1}

× V D{12 l̂1}) · V R{12 l̂2}) · V R{12 l̂2}
)
− P b1

∥∥∥,
r2 =

∥∥∥
(
V R{12 l̂2} × V R{12 l̂2}+ ((V R{12 l̂1}

× V D{12 l̂1}) · V R{12 l̂2}) · V R{12 l̂2}
)
− P b2

∥∥∥,
(8)

where r1 and r2 are distances from P to P b1 and to
P b2, and 12 l̂i denotes the axes after two transformations.
Taking into account the norm of the left-hand part of
the equations above, the distance from the end-effector
to the points P b1, P b2 after the 2DOF transformation is
obtained (Murray, 1994).

The formula concerns the case when two lines l̂1
and l̂2 intersect at point P which rotates around the two
subsequent axes of the kinematic structure, reaching a new
position. P b1 and P b2 are arbitrarily selected points;
they create an axis in the 3D space. The initial and end
positions of the rotated point are known; the distances
from the end positions to P b1 = [xb1, yb1, zb1] and P b2 =
[xb2, yb2, zb2] (P b1 �= P b2) are denoted by r1 and r2
respectively.

Some special cases are the following:

(i) if the new position overlaps with P b1 and P b2, then
distances r1 and r2 are zero;

(ii) if the point is rotated around only one axis to the new
position, the distance between this new position and
point P b is expressed by r, and there will be only
one equation in (8);

(iii) if the point is rotated around only one axis to a new
position, and the new position overlaps with P b,
there will be only one equation in (8) and the distance
r will be zero.

Using (8) for multi-DOF manipulator analysis, the
kinematic structure is divided into several parts. The
method is applied separately to each part.

3.3. Definition and solution of the new sub-problem.
The aim of introducing the new sub-problem is to
simplify the inverse kinematics analysis. The new
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sub-problem considered in this paper concerns a 3R
case with two rotations around two intersecting axes and
one more rotation around a separated axis (see Fig. 1).
It is an extension of the Paden–Kahan sub-problem.
Solving this problem, the dual quaternions approach
with geometric transformations was applied. Section 4
illustrates how the inverse kinematics problem is solved
using dual quaternions, considering the 3R transformation
introduced above.

Let us consider point C located at the intersection
of two circles denoting the revolutions around two
intersecting axes k3, k2 (Fig. 1). Getting the position
of C in the base reference frame is a key point of the
new sub-problem. After position C is obtained, the 3R
problem will be further divided into the 1st Paden–Khan
sub-problem and the 2nd Paden–Khan sub-problem. As
illustrated in Fig. 1, rotation axes k2 and k3 intersect
at point D; �u = A − D is the vector between points
A = [xA, yA, zA] and D, �v = B − D is the vector
between points B = [xB , yB, zB] and D, and finally
�t = C−D is the vector between points C = [xC , yC , zC ]
and D = [xD, yD, zD].

Figure 2 illustrates the workspace for the revolute
motion around two axes. For analysis of this situation,
only the position of point C is needed. As the figure
shows, the point-winding rotation of point A is part of
a circle. The motion of A rotating by angle θ3 around k3
forms an arc, which rotates around k2 by angle θ2 forming
a surface. This surface is the workspace of the 2DOF
manipulator (Fig. 3).

Point B (see Fig. 1) is the final point of a serial
kinematic structure. This point was reached by rotation
θ1 around the k1 axis forming an arc (Fig. 2) which is part
of the circle Cy. The position of point B on the circle
Cy is determined by intersecting spheres centered in P b1

and P b2 with radiuses r1 and r2 respectively, (Fig. 1). In
other words, circle Cy is created by the intersection of
the following spheres:

(x− xb1)
2 + (y − yb1)

2 + (z − zb1)
2 = r21 ,

(x− xb2)
2 + (y − yb2)

2 + (z − zb2)
2 = r22 .

(9)

Finally, the position of point B is obtained as the
intersection of circle Cy with workspace U—the surface
produced by the motion of point A as illustrated in Fig. 2
and addressed as the workspace of 2DOF manipulator.

As illustrated in Fig. 1, rotation axes k2 and k3
intersect. The vectors �u, �v, �t expressed by û, v̂, t̂ in
the dual quaternions notation conform to the following
equation:

q̂1 ◦ û ◦ q̂∗
1 = t̂ = q̂2 ◦ v̂ ◦ q̂∗

2. (10)

The vectors �ω3 = [rx3, ry3, rz3], �ω2 = [rx2, ry2, rz2 ] are
the direction vectors of k3 and k2 (Fig. 1). Since �ω3 (ω̂3 in

Fig. 3. Kinematic structure considered as a sub-problem in the
described method.

quaternion form), �ω2 (ω̂2 in quaternion form) and �ω3×�ω2,
are linearly independent, we have

t̂ = e1ω̂3 + e2ω̂2 + e3[0,V R{ω̂3 ◦ ω̂2}], (11)

e1 =
SR{ω̂3 ◦ ω̂2}SR{ω̂2 ◦ û} − SR{ω̂3 ◦ v̂}

SR{ω̂3 ◦ ω̂2}2 − 1
,

e1 =
SR{ω̂3 ◦ ω̂2}SR{ω̂3 ◦ v̂} − SR{ω̂2 ◦ û}

SR{ω̂3 ◦ ω̂2}2 − 1
,

e3 =

√
‖û‖2 − α2 − β2 − 2αβ · SR{ω̂3 ◦ ω̂2}

‖V R{ω̂3 ◦ ω̂2}‖2
.

Solving the above formulas, the coordinates of point B,
which denotes point A after rotation, were obtained.
Then the approach of the 1st Paden–Kahan sub-problem
obtaining θ3 was used,

θ3 = atan 2[SR{ω̂3 ◦ û′ ◦ t̂′}, SR{û′ ◦ t̂′}], (12)

where û′ = û−SR{ω̂3◦û}·ω̂3, t̂′ = q̂◦û◦q̂∗−SR{ω̂3◦
q̂ ◦ û ◦ q̂∗} · ω̂3, q̂ = [cos(θ3/2), sin(θ3/2) · ω̂3].

3.4. Summary. A new sub-problem is expressed by
Eqn. (8) which is used for solving the 3R inverse problem
(the current sub-problems are only used for solving 2R
and 1R cases). The new sub-problem can be applied to any
3DOF system extracted from a more complex serial chain
with revolute joints. The steps for solving the inverse
kinematics problem are as follows:

Step 1. Select the intersecting point of up to three joint
axes starting from the end of the kinematic chain (from
the wrist). Produce kinematic equations for the remaining
axes (excluding the part extracted by intersection). The
structure considered is decoupled into two parts.
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Fig. 4. 6R manipulator in its reference configuration.

Step 2. Select two points on the first axis of the
starting structure and construct the equation describing
the distance from the two points of this axis to the
intersection point identified in Step 1. This equation is
expressed by (8). By obtaining the distance from these
two points to the intersection point, the revolute axes for
the first part of the structure are obtained using Eqn. (6).

Step 3. After the angles are obtained in Step 2, the new
kinematic equation is acquired. If needed, Steps 1 and 2
are repeated.

4. Case studies: Kinematics of a 6DOF
serial manipulator

4.1. Introduction to the problem. The presented
example should be seen as a case study illustrating the
method. The 6DOF structure was chosen because it can
be easily analyzed using also other methods, thus enabling
easy validation of the method with the other ones.

In the described case the structure of a 6DOF
manipulator was divided into two 3DOF parts. Then each
3R problem was solved without further division. As will
be shown, the computation load is here smaller than in
the other solution (i.e., a solution obtained with the D–H
method). Moreover, the singularity problem does not
arise.

4.2. Forward kinematics based on dual quaternions.
First (X1,Y1,Z1) is the base reference frame, the joint
direction vectors are defined in this frame (Fig.4) while
the direction axes of all joints are described by

�l1 = [0, 0, 1]T, �l2 = [1, 0, 0]T, �l3 = [0, 0, 1]T,
�l4 = [0, 1, 0]T, �l5 = [1, 0, 0]T, �l6 = [0, 1, 0]T.

(13)
Next, some points located on the main axes of reference
frames are selected:

P 1 = [0, 0, zp1], P 2 = [0, yp2, zp2],
P 3 = [0, yp3, zp3], P 4 = [0, yp4, zp4],
P 5 = [0, yp3, zp5], P 6 = [0, yp6, zp6 ],

(14)

where P 1 �= P 2 �= P 3 �= P 4 �= P 5 �= P 6. The point
coordinates take the following values:

yp2 = l1, yp3 = yp2, yp4 = yp1 + l2,
yp5 = yp4, yp6 = yp5,
zp1 = h1, zp2 = zp1, zp3 = zp1 + h2,
zp4 = zp3, zp5 = zp3, zp6 = zp3.

(15)

The moment vectors for all axes are expressed by

�mi = P i ×�li, (i = 1, . . . , 6). (16)

Equation (6) allows us to deliver the location of
the X and Y axes associated with the end-effector
point (Fig. 3). This location is expressed using the
dual quaternions formalism and considering that the
end-effector performs linear motion:

l̂′x = l′x + εl′ox
= q̂16 ◦ lx ◦ q̂∗

16 = q̂16 ◦ (lx + εlox) ◦ q̂∗
16,

l̂′z = l′z + εl′oz
= q̂16 ◦ lz ◦ q̂∗

16 = q̂16 ◦ (lz + εloz) ◦ q̂∗
16.

(17)

By referring to the relation (7), the position of the
end-effector was obtained:

P = V R{16 l̂′x} × V R{16 l̂′x}+ ((V R{16 l̂′z}
×V D{16 l̂′z}) · V R{16 l̂′x}) · V R{16l̂′x},

(18)

where V R{16 l̂′x}, V R{16 l̂′z} × V R{16 l̂′x} and
V R{16l̂′z} are the directions of the X , Y and Z axes of
the end-effector coordinate system.

4.3. Inverse kinematics based on dual quaternions.
The inverse kinematics problem delivers each joint angle
according to the known position of the end-effector.
The problem is decoupled using the points on the
axes (including the intersection point) (Sariyildiz and
Temeltas, 2012). A complete kinematic structure is
converted to appropriate sub-problems. This is done as
follows:

Step 1. Origin O of the end-effector coordinate system
is known together with the directions of the X , Y , Z
axes. The intersection point Pw of the last three rotation
axes of the manipulator is known. The rotation axis k6
coincides with the X axis of the final coordinate system
(end-effector system). Moreover, the location of Pw is
such that Pw = P − �lx · l3, where �lx is the direction of
the X axis in the end-effector coordinate system and l3 is
the link length (Fig. 4). Since Pw is the intersection point
of the three axes, the rotation of the three last degrees of
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freedom does not affect the position of this point. Let us
denote by A the initial position of the origin of the wrist
joint (see Figs. 1 and 4). After the manipulator motion,
this point is transformed to point B (according to Fig. 1).
The position of this intersection point is not affected by the
last three axes, therefore we consider firstly the kinematics
equations of the first three axes. It means that the 6DOF
structure is decoupled into a 3R problem:

Pw = V R{123 l̂6} × V R{123 l̂6}+ ((V R{123 l̂5}
×V D{123 l̂5}) · V R{123 l̂6}) · V R{123 l̂6}.

(19)
Step 2. The initial position of the wrist joint is Pw, after
the manipulator motion, the distance r from point Pw

to axis k1 is equal to the distance between A and O3.
Moreover, the position of the wrist point is A (Fig. 1). The
distances Pw from P b1, P b2 are r1 and r2, respectively.
Pw was rotated by an angle of θ3 around axis k3, and then
rotation θ2 around axis k2 was performed (B in Fig. 1).
Using the new sub-problem, the distances r1 and r2 from
Pw (point marking the wrist joint) to P b1 and P b2 are
obtained:

r1 =
∥∥∥
(
V R{123 l̂6} × V R{123 l̂6}+ ((V R{123 l̂5}

× V D{123 l̂5}) · V R{123 l̂6})
· V R{123 l̂6}

)
− P b1

∥∥∥,
r2 =

∥∥∥
(
V R{123 l̂6} × V R{123 l̂6}+ ((V R{123 l̂5}

× V D{123 l̂5}) · V R{123 l̂6})
· V R{123 l̂6}

)
− P b2

∥∥∥.
(20)

Points P b1 and P b2 are located on axis k1, which
means that the rotation of the k1 axis does not influence
the lengths of r1 and r2. Therefore, axis k1 is not involved
when expressing r1 and r4 (the rotation angle vanishes),
and Eqns. (20) take the following form:

r1 =
∥∥∥
(
V R{23 l̂6} × V R{23 l̂6}

+ ((V R{23 l̂5}V D{23 l̂5}) · V R{23 l̂6})
· V R{23 l̂6}

)
− P b1

∥∥∥,
r2 =

∥∥∥
(
V R{23 l̂6} × V R{23 l̂6}

+ ((V R{23 l̂5}V D{23 l̂5}) · V R{23 l̂6})
· V R{23 l̂6}

)
− P b2

∥∥∥.

(21)

Equation (21) has the same form as (8). Equations
(4) and (21) are used for obtaining θ2 and θ3. It is the
solution of introduced new sub-problem (see Section 3.3).
After getting θ2 and θ3, Eqn. (19) is considered and, based

on the 1st Paden–Kahan sub-problem, θ1 is obtained.
Here point Pw was rotated by an angle of θ3 around axis
k3, and next rotation θ2 around axis k2 was performed
(Sariyildiz et al., 2011).

Step 3. The end-effector of the manipulator is rotated and
its coordinates are obtained using the formula

P = V R{45 l̂′z} × V R{45 l̂′z}+ ((V R{45 l̂′x}
×V D{45 l̂′x}) · V R{45 l̂′z}) · V R{45 l̂′z},

(22)

where l̂′x = q̂13 ◦ l̂x ◦ q̂∗
13, l̂′z = q̂13 ◦ l̂z ◦ q̂∗

13.
Equation (22) describes a special situation of the

new sub-problem, which was introduced in the previous
section. Here the point was rotated around axis k5 by θ5,
and next rotated by θ4 around axis k4; the distances from
the specified points P b3 and P b4 to the selected point on
k6, are r3 and r4. Axes k4, k5, k6 intersect at the wrist
joint. Points P b3 andP b4 overlap, and therefore r3, r4 are
equal to zero. When angles θ1, θ2, θ3, θ4, θ5 are known,
θ6 can be obtained. An arbitrarily selected point in the
tool coordinate system is described by P d = P + λd.
Now it is assumed that the two imaginary axes cross at
this point; their direction vectors are �ω7 = [0, 1, 0]T,
�ω8 = [1, 0, 0]T,

P d = V R{6l̂′8} × V R{6l̂′8}+ ((V R{6 l̂′7}
×V D{6 l̂′7}) · V R{6l̂′8}) · V R{6 l̂′8},

(23)

where l̂′7 = q̂15 ◦ l̂7 ◦ q̂∗
15, l̂′8 = q̂15 ◦ l̂8 ◦ q̂∗

15 and θ6 can
be obtained using (23).

So far, six joint angles θ1, . . . , θ6 of the manipulator
have been obtained. It must be noted that in the considered
example the final three joint axes intersect. Out of the first
three joint axes, the second and the third intersect, too.
When this method is used for another kinematic structure,
the inverse kinematics problem must be solved by a proper
combination of the first and second type of sub-problems.

5. Simulation results

The manipulator shown in Fig. 4 was taken as the testing
example. The manipulator parameters are as follows:
h1 = 500, h2 = 160, l1 = 400, l2 = 450, l3 = 150.

The task was to move the end-effector point along
two line segments and along an arc in the 3D space. The
trajectory was divided into 50 equal parts addressed as the
control steps. The term ‘control step’ is used referring to
the work of real controllers. The controller applies the
point trajectories described in the Cartesian space; this
means that the trajectories are represented as a series of
points. The time intervals separating these points are
called control steps. They are the working steps of a lower
level controller. In each step the lower level controller
supervises concurrently the motion of all joints so that
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Fig. 5. Trajectory of the end-effector point: line segments. The
path used for solving the inverse kinematics problem and
the verified path given by the obtained joint trajectories
after solving the direct kinematics problem are shown.
Both paths overlap. The arrows present the motion
direction.

the given point position is reached till the next motion
demand concerning the next point. Figure 5 shows the 3D
trajectory of the end-effector following the line segments.
The trajectory starts at the point (863.42, 152.24, 420.74)
with intermediate point (688.51, 441.72, 791.31) and the
final position (483.21, 727.63, 444.00). The coordinates
are expressed in the robot base frame. For each point
the inverse kinematics problem was solved. The obtained
joint trajectories are shown in Fig. 6.

Figure 7 shows the arc-shaped trajectory of the
end-effector from point (835.16,−231.52, 660.95) to
point (298.85, 49.85, 1161.31). Figure 8 shows obtained
joint trajectories. As seen in Figs. 6 and 8, the angular
displacement of each joint is smooth, which indicates
that not any calculation or numerical errors are involved.
For completely checking the solutions to kinematics
problems, the obtained joint trajectories were again used
for solving the direct kinematics problem. The solution
was delivering again the end-effector trajectory. The
points of such trajectories are marked in Figs. 5 and 7 as
the points of the verified path, while the points considered
at the beginning are marked as the points of the initial
path. As can be seen, the points of both trajectories are
overlapping (within numerical accuracy, which will be
commented upon bellow). discussed makes the proof of
the correctness of the presented solution.

A comparison of the computational performance
of different algebraic methods for a forward and an
inverse kinematics problem is presented by Sariyildiz
et al. (2011). The required number of operations,
i.e., additions, subtractions, and multiplications for
different algebraic methods, and varied complexity of
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Fig. 6. Joint trajectories for the end-effector following the line
segments.
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Fig. 7. Trajectory of the end-effector point: an arc path. The
path used for solving the inverse kinematics problem and
the verified path given by the obtained joint trajectories
after solving the direct kinematics problem are shown.
Both paths overlap. The arrows present the motion
direction.

the discussed structure in terms of DOFs were analyzed,
showing the disadvantage of the exponential mapping
method as compared with the dual quaternions ones.
In this paper, one of the methods used by Sariyildiz
et al. (2011) was followed. The computation time was
recorded when solving the direct kinematics problem
from 1 up to 50 times (addressed as repetitions). The
obtained computation time was next normalized to the
repetition; this means that the overall time was divided by
the number of repetitions involved. The dual quaternions
method consumed less time, as illustrated in Fig. 9.
Moreover, for dual quaternions, smaller variations in the
computation time were also observed. The computation
time was evaluated using MATLAB tic-toc commands on
an Intel core i5-2450 Duo 2.2 GHz PC with 4 GB RAM.

6. Conclusions

Industrial robot controllers have limited computational
power. In sensory-based control, when end-effector
trajectories are modified, on-line joint coordinates must
be obtained in real time (using formulas produced
and implemented off-line). Moreover, in some control
modes (e.g., human guided motion), the position of
the end-effector must be recovered fast from joint
coordinates. Therefore a very fast solution of the direct
kinematics problem is needed, too. The conclusion that
numerical efficiency of calculations is critical was the
motivation for the presented research.

The new sub-problem is proposed for solving the
inverse kinematics problem of kinematic structures for
which the decomposition to Paden–Kahan sub-problems
is not sufficient. The sub-problem concerns the 3R case
while the current sub-problems considered only 2R and
1R cases. The presented method is general. It is based
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Fig. 8. Joint positions of the manipulator following an arc path.
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Fig. 9. Comparison of the computation load for the forward
kinematics problem (DQ: dual quaternions method,
POE: exponential product method).

on dual quaternions. Therefore it can be applied in any
case where such methods can be used, particularly for all
manipulators with revolute joints.

The presented case studies concerned only the
end-effector position but its orientation was investigated.
A relatively simple 6-DOF structure allows an easy
comparison with the other solutions, making sure that the
errors were not introduced due to problem complexity.
It is the structure of a new manipulator that is currently
under development. Therefore such studies were also
needed for development work.

It must be noted that method validation using
redundant structures would be difficult and problematic
at this stage. In redundant structures, there can be
several feasible configurations for the same end-effector
paths. Moreover, comparisons with the other methods
can be very troublesome due to serious difficulties in
the implementation (especially considering the need
for posture optimization and singularities avoidance
in the other methods). Our further research plans
include tests considering the end-effector orientation, and
implementation of the obtained solutions in the developed
manipulator controller. The next planned step is the
modeling of robot dynamics using the dual quaternions
concept.
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