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JOSÉ V. SALCEDO a,∗, MIGUEL MARTÍNEZ a, SERGIO GARCÍA-NIETO a, ADOLFO HILARIO a

aInstitute of Control Systems and Industrial Computing (ai2)
Polytechnic University of Valencia

Camino de Vera S/N, 46022 Valencia, Spain
e-mail: jsalcedo@upv.es

This paper develops an innovative approach for designing non-parallel distributed fuzzy controllers for continuous-time
non-linear systems under persistent perturbations. Non-linear systems are represented using Takagi–Sugeno fuzzy models.
These non-PDC controllers guarantee bounded input bounded output stabilisation in closed-loop throughout the compu-
tation of generalised inescapable ellipsoids. These controllers are computed with linear matrix inequalities using fuzzy
Lyapunov functions and integral delayed Lyapunov functions. LMI conditions developed in this paper provide non-PDC
controllers with a minimum �-norm (upper bound of the 1-norm) for the T–S fuzzy system under persistent perturbations.
The results presented in this paper can be classified into two categories: local methods based on fuzzy Lyapunov functions
with guaranteed bounds on the first derivatives of membership functions and global methods based on integral-delayed
Lyapunov functions which are independent of the first derivatives of membership functions. The benefits of the proposed
results are shown through some illustrative examples.
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1. Introduction

Takagi–Sugeno fuzzy systems have been an active
research topic in control community since the mid-1990s.
The keys behind this activity are mainly two (Tanaka
et al., 1998; Tanaka and Wang, 2001):

• T–S fuzzy systems can precisely represent non-linear
systems in a compact set;

• parallel distributed compensators (PDC) can be
efficiently designed for these systems using linear
matrix inequalities (LMIs) (Boyd et al., 1994;
Tanaka and Wang, 2001; Sala and Ariño, 2007;
Guerra et al., 2015).

LMI problems are convex optimization problems
which can be solved in polynomial time (Boyd et al.,
1994; Gahinet et al., 1995) with highly efficient solvers
(Löfberg, 2004).
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The design of PDC controllers can incorporate
several kinds of conditions (Tanaka and Wang, 2001; Tuan
et al., 2001; Scherer and Weiland, 2000): stability, state
and input constraints, H∞-norm, etc. Consequently,
PDC controllers are able to stabilise the non-linear
system represented by a T–S fuzzy system. Moreover,
Takagi–Sugeno fuzzy systems are a useful tool to design
controllers for non-linear systems (Guerra et al., 2015).

In the literature there are recent publications (Sun et
al., 2019; Qiu et al., 2019a; 2019b) which deal with the
design of fuzzy output-feedback controllers for non-linear
systems under full state constraints and with prescribed
performance in closed loop. These manuscripts show
the importance that researches are paying to the design
of controllers for non-linear systems under real-world
conditions.

Moreover, recent advanced stability results based on
fuzzy Lyapunov functions (FLFs) and non-PDC control
laws have been developed (Cherifi, 2017; Hu et al., 2017;
2018; Márquez et al., 2016; 2017; Lam et al., 2016; Lam,
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2018; Vafamand and Shasadeghi, 2017; Yoneyama, 2017;
Vafamand, 2020a; 2020b). In addition, some references
have dealt with the case of persistent perturbations (Hu et
al., 2019; Vafamand et al., 2016; 2017b; 2017a).

In our previous papers (Salcedo and Martinez,
2008; Salcedo et al., 2008; 2018) we presented results
for continuous-time T–S fuzzy models under persistent
perturbations based on the concept of the �-norm, using
a common quadratic Lyapunov function (CQLF) and
PDC controllers. These results guarantee bounded input
bounded output (BIBO) stabilisation. The main goal
of this paper is to extend such results using FLFs and
non-PDC controllers, and to draw a comparison with the
results presented in the literature when more complex
Lyapunov functions than CQLFs are used (Hu et al., 2019;
Vafamand et al., 2017b).

Vafamand et al. (2017b) presented some results;
cf. Theorem 1 and Corollary 1 based on CQLFs, and
Theorem 2 and Corollary 2 based on FLFs with bounds
in first derivatives of membership functions. Only
Corollary 2 guarantees such bounds using ideas from
(Guerra et al., 2012; Pan et al., 2012), although it is
conservative compared with the results of this paper. This
question will be addressed in the examples of Section 4.

Hu et al. (2019) develop an alternative way to deal
with the bounds of the first derivatives of membership
functions trough Lemma 1 therein. Their bounds
outperform bounds from previous publications (Guerra
et al., 2012; Pan et al., 2012). Comparisons between
that new approach and the results of this paper will
be performed throughout examples. As a conclusion,
when q = 1, that is to say, the multi-index of the FLF
and non-PDC control law equals 1, the bounds of (Hu
et al., 2019) provide worse values for the �-norm than the
results of this paper. Note that this paper does not use
multi-indexation formulation for FLFs nor for non-PDC
controllers, or equivalently, uses multi-index q = 1.

The approaches of Vafamand et al. (2017b) and
Hu et al. (2019) are only local because of bounds for
derivatives of membership functions. A way to avoid this
problem is to use Lyapunov functions whose derivatives
do not depend on derivatives of membership functions.
Márquez et al. (2016) and Yoneyama (2017) proposed
a new kind of Lyapunov functions called IDLFs which
satisfy this property. In this article such IDLFs are used
to provide global non-PDC controllers under persistent
perturbations. To the best of our knowledge, this kind of
Lyapunov functions has not been previously used when
persistent perturbations are present.

In this paper innovative approaches are developed to
improve previous publications which deal with persistent
perturbations (Salcedo and Martinez, 2008; Salcedo et al.,

2018; Vafamand et al., 2017b; Hu et al., 2019). These
innovative methodologies can be summarised as follows:

• Extension of the concepts of the �-norm and
inescapable ellipsoids corresponding to CQLFs
(Salcedo and Martinez, 2008; Salcedo et al., 2018)
when using FLFs, IDLFs and non-PDC controllers
under persistent perturbations.

• Development of new guaranteed bounds for first
derivatives of membership functions following the
ideas of Lee et al. (2012; 2014) and de Silva
Campos et al. (2017) based on LMIs under persistent
perturbations.

• Design of local BIBO non-PDC controllers based on
FLFs and the new bounds. These controllers will be
only valid inside a generalised inescapable ellipsoid.

• Design of global BIBO non-PDC controllers based
on IDLFs. Derivatives of IDLFs do not depend on
derivatives of membership functions, consequently
the derived LMIs can be satisfied globally.

The rest of the paper is organised as follows:
Section 2 presents theoretical background and preliminary
results. Main results of this paper are developed in
Section 3. Section 4 is devoted to application examples.
Finally, in Section 5 conclusions are discussed and in
Section 6 some future research lines are commented.

2. Definitions, notation and preliminary
results

This paper considers the following kind of non-linear
models:

ẋ(t) = f(z(t))x(t) + g(z(t))u(t) + e(z(t))φ(t),

y(t) = c(z(t))x(t) + d(z(t))φ(t), (1)

where x(t) ∈ R
nx is the state vector, z(t) ∈ R

p is
the premise vector, u(t) ∈ R

nu is the control input
vector, φ ∈ R

nφ is the disturbance vector and y(t) ∈
R

ny is the controlled output. It is assumed that the
premise vector is a subset of the state vector and all the
states are measurable. Using different approaches (Tanaka
and Wang, 2001) a continuous T–S fuzzy model can be
obtained:

ẋ(t) =
r∑

i=1

hi(t) (Aix(t) + Biu(t) + Eiφ(t)) , (2)

= Ahx + Bhu + Ehφ,

y(t) =
r∑

i=1

hi(t) (Cix(t) + Diφ(t)) = Chx + Dhφ, (3)
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where

Yh �
r∑

i=1

hi(t)Yi,

r is the number of fuzzy rules, and the ‘hi’ are known
as membership functions satisfying the convex sum
property:

hi(t) ≥ 0 i = 1, . . . , r and
r∑

i=1

hi(t) = 1, ∀ t. (4)

If the T–S model is obtained using the non-linearity
sector approach, membership functions have a special
structure (da Silva Campos et al., 2017; Márquez et al.,
2017):

hi(z) = h1+i1·20+i2·21+...+ip·2p−1(z) =
p∏

j=1

wj
ij
(zj),

i ∈ {1, 2, . . . , r = 2p} , ij ∈ {0, 1} , j = 1, . . . , p,
(5)

where wj
ij
(zj) are the normalised weighting functions

satisfying

wj
ij
(zj) ≥ 0, wj

1(zj) = 1− wj
0(zj). (6)

Note that the j-th normalised weighting function depends
only on the j-th premise variable. These functions are
related to non-linear terms which are in functions f , g, e,
c and d.

A fuzzy parallel distributed compensator (PDC)
(Tanaka and Wang, 2001) is a fuzzy controller which has
the same premises and membership functions as the T–S
model and its consequents are linear state feedback laws:

u(t) =
r∑

i=1

hi(t)Fi.x(t) = Fhx(t). (7)

2.1. 1-Norm and the �-norm. The main objective
in this work is to design non-PDC fuzzy state-feedback
controllers for continuous-time T–S fuzzy systems, which
stabilize the closed loop when the disturbance vector is
bounded (persistent disturbance):

φ(t)Tφ(t) ≤ δ2, ∀t, δ > 0. (8)

This stabilization is known as BIBO since the output
vector will always be bounded when φ(t) is a persistent
disturbance:

∃μ > 0 ∀t : y(t)T y(t) ≤ μ2. (9)

Remark 1. A persistent disturbance does not necessarily
tend asymptotically towards 0 as t → ∞.

The 1-norm is defined by (Boyd et al., 1994; Abedor
et al., 1996; Salcedo et al., 2018):

||Gφ→y||1 � sup
||φ(t)||∞ �=0

||y(t)||∞
||φ(t)||∞ , (10)

where the ∞-norm of a vector signal is defined as:

||φ(t)||2∞ � sup
t≥0

φ(t)Tφ(t) = δ2. (11)

This work extends the results presented by Salcedo
and Martinez (2008) or Salcedo et al. (2018) when
a non-PDC state-feedback controller is designed when
minimising an upper bound for the 1-norm between φ(t)
and y(t). Salcedo and Martinez (2008) or Salcedo et al.
(2018) considered only PDC controllers.

It is more complex to calculate the 1-norm than the
2-norm or the H∞-norm (Abedor et al., 1996; Sanchez
Peña and Sznaier, 1998), although an upper bound can be
estimated for it, called the star (�) norm, based on LMIs
only (Abedor et al., 1996; Salcedo et al., 2018). This
bound allows us to tackle the design of fuzzy controllers
using existing techniques (Tanaka and Wang, 2001; Liu
and Zhang, 2003; Teixeira et al., 2003; Guerra et al.,
2006).

Recall the following result of Salcedo et al. (2018):

Lemma 1. (�-Norm computation) The �-norm between
the y output and the φ input for the closed-loop system
formed by (2) and (3), and the PDC controller (7) is ob-
tained solving the problem:

||GCL
φ→y||� = inf

α>0
N(α), (12)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min

{
μ ≥ 0 : P̄ = P̄T > 0, 0 ≤ β ≤ α,

subject to (13) and (14)} ,
(

ACL
h

T
P̄ + P̄ACL

h + αP̄ δP̄BCL
h

δBCL
h

T
P̄ −βI

)
≤ 0, (13)

⎛

⎜⎝
αP̄ 0 CCL

h

T

0 (μ− β)I δDCL
h

T

CCL
h δDCL

h μI

⎞

⎟⎠ ≥ 0. (14)

Remark 2. Optimization with respect to α in
(12) is carried out calculating the values of N(α) for
a sufficiently representative finite set of values for α
(gridding procedure).

Conditions of Lemma 1 can be recast as an LMI
problem (Salcedo and Martinez, 2008; Salcedo et al.,
2018).

Lemma 2. (�-Norm computation with LMIs for PDC
controllers) The �-norm between the output y and the in-
put φ for the closed-loop system formed by (2) and (3),
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and the PDC controller (7) can be obtained by solving the
LMI problem

||GCL
φ→y||� = inf

α>0
N(α), (15)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min {μ ≥ 0 : P > 0, 0 ≤ β ≤ α,

subject to (16) and (17)} ,

Υij =

(
PAT

i + AiP + BiFj + FT
j BT

i + αP δEi

δET
i −βI

)
,

Ψi =

⎛

⎝
αP 0 PCT

i

0 (μ− β)I δDT
i

CiP δDi μI

⎞

⎠ ,

Υii ≤ 0, Ψi ≥ 0, i = 1, . . . , r, (16)

2

r − 1
Υii + Υij + Υji ≤ 0, i 	= j, i, j = 1, . . . , r.

(17)

Remark 3. V (x) = xT P−1x is a quadratic Lyapunov
function for the closed-loop, and the positive definite
matrix P−1 defines an inescapable ellipsoid (16) (Abedor
et al., 1996; Salcedo et al., 2018):

E(P−1) �
{

x : xT P−1x ≤ 1
}
, (18)

which is a robust control positively invariant set for the
closed loop.

Remark 4. If an LMI solver based on interior point
methods (Boyd et al., 1994) is used, the computational
cost of the LMI optimization problem can be estimated as
being proportional to N3

var ·Nrow, where Nvar is the total
number of scalar decision variables and Nrow the total
row size of the LMIs (Gahinet et al., 1995). For Lemma 2
we have

NLem2
var = 2 +

1

2
nx(nx + 1) + r nu nx,

NLem2
row = 1 + nx + r2(nx + nφ) + r(nx + ny + nφ).

2.2. Auxiliary lemmas. Some useful results are
presented here for further developments:

Lemma 3. (Tuan et al., 2001) Given symmetric matrices
Υij of appropriate dimensions, the inequality

Υhh =

r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))Υij < 0, (19)

is satisfied if

Υii < 0, i = 1, . . . , r,

2

r − 1
Υii + Υij + Υji < 0, i, j = 1, . . . , r, j 	= i.

(20)

Lemma 4. (Delmotte et al., 2007) Given matrices A, T1,
T2 and T3 of appropriate dimensions, the next two prob-
lems are equivalent:

1. Find symmetric P > 0 with appropriate dimensions
such that

[
T1 + AT P + PA (∗)

T2 T3

]
< 0.

2. Find symmetric P > 0 and full L1, L2 and G with
appropriate dimensions such that
⎡

⎣
T1 + AT LT

1 + L1A (∗) (∗)
T2 + L2A T3 (∗)

P − LT
1 + GT A −LT

2 −G − GT

⎤

⎦ < 0.

Applying Lemma 4 to Lemma 2, we get the
following result.

Corollary 1. The �-norm between the output y and the
input φ for the closed-loop system formed by (2) and (3)
and the PDC controller (7) can be obtained solving the
LMI problem

||GCL
φ→y||� = inf

α>0
N(α), (21)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min {μ ≥ 0 : P > 0, 0 ≤ β ≤ α,

subject to (22) and (23)} ,

Υij =

⎛

⎝
L1jAT

i + AiLT
1j + BiFj + FT

j BT
i + αP

δET
i + L2jAT

i

P − LT
1i + GT

j AT
i

(∗) (∗)
−βI (∗)
−LT

2i −Gi − GT
i

⎞

⎠ ,

Ψi =

⎛

⎝
αP 0 PCT

i

0 (μ− β)I δDT
i

CiP δDi μI

⎞

⎠ ,

Υii ≤ 0, Ψi ≥ 0, i = 1, . . . , r, (22)

2

r − 1
Υii + Υij + Υji ≤ 0, i 	= j, i, j = 1, . . . , r,

(23)

where L1i, L2i and Gi i = 1, . . . , r are matrices of appro-
priate dimensions.

Remark 5. Corollary 1 is more relaxed than Lemma 2.
This conclusion is derived from the fact that if LMIs (22)
and (23) have a solution then (16) and (17) have a solution.
The converse is not necessarily true. This result was
analysed by Delmotte et al. (2007) and Márquez et al.
(2016).
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Remark 6. For Corollary 1 we have

NCor1
var = 2 +

1

2
nx(nx+1)+r nu nx

+ r
(
2n2

x + nx nφ

)
,

NCor1
row = 1 + nx + r2(2nx + nφ)

+ r(nx + ny + nφ).

Consequently, Lemma 2 has a lower number of variables
and a lower number of rows than Corollary 1, but it is
more conservative.

3. Main results

In this article we propose an extension of our previous
results (Salcedo and Martinez, 2008; Salcedo et al.,
2018; Vafamand et al., 2017b) using non-PDC fuzzy
controllers following two strategies based on fuzzy
Lyapunov functions:

(i) a global approach based on integral-delayed
Lyapunov functions (Márquez et al., 2016;
Yoneyama, 2017; Vafamand, 2020a; 2020b);

(ii) a local approach based on fuzzy Lyapunov functions
with guaranteed bounded first derivatives of the
membership functions (Lee et al., 2012; 2014; Pan et
al., 2012; Lee and Kim, 2014; Wang et al., 2015; da
Silva Campos et al., 2017; Vafamand et al., 2017b;
Vafamand and Shasadeghi, 2017; Hu et al., 2018;
2019).

Integral-delayed Lyapunov functions (Márquez
et al., 2016; Vafamand, 2020a) provide global results
using membership functions which are integrals of the
membership functions of the T–S fuzzy model. The
benefits behind this idea are that the time derivatives
of the Lyapunov function will not depend on the time
derivatives of membership functions which removes the
need of bounding such time derivatives, and the results
based on this kind of Lyapunov functions are global.

Fuzzy Laypunov functions matching the membership
functions of the fuzzy model (Tanaka et al., 2001)
require bounding the time derivatives of such membership
functions. When designing a fuzzy controller these
bounds cannot be either known or estimated in advance,
so they have to be included as additional constraints in the
LMI problem (Lee et al., 2012; Pan et al., 2012; Wang
et al., 2015; Vafamand et al., 2017b; Vafamand and
Shasadeghi, 2017; Hu et al., 2019). These bounds imply
that stabilization can only be guaranteed in a local subset.

3.1. Results based on integral-delayed Lyapunov
functions. An integral-delayed Lyapunov function

(IDLF) is defined as (Márquez et al., 2016)

V (x) = xT P−1
v x = xT

(
r∑

i=1

vi(z(t))Pi

)−1

x, (24)

with Pi > 0 and

vi(z(t)) =
1

κ

∫ t

t−κ

hi(z(τ)) dτ, κ > 0, (25)

where κ is taken as a delay.

Lemma 5. (Marquez et al., 2016) We have that

1. 0 ≤ vi(t) ≤ 1,
∑r

i=1 vi(t) = 1,

2. v̇i(t) =
1

κ
(hi(t)− hi(t− κ)),

3. limκ→0 v̇i(t) = ḣi(t),

4. Ṗv =
1

κ
(Ph − Ph−), where h−

i � hi(t− κ).

Together with an IDLF a non-PDC control law
(Márquez et al., 2016) is used,

u(t) = Fhh−vP−1
v x(t) (26)

with Fhh−v =
∑r

i=1

∑r
j=1

∑r
k=1 hih

−
j vkFijk , Fijk ∈

R
nu×nx . Non-PDC controllers (Guerra and Vermeiren,

2004) are a generalisation of PDC controllers when the
defuzzification of their consequents includes more than
one fuzzy summation and/or the inversion of a fuzzy
summation. With this non-PDC controller the dynamics
of closed-loop are

ẋ =

ACL

︷ ︸︸ ︷(
Ah + BhFhh−vP−1

v

)
x + Ehφ. (27)

Expanding these ideas Yoneyama (2017) proposed the
double integral-delayed Lyapunov function (DIDLF)

V (x) = xT P−1
vλ x

= xT

⎛

⎝
r∑

i=1

r∑

j=1

vi(z(t))λj(z(t))Pij

⎞

⎠
−1

x, (28)

with Pij > 0 and

λj(z(t)) =
2

κ2

∫ 0

−κ

∫ θ

t+θ

hi(z(τ)) dτdθ. (29)

Lemma 6. (Yoneyama, 2017) We have that

1. 0 ≤ λi(t) ≤ 1,
∑r

i=1 λi(t) = 1,

2. λ̇i(t) =
2

κ
(hi(t)− vi(t)),

3. Ṗvλ =
1

κ
(Phλ − Ph−λ + 2Pvh − 2Pvv).
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Remark 7. If Pij = Pi, ∀j, then a DIDLF becomes an
IDLF. Consequently, IDLFs are a subset of DIDLFs.

Together with a DIDLF a non-PDC control law
(Yoneyama, 2017) is used,

u(t) = Fhh−vvλP−1
vλ x(t), (30)

where

Fhh−vvλ =

r∑

i=1

r∑

j=1

r∑

k=1

r∑

l=1

r∑

m=1

hih
−
j vkvlλmFijklm ,

Fijklm ∈ R
nu×nx .

With this non-PDC controller the dynamics of closed-loop
are

ẋ =

ACL

︷ ︸︸ ︷(
Ah + BhFhh−vvλP−1

vλ

)
x + Ehφ. (31)

Remark 8. If Fijklm = Fijk , ∀l,m and Pij = Pi,
∀j then the non-PDC control law of (Yoneyama, 2017)
(30), becomes the non-PDC control law of Márquez et al.
(2016); cf. (27).

3.1.1. Theorems for IDLFs. Now, it is possible to
apply Lemma 1 to the IDLF (24) with the non-PDC
control law (26).

Theorem 1. (�-Norm computation with IDLF). The �-
Norm between the output y and the input φ for the closed-
loop system (27) is obtained the solving the problem

||GCL
φ→y||� = inf

α>0
N(α), (32)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min {μ ≥ 0 : Pv > 0, 0 ≤ β ≤ α,

subject to (33) and (34)} ,
(

PvACLT
+ ACLPv + αPv − Ṗv δBCL

h

δBCL
h

T −βI

)
≤ 0, (33)

⎛

⎜⎝
αPv 0 PvCCL

h

T

0 (μ− β)I δDCL
h

T

CCL
h Pv δDCL

h μI

⎞

⎟⎠ ≥ 0, (34)

with

ACL =
(
Ah + BhFhh−vP−1

v

)
, BCL

h = Eh,

CCL
h = Ch, DCL

h = Dh, (35)

Ṗv =
1

κ
(Ph − Ph−) . (36)

Proof. From conditions (13) and (14) of Lemma 1,
the IDLF (24) and the non-PDC control law (26), the
following conditions are obtained:

⎛

⎝ ACLT
P−1
v + P−1

v ACL + αP−1
v +

dP−1
v

dt
δBCL

h
T

P−1
v

δP−1
v BCL

h

−βI

)
≤ 0 (37)

⎛

⎜⎝
αP−1

v 0 CCL
h

T

0 (μ− β)I δDCL
h

T

CCL
h δDCL

h μI

⎞

⎟⎠ ≥ 0. (38)

The term dP−1
v /dt appears in block (1, 1) of condition

(37) because Pv is time dependent. It did not
appear in Lemma 1 since it was obtained for quadratic
time-independent Lyapunov functions. Conditions (33)
and (34) are recovered from (37) and (38) applying a
congruence transformation with

diag (Pv, I) (39)

and using the property

dP−1
v

dt
= −P−1

v ṖvP−1
v (40)

�

Remark 9. V (x) = xT P−1
v x is a non-quadratic

Lyapunov function for the closed loop. Moreover, the
positive definite fuzzy matrix P−1

v defines an inescapable
set (33) (Abedor et al., 1996; Salcedo et al., 2018):

E(P−1
v ) �

{
x : xT P−1

v x ≤ 1
}
, (41)

which is a robust control positively invariant set for the
closed loop. This set is called the generalised inescapable
ellipsoid.

Remark 10. Note that (33) and (34) are not LMI
conditions. The next two theorems provide a way to recast
them as LMIs.

Theorem 2. (�-Norm computation with LMIs for IDLF)
The �-norm between the output y and the input φ for the
closed-loop system (27) can be obtained solving the fol-
lowing LMI problem:

||GCL
φ→y||� = inf

α>0
N(α). (42)

Given κ > 0, N(α) is calculated of each fixed α > 0, as
follows:

N(α) � 1

δ
min {μ ≥ 0 : Pi > 0, 0 ≤ β ≤ α,

subject to LMIs (43)–(45) } ,

Υijkl =

⎛

⎜⎝
AiPl + PlAT

i + BiFjkl

+FT
jklB

T
i + αPl − 1

κ
(Pi − Pk)

δEi

δET
i −βI

⎞

⎟⎠ ,

Ψij =

⎛

⎝
αPj 0 PjCT

i

0 (μ− β)I δDT
i

CiPj δDi μI

⎞

⎠ ,

Υiikl ≤ 0, i, k, l = 1, . . . , r, (43)
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2

r − 1
Υiikl + Υijkl + Υjikl ≤ 0, i 	= j, k, l = 1, . . . , r.

(44)

Ψij ≥ 0, i, j = 1, . . . , r (45)

Proof. The left member of condition (33) is a fuzzy
summation with four indexes: hhh−v. Substituting (35)
and (36) in it and using Lemma 3, conditions (43), (44)
are obtained.

Following a similar procedure, conditions (45) are
recovered from condition (34). Note that, if Pi > 0,
i = 1, . . . , r, then Pv > 0. �

Remark 11. For Theorem 2 we have

NTh2
var = 2+

r

2
nx(nx + 1) + r3 nu nx,

NTh2
row = 1 + r nx + r4(nx + nφ) + r2(nx + ny + nφ).

LMI conditions of Theorem 2 can be improved using
Lemma 4.

Theorem 3. (�-Norm computation with LMIs based on
Lemma 4 for IDLF ) The �-norm between the output y
and the input φ for the closed-loop system (27) can be
obtained by solving the following LMI problem:

||GCL
φ→y ||� = inf

α>0
N(α), (46)

given κ > 0 N(α) is calculated of each fixed α > 0, as
follows:

N(α) � 1

δ
min {μ ≥ 0 : Pi > 0, 0 ≤ β ≤ α,

subject to LMIs (47)–(49)} ,

Υijkl =

⎛

⎜⎜⎜⎝

AiLT
1jkl + L1jklAT

i + BiFjkl

+FT
jklB

T
i + αPl − 1

κ
(Pi − Pk)

δET
i + L2jklAT

i

Pl − L1jkl + GT
jklA

T
i

(∗) (∗)
−βI (∗)

−LT
2jkl −Gjkl − GT

jkl

⎞

⎟⎟⎠ ,

Ψij =

⎛

⎝
αPj 0 PjCT

i

0 (μ− β)I δDT
i

CiPj δDi μI

⎞

⎠ ,

Υiikl ≤ 0, i, k, l = 1, . . . , r (47)

2

r − 1
Υiikl + Υijkl + Υjikl ≤ 0, i 	= j, k, l = 1, . . . , r,

(48)

Ψij ≥ 0, i, j = 1, . . . , r, (49)

where L1jkl, L2jkl and Gjkl j, k, l = 1, . . . , r matrices of
appropriate dimensions.

Proof. In condition (33) take A as AT
h , P as Pv , T1 as

BhFhh−v + FT
hh−vBT

h + αPv − 1/κ (Ph − Ph−), T2 as
ET
h and T3 as −βI. Applying Lemma 4 to condition (33)

is guaranteed by

⎛

⎜⎜⎜⎝

AhLT
1hh−v + L1hh−vAT

h + BhFhh−v

+FT
hh−vBT

h + αPv − 1

κ
(Ph − Ph−)

δET
h + L2hh−vAT

h

Ph − L1hh−v + GT
hh−vAT

h

(∗) (∗)
−βI (∗)

−LT
2hh−v −Ghh−v − (∗)T

⎞

⎟⎟⎠ ≤ 0.

This expression can be recast as LMIs (47) and (48) by
applying Lemma 3. LMIs (49) are obtained following the
proof of Theorem 2. �

Remark 12. Fot Theorem 3 we have

NTh3
var = 2 +

r

2
nx(nx + 1)

+ r3
(
nu nx + 2n2

x + nx nφ

)
,

NTh3
row = 1 + r nx + r4(2nx + nφ)

+ r2(nx + ny + nφ).

Consequently, Theorem 2 has a lower number of variables
and a lower number of rows than Theorem 3, but it is more
conservative.

Remark 13. Theorem 3 is more relaxed than Theorem 2.
This conclusion is derived following the same lines of
Remark 5.

It is possible to reduce the number of variables
replacing control gains Fjkl by Fj . This result is
expressed as follows.

Corollary 2. (�-Norm computation with LMIs based on
Lemma 4 for the IDLF using reduced gains) The �-norm
between the output y and the input φ for the closed-loop
system (27) can be obtained by solving the following LMI
problem:

||GCL
φ→y||� = inf

α>0
N(α). (50)

Given κ > 0, N(α) is calculated of each fixed α > 0, as
follows:

N(α) � 1

δ
min {μ ≥ 0 : Pi > 0, 0 ≤ β ≤ α,

subject to LMIs (47)–(49)} ,

Υijkl =

⎛

⎜⎜⎜⎝

AiLT
1jkl + L1jklAT

i + BiFj

+FT
j BT

i + αPl − 1

κ
(Pi − Pk)

δET
i + L2jklAT

i

Pl − L1jkl + GT
jklA

T
i
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(∗) (∗)
−βI (∗)

−LT
2jkl −Gjkl − GT

jkl

⎞

⎟⎟⎠ ,

Ψij being the same as in Theorem 3.

Proof. Repeat the proof of Theorem 3 replacing Fhh−v

gains by Fh gains. �

Remark 14. For Corollary 2 we have

NCor2
var = 2 +

r

2
nx(nx + 1) + r nu nx

+ r3
(
2n2

x + nx nφ

)
,

NCor2
row = 1 + r nx + r4(2nx + nφ)

+ r2(nx + ny + nφ).

Consequently, Corollary 2 has a lower number of
variables than Theorem 3 but the same number of rows.
This could be helpful when solving problems with a high
number of rules (r), since it can reduce the complexity of
LMI problem to be solved.

3.1.2. Theorems for DIDLFs. Now, it is possible to
extend previous results to DIDLFs applying Lemma 1 to
the DIDLF (28) with non-PDC control law (30):

Theorem 4. (�-Norm computation with DIDLF) The �-
norm between the output y and the input φ for the closed-
loop system (31) is obtained by solving the problem

||GCL
φ→y||� = inf

α>0
N(α) (51)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min {μ ≥ 0 : Pvλ > 0, 0 ≤ β ≤ α,

subject to (52)–(53)} ,
(

PvλACLT
+ ACLPvλ + αPvλ − Ṗvλ δBCL

h

δBCL
h

T −βI

)
≤ 0,

(52)
⎛

⎜⎝
αPvλ 0 PvλCCL

h
T

0 (μ− β)I δDCL
h

T

CCL
h Pvλ δDCL

h μI

⎞

⎟⎠ ≥ 0, (53)

where

ACL =
(
Ah + BhFhh−vvλP−1

vλ

)
, BCL

h = Eh,

CCL
h = Ch, DCL

h = Dh, (54)

Ṗvλ =
1

κ
(Phλ − Ph−λ + 2Pvh − 2Pvv) . (55)

Proof. Proceed in the same way as in the proof of
Theorem 1 with the DIDLF (28) and the non-PDC control
law (30). �

Remark 15. V (x) = xT P−1
vλ x is a non-quadratic

Lyapunov function for the closed loop. Moreover, the
positive definite fuzzy matrix P−1

vλ defines an inescapable
set (33) (Abedor et al., 1996; Salcedo et al., 2018):

E(P−1
v ) �

{
x : xT P−1

vλ x ≤ 1
}
, (56)

which is a robust control positively invariant set for the
closed loop.

Remark 16. Note that (52) and (53) are not LMI
conditions. The next two theorems provide a way to recast
them as LMIs.

Theorem 5. (�-Norm computation with LMIs for DIDLF)
The �-norm between the output y and the input φ for the
closed-loop system (31) can be obtained by solving the
following LMI problem:

||GCL
φ→y||� = inf

α>0
N(α). (57)

Given κ > 0, N(α) is calculated of each fixed α > 0, as
follows:

N(α) � 1

δ
min {μ ≥ 0 : Pij > 0, 0 ≤ β ≤ α,

subject to LMIs (58)–(62)} ,

Υijklmn =

⎛

⎜⎜⎜⎝

AiPln + PlnAT
i + BiFjklmn

+FT
jklmnBT

i + αPln

− 1

κ
(Pin − Pkn + 2Pli − 2Plm)

δEi

δET
i −βI

⎞

⎟⎟⎟⎠ ,

Ψijk =

⎛

⎝
αPjk 0 PjkCT

i

0 (μ− β)I δDT
i

CiPjk δDi μI

⎞

⎠ ,

Υiiklln ≤ 0, i, k, l, n = 1, . . . , r, (58)

2

r − 1
Υiiklln + Υiiklmn + Υiikmln ≤ 0,

i, k, l 	= m,n = 1, . . . , r, (59)

2

r − 1
Υiiklln + Υijklln + Υjiklln ≤ 0,

i 	= j, k, l, n = 1, . . . , r, (60)

(
2

r − 1

)2

Υiiklln +
2

r − 1
Υijklln +

2

r − 1
Υjiklln

+
2

r − 1
Υiiklmn + Υijklmn + Υjiklmn

+
2

r − 1
Υiikmln + Υijkmln + Υjikmln ≤ 0,

i 	= j, k, l 	= m,n = 1, . . . , r, (61)

Ψijk ≥ 0 i, j, k = 1, . . . , r. (62)
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Proof. Follow the proof of Theorem 2 applied to
conditions (52) and (53), using closed-loop dynamics (54)
and Eqn. (55). Lemma 3 has to be applied several times.

�

Remark 17. For Theorem 5 we have

NTh5
var = 2 +

r2

2
nx(nx + 1) + r5 nu nx,

NTh5
row = 1 + r2 nx + r6(nx + nφ)

+ r3(nx + ny + nφ).

The LMI conditions of Theorem 5 can be improved
using Lemma 4.

Theorem 6. (�-Norm computation with LMIs based on
Lemma 4 for the DIDLF) The �-norm between the output
y and the input φ for the closed-loop system (31) can be
obtained solving the following LMI problem:

||GCL
φ→y ||� = inf

α>0
N(α). (63)

Given κ > 0, N(α) is calculated of each fixed α > 0, as
follows:

N(α) � 1

δ
min {μ ≥ 0 : Pi > 0, 0 ≤ β ≤ α,

subject to LMIs (64)–(68)} ,

Υijklmn =

⎛

⎜⎜⎜⎜⎜⎝

AiLT
1jklmn + L1jklmnAT

i + BiFjklmn

+FT
jklmnBT

i + αPln

− 1

κ
(Pin − Pkn + 2Pli − 2Plm)

δET
i + L2jklmnAT

i

Pln − L1jklmn + GT
jklmnAT

i

(∗) (∗)
−βI (∗)

−LT
2jklmn

−Gjklmn−
−(∗)T

⎞

⎟⎟⎟⎟⎠
,

Ψijk =

⎛

⎝
αPjk 0 PjkCT

i

0 (μ− β)I δDT
i

CiPjk δDi μI

⎞

⎠ ,

Υiiklln ≤ 0, i, k, l, n = 1, . . . , r, (64)

2

r − 1
Υiiklln + Υiiklmn + Υiikmln ≤ 0,

i, k, l 	= m,n = 1, . . . , r, (65)

2

r − 1
Υiiklln + Υijklln + Υjiklln ≤ 0,

i 	= j, k, l, n = 1, . . . , r, (66)

(
2

r − 1

)2

Υiiklln +
2

r − 1
Υijklln +

2

r − 1
Υjiklln

+
2

r − 1
Υiiklmn + Υijklmn + Υjiklmn

+
2

r − 1
Υiikmln + Υijkmln + Υjikmln ≤ 0,

i 	= j, k, l 	= m,n = 1, . . . , r, (67)

Ψijk ≥ 0, i, j, k = 1, . . . , r, (68)

with L1jklmn, L2jklmn and Gjklmn j, k, l,m, n =
1, . . . , r, as matrices of appropriate dimensions.

Proof. Proceed in the same way as in the proof of
Theorem 3, this time applying it to condition (52). �

Remark 18. For Theorem 6 we have

NTh6
var = 2 +

r2

2
nx(nx + 1)

+ r5
(
nu nx + 2n2

x + nx nφ

)
,

NTh6
row = 1 + r2 nx + r6(2nx + nφ)

+ r3(nx + ny + nφ).

Consequently, Theorem 5 has a lower number of variables
and a lower number of rows than Theorem 6, but it is more
conservative.

Remark 19. Theorem 6 is more relaxed than
Theorem 5. This conclusion is derived following the lines
of Remark 5.

It is possible to reduce the number of variables
replacing control gains Fjklmn by Fj . This result is
expressed as follows.

Corollary 3. (�-Norm computation with LMIs based on
Lemma 4 for the DIDLF using reduced gains) The �-norm
between the output y and the input φ for the closed-loop
system (31) can be obtained solving the following LMI
problem:

||GCL
φ→y||� = inf

α>0
N(α). (69)

Given κ > 0, N(α) is calculated of each fixed α > 0, as
follows:

N(α) � 1

δ
min {μ ≥ 0 : Pi > 0, 0 ≤ β ≤ α,

subject to LMIs (64)–(68)} ,

Υijklmn =

⎛

⎜⎜⎜⎜⎜⎝

AiLT
1jklmn + L1jklmnAT

i + BiFj

+FT
j BT

i + αPln

− 1

κ
(Pin − Pkn + 2Pli − 2Plm)

δET
i + L2jklmnAT

i

Pln − L1jklmn + GT
jklmnAT

i
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(∗) (∗)
−βI (∗)

−LT
2jklmn −Gjklmn − (∗)T

⎞

⎟⎟⎠ ,

Ψijk being the same as in Theorem 6.

Proof. Repeat the proof of Theorem 6 replacing Fhh−vvλ

gains by Fh gains. �

Remark 20. For Corollary 3 we have

NCor3
var = 2 +

r2

2
nx(nx + 1) + r nu nx

+ r5
(
2n2

x + nx nφ

)
,

NCor3
row = 1 + r2 nx + r6(2nx + nφ)

+ r3(nx + ny + nφ).

Consequently, Corollary 3 has a lower number of
variables than Theorem 6 but the same number of rows.
This could be helpful when solving problems with a high
number of rules (r), since it can reduce the complexity of
LMI problem to be solved.

Remark 21. Because of Remarks 7 (IDLFs are a subset
of DIDLFs) and 8 (the non-PDC control law used with
IDLFs is a particular case of the non-PDC control law
used with DIDLFs) it is possible to conclude that:

• Theorem 2 is a special case of Theorem 5,

• Theorem 3 is a special case of Theorem 6,

• Corollary 2 is a special case of Corollary 3.

Remark 22. Using Remarks 11, 12, 14, 17, 18 and
20 it is possible to establish the following comparisons
between the numbers of variables and rows that each result
requires:

NTh2
var < NTh5

var,

NTh3
var < NTh6

var,

NCor2
var < NCor3

var ,

NTh2
var <

If nu≤2nx+nφ

NCor2
var < NTh3

var,

NTh5
var <

If nu≤2nx+nφ

NCor3
var < NTh6

var,

NTh2
row < NCor2

row = NTh3
row < NTh5

row < NCor3
row = NTh6

row.

3.2. Results based on fuzzy Lyapunov functions with
guaranteed bounds for first derivatives of member-
ship functions. A quadratic fuzzy Lyapunov function
matching the membership functions of the fuzzy model
(Tanaka et al., 2001) is an interesting way of generalising
a quadratic Lyapunov function:

V (x) = xT Phx. (70)

Nevertheless, to guarantee stability, first derivatives of
membership functions must be bounded (Tanaka et al.,
2001; Lee et al., 2012):

|ḣi| ≤ ϕi, i = 1, . . . , r. (71)

The main problem with this approach is that bounds
ϕi have to be known in advance, and these bounds
cannot estimated because they usually depend on the
control law. In order to cope with this problem, recent
research has been conducted to guarantee such upper
bound using LMIs (Mozelli et al., 2009; Mozelli, 2011;
Lee et al., 2012; 2014; Guedes et al., 2013; da Silva
Campos et al., 2017; Vafamand and Shasadeghi, 2017;
Márquez et al., 2017; Hu et al., 2018; 2019). Da
Silva Campos et al. (2017) compare different approaches
which were used in the literature (Mozelli et al., 2009;
Mozelli, 2011; Guedes et al., 2013; Márquez et al., 2017)
in order to guarantee upper bounds for first derivatives
of membership functions. In this article, results of
da Silva Campos et al. (2017) are going to be applied for
BIBO stabilisation using the �-norm following the lines
of Section 3.1. The best two approaches according to
da Silva Campos et al. (2017) are the following:

• For the general type of the T–S fuzzy model (2),
(3) the first approach is based on the assumption
that the vector of the first derivatives of membership
functions ḣ(z) belongs to a polytope defined by
bounds (71) and the convex sum property (5)∑r

i=1 ḣi = 0:

ḣ(z) ∈ co (v1, . . . , vm) , (72)

where vi are the vertices of the polytope defined
by the intersection of the hyper-rectangle related
to bounds (71) and the hyper-plane associated with∑r

i=1 ḣi = 0.

• If the T–S fuzzy model has been obtained using
the non-linearity sector approach, instead of using
bounds in ḣi, bounds on the first derivatives of
normalised weighting functions can be used:

|ẇk
ik | ≤ θk, k = 1, . . . , p, ik ∈ {0, 1} . (73)

The second approach assumes that the vector of the
first derivatives of normalised weighting funcitions
belongs to the hyper-rectangle defined by bounds
(73):

ẇ(z) ∈ co (q1, . . . , q2p) , (74)

where qj are the vertices of such hyper-rectangle.

In both the approaches the LMI conditions of Lee
et al. (2014) and da Silva Campos et al. (2017) have been
extended to the �-norm providing Theorems 7 and 10.

The fuzzy Lyapunov function (70) is not suitable
for designing fuzzy controllers. Instead, the following



T–S fuzzy BIBO stabilisation of non-linear systems under persistent perturbations . . . 539

non-quadratic fuzzy Lyapunov function (n-Q FLF) is
going to be used (Lee et al., 2012; 2014; Wang et al.,
2015; da Silva Campos et al., 2017; Vafamand et al.,
2017):

V (x) = xT P−1
h x, (75)

together with the non-PDC control law

u(t) = FhP−1
h x(t). (76)

With this non-PDC controller the dynamics of the
closed-loop system are

ẋ =

ACL

︷ ︸︸ ︷(
Ah + BhFhP−1

h

)
x + Ehφ. (77)

3.2.1. Theorems for n-Q FLFs when ḣ(z) belongs to
a polytope. Applying Lemma 1 for the general type of
the T–S fuzzy model (2) and (3), to n-Q FLFs (75) with
non-PDC control law (76) under conditions (71) and (72),
the following result is obtained.

Theorem 7. (�-Norm computation using n-Q FLF with
bounded derivatives of hi) The �-norm between the out-
put y and the input φ for the closed-loop system (77) is
obtained by solving the problem

||GCL
φ→y ||� = inf

α>0
N(α), (78)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min {μ ≥ 0 : Ph > 0, 0 ≤ β ≤ α,

subject to (79)–(81)} ,
⎛

⎝PhACLT
+ ACLPh + αPh −

r∑
i=1

ḣiPi δBCL
h

δBCL
h

T −βI

⎞

⎠ ≤ 0,

(79)
⎛

⎜⎝
αPh 0 PhCCL

h

T

0 (μ− β)I δDCL
h

T

CCL
h Ph δDCL

h μI

⎞

⎟⎠ ≥ 0, (80)

ḣ(z) ∈ co (v1, . . . , vm) , |ḣi| ≤ ϕi, i = 1, . . . , r,
(81)

where

ACL =
(
Ah + BhFhP−1

h

)
, BCL

h = Eh,

CCL
h = Ch, DCL

h = Dh.

Proof. Apply the procedure of the proof of Theorem 1
with n-Q FLF (75) and non-PDC control law (76), taking
into account conditions (71) and (72). �

Remark 23. V (x) = xTP−1
h x is a non-quadratic

Lyapunov function for the closed-loop. Moreover, the
positive definite fuzzy matrix P−1

h defines an inescapable
set (79) (Abedor et al., 1996; Salcedo et al., 2018):

E(P−1
h ) �

{
x : xT P−1

h x ≤ 1
}
, (82)

which is a robust control positively invariant set for the
closed loop.

Remark 24. Note that (79)–(81) are not LMI conditions.
The next two theorems provide a way to recast them as
LMIs.

Theorem 8. (�-Norm computation using LMIs for n-Q
FLF with bounded derivatives of hi) The �-norm between
the output y and the input φ for the closed-loop system
(77) under conditions (71) (72) can be obtained solving
the following LMI problem:

||GCL
φ→y||� = inf

α>0
N(α), (83)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min {μ ≥ 0 : Pi > 0, 0 ≤ β ≤ α,

subject to LMIs (84)–(89)} ,

Υijk =

⎛

⎜⎜⎝

AiPj + PjAT
i + BiFj

+FT
j BT

i + αPi −
r∑

l=1

vk,lPl
δEi

δET
i −βI

⎞

⎟⎟⎠ ,

Ψij =

⎛

⎝
αPj 0 PjCT

i

0 (μ− β)I δDT
i

CiPj δDi μI

⎞

⎠ ,

Λijln =

⎛

⎝
1

1 + δ2

(
Pi 0
0 I

)
(∗)

ξTln
[
AiPj + BiFj Ei

]
ϕ2
l

⎞

⎠ ,

Υiik ≤ 0, i = 1, . . . , r, k = 1, . . . ,m, (84)

2

r − 1
Υiik + Υijk + Υjik ≤ 0,

i 	= j = 1, . . . , r, k = 1, . . . ,m, (85)

Ψii ≥ 0, i = 1, . . . , r, (86)

2

r − 1
Ψii + Ψij + Ψji ≥ 0, i 	= j,= 1, . . . , r, (87)

Λiiln ≥ 0, i, l = 1, . . . , r, n = 1, . . . , s, (88)

2

r − 1
Λiiln + Λijln + Λjiln ≥ 0,

i 	= j, l = 1, . . . , r, n = 1, . . . , s, (89)

where vk,l is the l-th element of vertex vk, and vectors ξln
are a fuzzy approximation of partial derivatives ∂hl/∂x
with membership functions υln, n = 1, . . . , s,

∂hl

∂x
=

s∑

n=1

υlnξln,

s∑

n=1

υln = 1, υln ≥ 0. (90)

The designed non-PDC controller (75) provides BIBO sta-
bility inside E(P−1

h ).

Proof. LMI conditions (84) and (85) are obtained
from condition (79) applying the procedure of the proof
Theorem 2 and taking into account condition (72). To do
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so, it is enough to check condition (79) at vertices of (72).
LMI conditions (86) and (87) come from condition (80)
using Lemma 3.

Finally, LMI conditions (88) and (89) guarantee
that |ḣi| ≤ ϕi, i = 1, . . . , r inside E(P−1

h ). They
are an extension of conditions obtained in Theorem 4
of (da Silva Campos et al., 2017) when persistent
perturbations are present. They are validated in
Lemma A1 of Appendix. �

Remark 25. Bounds on the first derivatives of
membership functions (71) are guaranteed by LMI
conditions (88) and (89).

Remark 26. For Theorem 8 we have

NTh8
var = 2 +

r

2
nx(nx + 1) + r nu nx,

NTh8
row = 1 + r nx + r2 ·m(nx + nφ)

+ r3 · s(nx + nφ + 1)

+ r2(nx + ny + nφ).
The LMI conditions of Theorem 8 can be improved

using Lemma 4.

Theorem 9. (�-Norm computation using LMIs based on
Lemma 4 for the n-Q FLF with bounded derivatives of hi)
The �-norm between the output y and the input φ for the
closed-loop system (77) under conditions (71) (72) can be
obtained by solving the following LMI problem:

||GCL
φ→y||� = inf

α>0
N(α), (91)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min {μ ≥ 0 : Pi > 0, 0 ≤ β ≤ α,

subject to LMIs (92)–(89)} ,

Υijk =

⎛

⎜⎜⎜⎜⎝

AiLT
1j + L1jAT

i + BiFj+

+FT
j BT

i + αPi −
r∑

l=1

vk,lPl

δET
i + L2jAT

i

Pi − L1i + GT
j AT

i

(∗) (∗)
−βI (∗)
−LT

2i −Gi − GT
i

⎞

⎟⎟⎠ ,

Υiik ≤ 0, i = 1, . . . , r, k = 1, . . . ,m, (92)

2

r − 1
Υiik + Υijk + Υjik ≤ 0,

i 	= j = 1, . . . , r, k = 1, . . . ,m, (93)

where vk,l are the same as described in Theorem 8, with
L1i, L2i and Gi i = 1, . . . , r as matrices of appropriate
dimensions. The designed non-PDC controller (75) pro-
vides BIBO stability inside E(P−1

h ).

Proof. Follow the proof of Theorem 3 applied to
condition (79) which has to be satisfied at vertices of (72).

�

Remark 27. Theorem 9 is more relaxed than
Theorem 8. This conclusion is derived following the lines
of Remark 5.

Remark 28. For Theorem 9 we have

NTh9
var = 2 +

r

2
nx(nx + 1)

+ r(nu nx + 2n2
x + nx nφ),

NTh9
row = 1 + r nx + r2m(2nx + nφ)

+ r3s(nx + nφ + 1)

+ r2(nx + ny + nφ).

Consequently, Theorem 8 has a lower number of variables
and a lower number of rows than Theorem 9, but it is more
conservative.

Remark 29. Using Remarks 11, 12, 17, 18, 26, and 28
the following relationships can be established:

NTh8
var < NTh2

var < NTh5
var,

NTh9
var < NTh3

var < NTh6
var.

However, it is difficult to compare theoretically the
expressions corresponding to number of rows obtained in
Sections 3.1 and 3.2.1. Instead, in Section 4 a numerical
comparison is performed through some examples.

3.2.2. Theorems for n-Q FLFs when ẇ(z) belongs
to a hyper-rectangle. If the T–S fuzzy model has been
obtained using the non-linearity sector approach (5) and
(6), instead of using bounds in ḣi, bounds on the first
derivatives of normalised weighting functions, ẇk

ik
, are

used. In such a case, applying Lemma 1 to n-Q FLF (75)
with non-PDC control law (76) under conditions (73) and
(74), we get the following result.

Theorem 10. (�-Norm computation using n-Q FLF with
bounded derivatives of wk

ik
) The �-norm between the out-

put y and the input φ for the closed-loop system (77) is
obtained solving the problem:

||GCL
φ→y||� = inf

α>0
N(α), (94)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min {μ ≥ 0 : Ph > 0, 0 ≤ β ≤ α,

subject to (95)–(97)} ,
⎛

⎜⎜⎝

PhACLT
+ ACLPh + αPh−

−
r∑

i=1

hi

p∑
k=1

ẇk
ik

(
Pi − Ps̄(i,k)

) δBCL
h

δBCL
h

T −βI

⎞

⎟⎟⎠ ≤ 0, (95)
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⎛

⎜⎝
αPh 0 PhCCL

h

T

0 (μ− β)I δDCL
h

T

CCL
h Ph δDCL

h μI

⎞

⎟⎠ ≥ 0, (96)

ẇ(z) ∈ co (q1, . . . , q2p) , |wk
ik | ≤ θk, k = 1, . . . , p,

(97)

where

ACL =
(
Ah + BhFhP−1

h

)
, BCL

h = Eh,

CCL
h = Ch, DCL

h = Dh.

Here ik are computed from i using

i = 1 +

p∑

k=1

ik2
p−1, ik ∈ {0, 1}, (98)

and s̄(i, k) is an integer such that

hs̄(i,k) = (1 − wk
ik
)

p∏

l=1
l �=k

wl
il
. (99)

Proof. Follow the procedure of Theorem 7 taking into
account condition (74) and the fact that (da Silva Campos
et al., 2017)

Ṗh =

r∑

i=1

hi

p∑

k=1

ẇk
ik

(
Pi − Ps̄(i,k)

)
,

with ik and s̄(i, k) satisfying conditions (98) and (99).
�

Remark 30. V (x) = xTP−1
h x is a non-quadratic

Lyapunov function for the closed-loop system. Moreover,
the positive definite fuzzy matrix P−1

h defines an
inescapable set (79) (Abedor et al., 1996; Salcedo et al.,
2018):

E(P−1
h ) �

{
x : xT P−1

h x ≤ 1
}

(100)

which is a robust control positively invariant set for the
closed loop.

Remark 31. Note that (95)–(97) are not LMI conditions.
The next two theorems provide a way to recast them as
LMIs.

Theorem 11. (�-Norm computation using LMIs for n-Q
FLF with bounded derivatives of wj

ij
) The �-norm be-

tween the output y and the input φ for the closed-loop sys-
tem (77) under conditions (73) and (74) can be obtained
solving the following LMI problem:

||GCL
φ→y ||� = inf

α>0
N(α), (101)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min {μ ≥ 0 : Pi > 0, 0 ≤ β ≤ α,

subject to LMIs (102)–(109)} ,

Υijk

=

⎛

⎜⎜⎝

AiPj + PjAT
i + BiFj

+FT
j BT

i + αPi −
p∑

l=1

q̄k,l
(
Pi − Ps̄(i,k)

) δEi

δET
i −βI

⎞

⎟⎟⎠ ,

Ψij =

⎛

⎝
αPj 0 PjCT

i

0 (μ− β)I δDT
i

CiPj δDi μI

⎞

⎠ ,

Λijk,min =

⎛

⎝
1

1 + δ2

(
Pi 0
0 I

)
(∗)

τkminLk

[
AiPj + BiFj Ei

]
θ2k

⎞

⎠ ,

Λijk,max =

⎛

⎝
1

1 + δ2

(
Pi 0
0 I

)
(∗)

τkmaxLk

[
AiPj + BiFj Ei

]
θ2k

⎞

⎠ ,

Υiik ≤ 0, i = 1, . . . , r, k = 1, . . . , 2p, (102)

2

r − 1
Υiik + Υijk + Υjik ≤ 0,

i 	= j = 1, . . . , r, k = 1, . . . , 2p, (103)

Ψii ≥ 0, i = 1, . . . , r, (104)

2

r − 1
Ψii + Ψij + Ψji ≥ 0, i 	= j,= 1, . . . , r, (105)

Λiik,min ≥ 0, i = 1, . . . , r, k = 1, . . . , p, (106)

2

r − 1
Λiik,min + Λijk,min + Λijk,min ≥ 0,

i 	= j = 1, . . . , r, k = 1, . . . , p, (107)

Λiik,max ≥ 0, i = 1, . . . , r, k = 1, . . . , p, (108)

2

r − 1
Λiik,max + Λijk,max + Λijk,max ≥ 0,

i 	= j = 1, . . . , r, k = 1, . . . , p, (109)

q̄k,l =

{
qk,l if ik = 0
−qk,l if ik = 1

where qk,l is the l-th element of vertex qk and equals θk or
−θk (see (73)), s̄(i, k) are the same as described in Theo-
rem 10, ∂wk

0/∂zk ∈ [τkmin, τ
k
max] and zk = Lkx, with Lk

a constant row vector. The designed non-PDC controller
(75) provides BIBO stability inside E(P−1

h ).

Proof. Apply the procedure of the proof of Theorem 8
subject to (74). In this case, condition (95) has to be
checked in the vertices of hyper-rectangle defined by (74).

Finally, LMI conditions (106)–(109) guarantee that
|ẇk

ik
| ≤ θk, k = 1, . . . , p inside E(P−1

h ). They
are an extension of conditions obtained in Theorem 5
of (da Silva Campos et al., 2017) when persistent
perturbations are present. They are justified in Lemma A2
of Appendix. �

Remark 32. Bounds on the first derivatives of
normalised weighting functions (73) are guaranteed by
LMI conditions (106)–(109).
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Remark 33. Theorem 11 we have

NTh11
var = 2 +

r

2
nx(nx + 1) + r nu nx,

NTh11
row = 1 + r nx + r3(nx + nφ) + 2r3(nx + nφ + 1)

+ r2(nx + ny + nφ).
LMI conditions of Theorem 11 can be improved

using Lemma 4.

Theorem 12. (�-Norm computation using LMIs based on
Lemma 4 for n-Q FLF with bounded derivatives of wj

ij
)

The �-norm between the output y and the input φ for the
closed-loop system (77) under conditions (73) and (74)
can be obtained by solving the following LMI problem:

||GCL
φ→y||� = inf

α>0
N(α), (110)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min {μ ≥ 0 : Pi > 0, 0 ≤ β ≤ α,

subject to LMIs (111), (112), (104)–(109)} ,

Υijk =

⎛

⎜⎜⎜⎜⎝

AiLT
1j + L1jAT

i + BiFj

+FT
j BT

i + αPi −
p∑

l=1

q̄k,l
(
Pi − Ps̄(i,k)

)

δET
i + L2jAT

i

Pi − L1i + GT
j AT

i

(∗) (∗)
−βI (∗)
−LT

2i −Gi − GT
i

⎞

⎟⎟⎠ ,

Υiik ≤ 0, i = 1, . . . , r, k = 1, . . . , 2p, (111)

2

r − 1
Υiik + Υijk + Υjik ≤ 0,

i 	= j = 1, . . . , r, k = 1, . . . , 2p, (112)

where q̄k,l and s̄(i, k) are the same as described in The-
orem 11, and with L1i, L2i and Gi i = 1, . . . , r matrices
of appropriate dimensions. The designed non-PDC con-
troller (75) provides BIBO stability inside E(P−1

h ).

Proof. Follow the proof of Theorem 3 applied to
condition (95), which has to be satisfied at vertices of (74).

�

Remark 34. Theorem 12 is more relaxed than
Theorem 11. This conclusion is derived following the
same lines of Remark 5.

Remark 35. For Theorem 12 we have

NTh12
var = 2 +

r

2
nx(nx + 1) + r nu nx + 2r n2

x

+ r nx nφ,

NTh12
row = 1 + r nx + r3(2nx + nφ)

+ 2r3(nx + nφ + 1)

+ r2(nx + ny + nφ).

Consequently, Theorem 11 has a lower number of
variables and a lower number of rows than Theorem 12,
but it is more conservative.

Remark 36. As the number of vertices of polytope
(72), m, is greater or equal than the number of rules,
r = 2p, and the number of rules of fuzzy approximation of
∂hi/∂x (90), s, is greater than or equal to 2, the following
relationships are obtained:

NTh8
var = NTh11

var ,

NTh9
var = NTh12

var ,

NTh11
row ≤ NTh8

row,

NTh12
row ≤ NTh9

row.

Consequently, Theorems 11 and 12 have the or equal
number of rows no exceeding those of Theorems 8 and 9.
However, Theorems 11 and 12 are only applicable if the
T–S fuzzy model has been obtained using the non-linearity
sector approach.

Remark 37. Using Remarks 29, 33, 35 and 36 the
following relationships can be established:

NTh8
var = NTh11

var < NTh2
var < NTh5

var,

NTh9
var = NTh12

var < NTh3
var < NTh6

var.

However, it is difficult to compare theoretically the
expressions corresponding to number of rows obtained
in Sections 3.1, 3.2.1 and 3.2.2. Instead in Section 4
a numerical comparison is performed through some
examples.

To complete this section, Fig. 1 shows a flow chart
which explains the main steps to obtain a non-PDC
controller using any result of this section.

4. Examples

Example 1. (Example 3 of Vafamand et al. (2017)) .
Consider a T–S system (2) with p = 1, r = 2 and

A1 =

(
2 −10
2 0

)
, A2 =

(
a −5
1 1

)
,

B1 =

(
1
1

)
, B2 =

(
b
2

)
, C1 = C2 =

(
1 0
0 1

)
,

D1 = D2 =
(
0 0

)
, E1 =

(
1
0

)
, E2 =

(
b
1

)
,

w1
0(x1) =

1− sin(x1)

2
, h1(x1) = w1

0 ,

h2(x1) = 1− h1, |x1| ≤ π/2.
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Given a T-S fuzzy 
model

Extract premises and 
membership functions

Solve LMIs from a theorem 
or corollary

Gains of a non-PDC 
controller are calculated

Assembling of non-PDC 
fuzzy controller

Step 1

Step 2

Step 3
Step 4

Step 4

Fig. 1. Steps to obtain a non-PDC controller.

If a = 4, b = 0, |ḣ1| ≤ 3500, Corollary 2 of Vafamand
et al. (2017b) provides an L1 gain of 1.0231 with α = 1.
We can compare these values with those of Theorems 2,
3, 5, 6, 8, 9, 11 and 12, and Corollaries 2 and 3. Table
1 compares all the results related to these theorems and
Corollary 2 of Vafamand et al. (2017b): �-norm, α,
number of variables, number of rows and the complexity
of the computation (Hu et al., 2018) based on the formula
log 10

(
N3

varNrow

)
for several approaches.

It can be concluded that all the results presented in
this paper outperform the L1 gain provided by Corollary 2
of Vafamand et al. (2017b). Even Lemma 2 requires a
lower number of variables, number of rows and lower
computational complexity than Corollary 2 of Vafamand
et al. (2017b).

On the other hand, it is possible to compare the
conditions developed in Theorems 8 and 9, (88) and (89),
for bounding first derivatives of membership functions
(71) with the conditions of Lemma 1 of Hu et al. (2019)
when q = 11. From Table 1 it is deduced that when using
the conditions of Lemma 1 of Hu et al. (2019) together
with Theorems 8 and 9 the results are poorer and it is
required more computational complexity.

It is possible to compare the results presented in
this paper with each other. The best �-norm is provided
by Theorems 8, 9, 11 and 12. However, these methods
are only valid inside (locally) the generalised inescapable
ellipsoid (82). The best global �-norm is guaranteed by
Theorems 5 and 6 and Corollary 3. From a computational
point of view, global methods based in IDLFs and
DIDLFs are the most demanding, specially those using
DIDLFs.

Theorems 8 and 9 provide the same results; however,
Theorem 8 requires a lower computational cost. The same
situation happens with Theorems 11 and 12. Furthermore,

1If q = 1 the n-Q FLF proposed by Hu et al. (2019) is the same as in
Theorems 8 and 9.

Theorems 8 and 11 have a reasonable computational cost
compared with Lemma 2 (related to a common Lyapunov
function). Moreover, Theorems 8 and 11 have the least
computation cost if we discard Lemma 2.

�

Example 2. (Example 7 of Lee et al. (2012)) Consider a
T–S system (2) with p = 1, r = 2 and

A1 =

(−a −4
−1 −2

)
, A2 =

(−2 −4
20 −2

)
,

B1 =

(
1
10

)
, B2 =

(
1
b

)
, C1 = C2 =

(
1 0

)
,

D1 = D2 = 0, E1 =

(
0
0.1

)
, E2 =

(
0.1
1.2

)
,

w1
0(x1) =

1 + sin(x1)

2
, h1(x1) = w1

0 ,

h2(x1) = 1− h1, |x1| ≤ π

2
.

A comparison between different results of
this article is performed when looking for the
minimum value of a when b = 1 which provides
a finite �-norm with a stable closed-loop. Table 2
shows the minimum value of a, the �-norm when
a = −5, the number of variables, the number of rows and
the complexity of the computation for several approaches.
Theorems 1 and 2, and Corollary 2 of Vafamand et al.
(2017b) cannot be applied because matrices Ci are
not equal to the identity matrix. Table 2 also provides
values when bounding the first derivatives of membership
functions using Lemma 1 of Hu et al. (2019) with q = 1.

As a conclusion, the results of this paper outperform
the results of Vafamand et al. (2017b) and Hu et al.
(2019), and the best �-norm is provided by Theorems 11
and 12. Moreover, the best global �-norm is guaranteed
by Theorem 6. From a computational point of view, it is
also shown that DIDLFs results are the most demanding.

Theorems 11 and 12 provide a lower �-norm than
Theorems 8 and 9. This conclusion is correlated with
the fact that bounding first derivatives of normalised
weighting functions should be less conservative than
bounding first derivatives of membership functions.

Finally, it is concluded that Theorems 8 and 11 have,
again, the least computational cost if we discard Lemma 2,
and they have a reasonable computational cost compared
with Lemma 2. �

Example 3. (Example of da Silva Campos et al. (2017))
Consider a T–S system (2) with p = 2, r = 4 and

A1 =

(
4 −4
−1 −2

)
, A2 =

(−2 −4
−1 −2

)
,

A3 =

(
4 −4
20 −2

)
, A4 =

(−2 −4
20 −2

)
,
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Table 1. Comparison of different results in Example 1.
Result �-Norm α Nvar Nrow log 10

(
N3

varNrow

)

Corollary 2 of Vafamand et al.
(2017b) (θk = 3500)

1.0231 1 11 50 4.82

Lemma 2 and Corollary 1 1.0056 1.01 9 / 29 25 / 33 4.26 / 5.91
Theorems 8, 9, 11 and 12

(ϕi, θk = 3500)
1.0055 1.01 12 / 32 113 / 129 5.29 / 6.63

Theorems 8–12 (ϕi, θk = 500) 1.0041 1.01 � � �

Theorems 8–12 (ϕi, θk = 10) 0.8714 0.97 � � �

Theorems 8 and 9 (ϕi = 3500)
using bounds of Hu et al. (2019)

21.1914 0.97 18 / 38 101 / 117 5.77 / 6.81

Theorems 8 and 9 (ϕi = 500) using
bounds of Hu et al. (2019)

32.0884 0.64 � � �

Theorems 8 and 9 (ϕi = 10) using
bounds of Hu et al. (2019)

Infeasible – � � �

Theorems 2 and 3 and Corollary 2 1.0056 1.01 24 / 104 / 92 73 / 105 / 105 6.00 / 8.07 / 7.91
Theorems 5 and 6 and Corollary 3 1.0051 1.01 78 / 398 / 338 241 / 369 / 369 8.06 / 10.37 / 10.15

Table 2. Comparison of different results in Example 2.
Result Min. of a �-Norm (a = −5) Nvar Nrow log 10

(
N3

varNrow

)

Theorems 1 and 2 and
Corollary 2 of

Vafamand et al. (2017b)

Not applicable – – – –

Lemma 2 −3.69 Infeasible 9 23 4.23
Corollary 1 −3.69 Infeasible 29 31 5.87
Theorem 2 −3.69 Infeasible 24 69 5.98
Theorem 3 −3.69 Infeasible 104 101 8.06
Corollary 2 −3.69 Infeasible 92 101 7.90
Theorem 5 −5.96 0.5896 78 233 8.04
Theorem 6 −5.96 0.5887 398 361 10.36
Corollary 3 −5.85 0.6652 338 361 10.14

Theorems 8 and 9 (ϕi = 15) −5.18 0.5328 12 / 32 109 / 125 5.28 / 6.61
Theorems 8 and 9 (ϕi = 10) −6.20 0.3515 � � �

Theorems 8 and 9 (ϕi = 5) −7.82 0.3185 � � �

Theorems 8 and 9 (∀ ϕi) using
bounds of Hu et al. (2019)

−3.69 Infeasible 18 / 38 97 / 113 5.75 / 6.79

Theorems 11 and 12 (θk = 15) −5.55 0.4261 12 / 32 109 / 125 5.28 / 6.61
Theorems 11 and 12 (θk = 10) −6.70 0.3014 � � �

Theorems 11 and 12 (θk = 5) −8.43 0.2786 � � �

B1 = B2 =

(
1
10

)
, B3 = B4 =

(
1
1

)
,

C1 = C2 = C3 = C4 =
(
0 1

)
,

D1 = D3 = 0.1, D2 = D4 = −0.1,

E1 = E3 =

(−5 · 10−3

5 · 10−3

)
, E2 = E4 =

(−0.075
0.075

)
,

w1
0(x1) =

1− sin(x1)

2
, w2

0(x2) =
1− sin(x2)

2
,

h1(x1, x2) = w1
0(x1)w

2
0(x2),

h2(x1, x2) = w1
0(x1)w

2
1(x2),

h3(x1, x2) = w1
1(x1)w

2
0(x2),

h4(x1, x2) = w1
1(x1)w

2
1(x2),

|xi| ≤ 20, i = 1, 2.

As commented in Example 2, results of Vafamand
et al. (2017b) cannot be applied to this example either.

This example is more demanding from a
computational point of view than Examples 1 and 2
since it has 4 rules instead of 2. This is also supported
by Nvar, Nrow and log 10

(
N3

varNrow

)
values shown in

Table 3.
From Table 3 it is possible to get some conclusions:

• Theorems 8 and 9 using bounds of Hu et al. (2019)
resulted in infeasibility.
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• Only global methods based on DIDLFs are feasible.

• Local methods based on Theorems 8, 9, 11 and 12
provide a finite �-norm for several values of bounds.
As expected, they outperform the �-norm of global
methods.

• Theorem 5 gives the same �-norm as Theorem 6
with less computational effort and fewer variables
and rows.

• Corollary 3 is outperformed by Theorem 5.

• Comparing local methods and DIDLFs results, it
is realized that the latter require a huge number
of variables and a huge number of rows, and the
complexity of the computation is much bigger.

• In this example, Theorem 11 has the least
computational cost if we discard Lemma 2 followed
by Theorem 8. Both of them have a reasonable
computational cost compared with Lemma 2 if we
consider the remaining results.

�

Example 4. (Example 2.3 of Cherifi (2017)) Consider the
non-linear model corresponding to the unstable ball and
beam system (Hauser et al., 1992):

⎡

⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥⎥⎦=

⎛

⎜⎜⎜⎝

0 1 0 0

bx2
4 0 bg

sin(x3)

x3
0

0 0 0 1
0 0 0 0

⎞

⎟⎟⎟⎠

⎡

⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎦+

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠u,

(113)

where x1 and x2 are, respectively, the position and
the speed of the ball, x3 and x4 are, respectively, the
angular position and the angular speed of the beam,
and u is the torque applied to beam, b = 0.9605 is a
mechanical parameter of the system and g = 9.81 m/s−2

is the gravity constant. Using the non-linearity sector
approach non-linear model equation (113) can be exactly
represented by this T–S model with p = 2, r = 4:

A1 =

⎛

⎜⎜⎝

0 1 0 0
0 0 −b · g · 2

π 0
0 0 0 1
0 0 0 0

⎞

⎟⎟⎠ ,

A2 =

⎛

⎜⎜⎝

0 1 0 0
b 0 −b · g · 2

π 0
0 0 0 1
0 0 0 0

⎞

⎟⎟⎠ ,

A3 =

⎛

⎜⎜⎝

0 1 0 0
0 0 −b · g 0
0 0 0 1
0 0 0 0

⎞

⎟⎟⎠ ,

A4 =

⎛

⎜⎜⎝

0 1 0 0
b 0 −b · g 0
0 0 0 1
0 0 0 0

⎞

⎟⎟⎠ ,

B1 = B2 = B3 = B4 =

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ ,

w1
0(x1) =

1− sin(x3)

x3

1− 2
π

, w2
0(x2) = 1− x2

4,

h1(x1, x2) = w1
0(x1)w

2
0(x2),

h2(x1, x2) = w1
0(x1)w

2
1(x2),

h3(x1, x2) = w1
1(x1)w

2
0(x2),

h4(x1, x2) = w1
1(x1)w

2
1(x2),

|x3| ≤ π

2
, |x4| ≤ 1.

Taking x3 as the controlled output and adding a persistent
perturbation in the system, the rest of matrices of the T–S
model are

C1 = C2 = C3 = C4 =
(
0 0 1 0

)
,

D1 = D3 = 0.5, D2 = D4 = −0.5,

E1 = E3 =

⎛

⎜⎜⎝

−0.1
0.1
−0.1
0.1

⎞

⎟⎟⎠ ,

E2 = E4 =

⎛

⎜⎜⎝

−0.15
0.15
−0.15
0.15

⎞

⎟⎟⎠ .

From Table 4 some conclusions are obtained:

• Theorems 8 and 9 using bounds of Hu et al. (2019)
provide worse results than the original theorems
proposed in this work.

• Local methods based on Theorems 8, 9, 11 and 12
provide a finite �-norm for several values of bounds.
As expected, they outperform the �-norm of global
methods.

• Once more, Theorem 5 gives the same �-norm as
Theorem 6 with less computational effort and fewer
variables and rows.

• Corollary 3 is outperformed, again, by Theorem 5.

• Comparing local methods and DIDLFs results, it is
realized, again, that the latter require a huge number
of variables and a huge number of rows, and the
complexity of the computation is much bigger.
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Table 3. Comparison of different results in Example 3.
Result �-Norm α Nvar Nrow log 10

(
N3

varNrow

)

Theorems 1 and 2
and Corollary 2 of
Vafamand et al. (2017b)

Not applicable – – – –

Lemma 2 and Corollary 1 Infeasible – 13/53 67 / 99 5.17 / 7.17
Theorems 8 and 9 (ϕi = 1) 0.1073 2.25 22 / 62 1289 / 1417 7.14 / 8.53
Theorems 8 and 9 (ϕi = 5) 0.1083 1.35 � � �

Theorems 8 and 9 (ϕi = 10) 0.1119 0.85 � � �

Theorems 8 and 9 (ϕi = 20) 0.1394 0.20 � � �

Theorems 8 and 9 (∀ϕi)
using bounds of Hu

et al. (2019)

Infeasible – 34 / 74 633 / 761 7.40 / 8.49

Theorems 11 and 12 (θk = 1) 0.1052 3.80 22 / 62 777 / 905 6.92 / 8.33
Theorems 11 and 12 (θk = 5) 0.1068 2.15 � � �

Theorems 11 and 12 (θk = 10) 0.1101 1.10 � � �

Theorems 11 and 12 (θk = 20) 0.1281 0.30 � � �

Theorems 2 and 3 and Corollary 2 Infeasible – 142 / 782 / 662 841 / 1353 / 1353 9.31 / 11.81 / 11.59
Corollary 3 0.1322 0.40 10298 20769 16.36

Theorems 5 and 6 0.1260 0.50 2098 / 12338 12577 / 20769 14.07 / 16.59

Table 4. Comparison of different results in Example 4.
Result �-Norm α Nvar Nrow log 10

(
N3

varNrow

)

Theorems 1 and 2 and
Corollary 2 of Vafamand et al.
(2017b)

Not applicable – – – –

Lemma 2 and Corollary 1 0.5323 0.65 28 / 172 109 / 173 6.38 / 8.95
Theorems 8 and 9 (ϕi = 100) 0.5549 1.35 58 / 202 2129 / 2513 8.62 / 10.32

� (ϕi = 1000) 0.5390 0.90 � � �

� (ϕi = 10000) 0.5342 0.70 � � �

Theorems 8 and 9 (ϕi = 100)
using bounds of Hu et al.

(2019)

8.1409 0.35 70 / 214 1240 / 1633 8.63 / 10.20

� (ϕi = 1000) 1.2397 1.4 � � �

� (ϕi = 10000) 1.0314 1.55 � � �

Theorems 11 and 12 (θk = 10) 0.5209 0.7 58 / 202 1201 / 1457 8.37 / 10.08
� (θk = 50) 0.5213 0.7 � � �

� (θk = 100) 0.5224 0.60 � � �

Theorems 2 and 3 and Corollary 2 0.5322 0.6 298 / 2602 / 2362 1393 / 2417 / 2417 10.57 / 13.63 / 13.50
Corollary 3 0.5221 0.60 37042 37313 18.28

Theorems 5 and 6 0.5218 0.65 4258 / 41122 20929 / 37313 15.21 / 18.41

• In this example, Theorem 11 has, again, the least
computational cost if we discard Lemma 2 followed
by Theorem 8. Once more, both of them have
a reasonable computational cost compared with
Lemma 2 if we consider the remaining results.

�

5. Conclusions

In this work several innovative approaches to design
BIBO stabilising non-PDC control laws for T–S

continuous time fuzzy systems under persistent
perturbations based on fuzzy Laypunov functions
have been presented. These approaches are based on
minimising the �-norm of the closed loop and on two
kinds of fuzzy Lyapunov functions:

• integral-delayed Lyapunov functions: Theorems 2, 3,
5 and 6, and Corollaries 2 and 3,

• fuzzy Laypunov functions with guaranteed bounds
for the first derivatives of membership functions:
Theorems 8, 9, 11 and 12.
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IDLFs are global methods and they are the most
demanding from a computational point of view. This
question has been showed in the presented examples.
Within this category two branches have been analysed:
single (Theorems 2, 3 and Corollary 2) and double IDLFs
(Theorems 5, 6 and Corollary 3). DIDLFs outperforms the
results of singular DIDLFs in all the examples. However,
DIDLFs require much more computational resources.

FLFs with bounded first derivatives provide a local
method to compute the �-norm. These methods have been
shown the best ones when compared the values of such
a norm in all the examples. Also, they have a lower
computation cost compared with global IDLFs. However,
their results are only valid in the generalised inescapable
ellipsoid E(P−1

h ).
FLFs methods are based in two approaches:

bounding |ḣi| (Theorems 8, 9) or bounding |ω̇j
ij
|

(Theorems 11, 12). Both methodologies require the same
number of variables but the approach based on bounding
first derivatives of normalised weighting functions uses
fewer or the same number of rows. This fact has been
proofed theoretically (Remark 36) and computed in the
examples. On the other hand, the approach based on
bounding the first derivatives of normalised weighting
functions provides better results if r > 2. However,
this method is only applicable if the T–S fuzzy model
has been obtained using non-linearity sector approach.
Consequently, the approach based on bounding the first
derivatives of membership functions is more general.

After analysing the results of all the examples,
Theorem 11 has the least computational cost if we discard
Lemma 2 (related to a common quadratic Lyapunov
function) followed by Theorem 8. Moreover, these
theorems have a reasonable computational cost compared
with Lemma 2 when considering the remaining results.

Considering the reasoning of the previous paragraph,
for the case of non-linear systems with a high number of
fuzzy rules authors can conclude that the most suitable
results are Theorems 11 and 8 because they require
the least computational cost, in case Lemma 2 does
not provide a good result for BIBO stabilization and/or
the �-norm.

Finally, results of this work have been compared with
those of Vafamand et al. (2017b) and Hu et al. (2019).
These articles deal also with T–S continuous time fuzzy
systems under persistent disturbances. In all the examples
it is shown that results from this work outperform results
from those previous articles.

6. Future work

The results of this paper could be extended and improved
along several ways:

• Design of non-PDC controllers under inputs

and state constraints including additional LMIs
conditions.

• Use of multi-indexation in fuzzy Lyapunov
functions, integral-delayed Lyapunov functions
and non-PDC controllers.

• Reduction of the computational burden of methods
based on double integral-delayed Lyapunov
functions and those based on fuzzy Lyapunov
functions with guaranteed bounds for first derivatives
of membership functions.

• Inclusion of a fuzzy observer to design
output-feedback controllers when not all the
states are measurable.

• Extension of these methodologies for designing
BIBO stabilising non-PDC controllers for discrete
time T–S fuzzy systems.
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Politècnica de València, Spain, in 1997 and in
2005, respectively. He is currently a professor
at the Department of Systems Engineering and
Control there. He has published numerous papers
in conference proceedings and journals. His re-
search interests include model predictive control,
fuzzy systems and evolutionary optimization ap-
plied to identification and process control.

Miguel Martı́nez is a professor at the Depart-
ment of Systems Engineering and Control of Uni-
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Appendix

Lemma A1. (LMI bounds for |ḣl| inside E(P−1
h )) LMIs

(88) and (89) guarantee |ḣl| ≤ ϕl inside E(P−1
h ).

Proof. Lemma 3 and LMIs (88) and (89) are sufficient
conditions for

⎛

⎜⎝

1

1 + δ2

(
Ph 0
0 I

)
(∗)

∂hl

∂x

[
AhPh + BhFh Eh

]
ϕ2
l

⎞

⎟⎠ ≥ 0.

Applying a congruence transformation with
diag

(
P−1
h , I, I

)
and Schur complement (cf. p. 7 in

the work of Boyd et al. (1994)),

1

1 + δ2

(
P−1
h 0
0 I

)

− 1

ϕ2
l

∂hl

∂x

[
AhPh + BhFh Eh

]
(∗)T ≥ 0,

pre and post-multiplying the result by
[
xT φT

]
, we get

1

1 + δ2
(
xT P−1

h x + φTφ
) ≥ 1

ϕ2
l

(
ḣl

)2
. (A1)

As xT P−1
h x ≤ 1 and φTφ ≤ δ2, we have

1 ≥ 1

ϕ2
l

(
ḣl

)2
(A2)

which completes the proof. �

Lemma A2. (LMI bounds for |ẇk
ik
| inside E(P−1

h )) LMIs
(106) and (107) guarantee |ẇk

ik
| ≤ θk inside E(P−1

h ).

Proof. Follow the same procedure as in the proof of
Lemma A1 with LMIs (106) and (107) and taking into
account that

ẇk
0 =

∂wk
0

∂zk
żk =

∂wk
0

∂zk
Lkẋ,

∂wk
0

∂zk
∈ [τkmin, τ

k
max].

�
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