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This work develops a technique for constructing a reduced-order system that not only has low computational complex-
ity, but also maintains the stability of the original nonlinear dynamical system. The proposed framework is designed to
preserve the contractivity of the vector field in the original system, which can further guarantee stability preservation, as
well as provide an error bound for the approximated equilibrium solution of the resulting reduced system. This technique
employs a low-dimensional basis from proper orthogonal decomposition to optimally capture the dominant dynamics of the
original system, and modifies the discrete empirical interpolation method by enforcing certain structure for the nonlinear
approximation. The efficiency and accuracy of the proposed method are illustrated through numerical tests on a nonlinear
reaction diffusion problem.
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1. Introduction

Numerical simulations of many natural phenomena
described by nonlinear differential equations can lead to
dynamical systems with very large spatial dimensions
when standard discretization schemes are applied. To
reduce the computational cost for solving each of these
large-scale systems, model reduction methods can be
used to produce a relatively low dimensional model that
still provides an accurate solution of the original system.
In general, the accuracy of a given model reduction
technique is evaluated through certain error measurements
when compared with some known reference solutions.
Besides considering these approximation errors, this work
aims to preserve a fundamental behavior of the original
system, which will be done through contraction analysis
(Lohmiller and Slotine, 1998). The contraction property
can ensure not only the stability of dynamical systems,
but also the existence and uniqueness of the solutions,
as well as provide an error bound for the approximated
equilibrium solution (Söderlind, 2006).

The notion of contractivity for dynamical systems
was initially introduced by Lohmiller and Slotine
(1998). For historical notes on contractivity theory,

see, e.g., the works of Jouffroy (2005) or Lohmiller
and Slotine (2000b). The concept of contractivity
has been used to analyze important properties of
nonlinear dynamical systems in many applications, such
as nonlinear control problems (Lohmiller and Slotine,
2000a; 2000b; Habibi et al., 2008), nonlinear stochastic
dynamical systems (Benda, 1998; Peigné and Woess,
2011; Pham et al., 2009), dynamical systems represented
by Gaussian mixture regression (Blocher et al., 2017),
and fractional-order dynamical systems (Wang and Xiao,
2015). Contraction theory has been extended to piecewise
smooth dynamical systems (Russo and di Bernardo, 2011)
and Riemannian manifolds (Simpson-Porco and Bullo,
2014). A more comprehensive review of contraction
theory can be found in, e.g., the works of Jouffroy (2005),
Sontag (2010) or Aminzare and Sontag (2014). In this
work, contraction analysis will be applied in the context
of projection-based nonlinear model reduction.

One of the most popular model reduction
methods that preserve the contraction property is a
projection-based approach using proper orthogonal
decomposition (POD) with the Galerkin projection,
i.e., the POD-Galerkin or POD method. This method
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is successful in substantially reducing the number
of state variables. The notion of POD is based on
the singular value decomposition (SVD) and it has
been used in numerous applications (e.g., Berkooz
et al., 1993; Lanata and Grosso, 2006; Kunisch and
Volkwein, 2010; Schenone, 2014; Gurka et al., 2006;
Sukuntee and Chaturantabut, 2019; Intawichai and
Chaturantabut, 2020). However, for nonlinear systems,
the computational complexity of the POD-Galerkin
approach generally still depends on the high dimension of
the original full-order system since it requires to compute
orthogonal projection of nonlinear terms.

To avoid this inefficiency, new approaches have
been proposed to improve the POD-Galerkin method
for nonlinear systems. These approaches include the
trajectory piecewise-linear (TPWL) method (Rewieński,
2003; Rewienski and White, 2006), a reference trajectory
based mode control strategy for discrete time dynamical
system (Bartoszewicz and Adamiak, 2019), a heuristic
algorithm based on linear matrix inequalities (LMIs)
(Sanjuan et al., 2019), missing point estimation (MPE)
(Astrid, 2004), and discrete empirical interpolation
(DEIM) (Chaturantabut and Sorensen, 2010).

The TPWL approach is based on estimating a
nonlinear function by using linearized approximation
constructed from the existing information of the original
full-order system. It has been used in many applications,
especially in circuit simulations (Rewienski and White,
2001; 2003; 2006). However, not all nonlinear functions
can be accurately estimated by linearized approximations.

MPE can reduce the complexity of the POD-Galerkin
reduced system by considering certain selected equations
in the discretized system. This approach was further
extended in the form of a special inner product (Astrid
et al., 2008). DEIM can be viewed as an improvement of
MPE by combining oblique projection with interpolatory
approximation.

The interpolated indices are selected based on a
greedy algorithm proposed by Barrault et al. (2004) for
the empirical interpolation method (EIM), which was
introduced in a function space setting for the finite
element framework with the projection basis obtained
directly from snapshot solutions. An error bound for
the DEIM approximation shown by Chaturantabut and
Sorensen (2010) implies that it is nearly as accurate as the
optimal POD approximation. DEIM has been successfully
used with the POD method for constructing reduced
systems in many recent works, such as in neural modeling
(Kellems et al., 2010), subsurface flows (Ştefănescu
and Navon, 2013; Ghasemi et al., 2015; Stanko et al.,
2016; Chaturantabut, 2017; Isoz, 2019; Sukuntee and
Chaturantabut, 2020), coupled circuit-device systems
(Hinze et al., 2012), and solid mechanics problems
(Ghavamian et al., 2017). A detailed error analysis of
the POD-DEIM approach can be found in the works of

Chaturantabut and Sorensen (2012) as well as Wirtz et al.
(2014).

Despite the success of the POD-DEIM approach in
various applications, it still cannot be proved theoretically
to preserve stability and other fundamental properties of
the original systems. In fact, it will guarantee stability
in the sense of contracitivity analysis only under certain
conditions, as shown later in this work.

The existing model reduction methods mainly focus
on preserving the system properties for only some special
classes of nonlinear dynamical systems, for example,
the framework for preserving the Lagrangian structure
of the nonlinear mechanical systems was introduced by
Carlberg et al. (2015), and the approach for preserving
the nonlinear port-Hamiltonian structure was proposed
by Chaturantabut et al. (2016). For general cases, only
the stability for linearized systems was considered by
Hochman et al. (2011).

This work focuses on preserving stability for general
nonlinear systems without requiring linearization. In
particular, this work derives a contractivity-preserving
framework for nonlinear vector fields, which will be
shown to maintain important behaviors of dynamical
systems, such as exponential stability, the existence
and uniqueness of the solution, and convergence of
the perturbed equilibrium. The proposed framework
applies the concept of an interpolatory projection-based
nonlinear model reduction approach using DEIM with
some structured form of the approximated nonlinear term.

This work is organized as follows. First, a general
form of nonlinear differential equations and fundamental
notions of contractivity are introduced in Section 2. Two
projection-based model reduction methods, POD and
POD-DEIM approaches, are reviewed in Section 3. Based
on these approaches, Section 4 presents the derivation
of a model reduction framework that preserves the
contractivity of vector field from the original dynamical
system. The contractivity is shown to further imply
the stability of the solution, as well as can be used
to obtain an error bound for a perturbed equilibrium
solution. This section also investigates the contractivity
property of the existing POD and POD-DEIM techniques.
It will be shown that POD reduced systems always
preserve the contractivity of the original system, but
POD-DEIM systems do not. The conditions under which
the POD-DEIM approach preserves the contractivity
property are discussed at the end of Section 4. In
Section 5, two numerical tests are performed on a
nonlinear reaction-diffusion problem to demonstrate the
efficiency of the proposed framework. The summary
of this work and some final remarks are discussed in
Section 6.
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2. Problem formulation and contractivity

This section provides some theoretical background
required for deriving a model reduction scheme that
preserves the contractivity of nonlinear dynamical
systems. The desired form of the system structure to be
preserved will be discussed together with its significance.

Consider the system of nonlinear ordinary
differential equations (ODEs) of the form:

dy

dt
= F(t,y), y(0) = y0, (1)

where y = y(t) is an n dimensional state variable at
some time t ≥ 0 and F : [0,∞) × Y → R

n is a
differentiable nonlinear vector-valued function, Y ⊆ R

n

with the Jacobian given by JF(t,y) =
∂F
∂y (t,y).

We are interested in constructing a model reduction
that preserves stability properties of the original system.
The standard stability properties are generally analyzed
through a Lyapunov-based approach. However, a main
difficulty for this standard analysis often arises as it
requires equilibrium points to be specified in advance.
This work considers an alternative stability criterion
using contraction analysis, which is generally easier to
analyze but stronger than the standard one. In particular,
while standard nonlinear stability has to be analyzed
with respect to an equilibrium solution, contraction is
concerned with the behavior of system trajectories with
respect to each other and does not require the prior
knowledge of the steady-state solution. In this work,
contraction analysis will be mainly applied to the vector
field defining the dynamical system.

2.1. Logarithmic norm and logarithmic Lips-
chitz constants. We first consider the logarithmic
norm, introduced independently by Dahlquist (1959) and
Lozinskii (1958). The definition of logarithmic norm is
given below in a special case of Euclidean space.

Definition 1. (Logarithmic norm) Let A ∈ R
n×n be a

constant matrix. The associated matrix measure, called
logarithmic norm is defined as

μ[A] = lim
h→0+

‖I + hA‖ − 1

h
, (2)

where ‖ · ‖ is the standard Euclidean norm.

In the above definition, ‖ · ‖ can be any norm. When
‖·‖ is the Euclidean norm, it can be shown that (Söderlind,
2006), μ[A] is the maximum eigenvalue of the symmetric
part of A, i.e.,

μ[A] = λmax

(
A+AT

2

)
, (3)

where λmax(·) stands for the maximum eigenvalue of the
argument. Equivalently, it can also be shown that, for any
induced norm in Hilbert space,

μ[A] = sup
u �=0

Re 〈u,Au〉
〈u,u〉 , (4)

where ‖u‖2 = 〈u,u〉, u ∈ R
n. The concept of

logarithmic norm has been previously used to analyze
the convergence of solutions from ordinary differential
equations (Hairer et al., 1993; Banasiak, 2020). The
notion of logarithmic norm has been extended to a general
nonlinear operator in Banach spaces by introducing the
notion of logarithmic Lipschitz constants (Söderlind,
2006). The definition and some elementary properties of
logarithmic Lipschitz constants are given below.

Definition 2. (Least upper bound/greatest lower bound
Lipschitz constants) Let (X, ‖ · ‖X) be a normed space
and F : Y → X be a function where Y ⊆ X . The least
upper bound (lub) and the greatest lower bound (glb)
Lipschitz constants of F induced by the norm ‖ · ‖X on
Y are defined, respectively, by

LY,X [F ] = sup
u�=v∈Y

‖F (u)− F (v)‖X
‖u− v‖X , (5)

�Y,X [F ] = inf
u�=v∈Y

‖F (u)− F (v)‖X
‖u− v‖X . (6)

The least upper bound (lub) and the greatest lower bound
(glb) logarithmic Lipschitz constants of F induced by the
norm ‖ · ‖X on Y are defined by

MY,X [F ] = lim
h→0+

LY,X [I + hF ]− 1

h
, (7)

mY,X [F ] = lim
h→0−

LY,X [I + hF ]− 1

h
. (8)

Note that this work considers the setting for systems
of ODEs with X = Y ⊆ R

n and will use the notation
LX,X [·] = L[·], �X,X [·] = �[·] and MX,X [·] = M [·],
mX,X [·] = m[·]. Moreover, the Euclidean norm will be
used for ‖·‖X , which will be simply denoted as ‖·‖. In this
case, it can be shown (Söderlind, 2006) that M [·] = m[·]
and for any u,v ∈ R

n,

M [F ] = sup
u �=v

〈u− v, F (u) − F (v)〉
‖u− v‖2 (9)

= sup
u �=v

(u− v)T (F (u) − F (v))

‖u− v‖2 . (10)

Note that, from (4), when F = A ∈ R
n×n, μ[A] =

M [A] because (4) can be written as

μ[A] = sup
u �=v

Re 〈u− v,Au−Av〉
〈u− v,u− v〉 ,

for u,v ∈ R
n.



618 S. Chaturantabut

Lemma 1. (Aminzare and Sontag, 2014; Söderlind, 1986)
Let M be the (lub) logarithmic Lipschitz constant induced
by the Euclidean norm on R

n and Y ⊆ R
n be a connected

set. Then for any Lipschitz and continuously differentiable
function F : Y → R

n, with Jacobian JF ,

sup
y∈Y

μ[JF (y)] ≤M [F ]. (11)

In addition, if Y is convex, then

sup
y∈Y

μ[JF (y)] = M [F ]. (12)

This lemma is useful in practice for estimating or
computing M [F ] when the Jacobian JF is known.

2.2. Contractivity. The appropriate definition and
related properties of contractivity will be presented next
for the vector field F of the differential equation in (1).

Definition 3. (Infinitesimally contracting) (Aminzare and
Sontag, 2014; Sontag, 2010) The time-dependent vector
field F : [0,∞) × Y → R

n, Y ⊆ R
n, in the system (1),

is said to be infinitesimally contracting on a set Y ⊆ R
n

with respect to the Euclidean norm if, for some constant
c > 0,

μ[JF(t,y)] ≤ −c, ∀y ∈ Y, ∀t ≥ 0. (13)

where JF(t,y) ∈ R
n×n is the Jacobian of F(t,y). The

constant c is called the contraction rate.

Remark 1. For F : [0,∞) × Y → R
n, Y ⊆ R

n, recall
from Lemma 1 that

sup
y∈Y

μ [JF(t,y)] ≤M [Ft], ∀t ≥ 0,

where Ft(y) = F(t,y). Therefore, the function F is in-
finitesimally contracting if

sup
t∈[0,∞)

M [Ft] < 0. (14)

In this work, the above stronger condition of
being infinitesimally contracting given in (14) will be
used instead of (13) to make it more convenient for
applying to general nonlinear functions when deriving
a contractivity-preserving model reduction approach.
For the time-independent function F, i.e., F(t,y) =
F(y), ∀t ∈ [0,∞), which will be considered mainly in
this work, the condition (14) simply becomes M [F] <
0. It is important to note that infinitesimal contractivity
implies global contractivity, as shown, e.g., by Aminzare
and Sontag (2013).

Theorem 1. (Aminzare and Sontag, 2013; 2014) Let ‖ · ‖
be the Euclidean norm and F : [0,∞) × Y → X be

(globally) Lipschitz and continuously differentiable func-
tion, where Y ⊆ X = R

n. Suppose y and ŷ are the solu-
tions of dy

dt = F(t,y), with initial conditions y(0) = y0

and y(0) = ŷ0, respectively. Then, for

k := sup
t∈[0,∞)

M [Ft], (15)

‖y(t)− ŷ(t)‖ ≤ ekt‖y0 − ŷ0‖, ∀t ≥ 0. (16)

where Ft(y) = F(t,y) as defined in the previous remark.

From Theorem 1, when F is infinitesimally
contracting, i.e., k < 0, the trajectories globally and
exponentially converge to each other. In the remaining
parts of this paper, the contractivity of a function will refer
to the condition (14), which will imply both infinitesimal
contractivity and global contractivity.

To see some effects of contractivity on the behaviors
of dynamical systems with nonlinear vector field F,
consider a simple mathematical example. Without any
loss of generality, the system of differential equations (1)
is assumed to be autonomous for notational convenience.
Consider the two systems of differential equations:

dy

dt
= F(y), y(0) = y0, (17)

dŷ

dt
= F(ŷ) + p(t), ŷ(0) = ŷ0. (18)

The system (18) can be viewed as a perturbed system of
the system (17). Let E(t) = ŷ(t)−y(t) be the difference
of the solutions from these two systems. Then Ė(t) =
˙̂y(t) − ẏ(t) = F(t, ŷ) − F(t,y) + p(t). By using the
identity (9) and ‖E‖ d

dt‖E‖ = 1
2‖E‖2 = ET Ė = 〈E, Ė〉,

we have

d

dt
‖E‖ = 1

‖E‖〈E, Ė〉

=
1

‖E‖〈E,F(t, ŷ)− F(t,y) + p(t)〉,
d

dt
‖ŷ− y‖ = 1

‖ŷ − y‖〈ŷ − y,F(t, ŷ)− F(t,y)〉

+
1

‖E‖〈E,p(t)〉

≤M [F]‖ŷ − y‖+ ‖p(t)‖,
d

dt
‖E‖ ≤M [F]‖E‖+ ‖p(t)‖,

which implies that, for t ≥ 0,

‖E(t)‖ ≤ ‖E(0)‖ eM [F]t

+

∫ t

0

‖p(τ)‖ e(t−τ)M [F] dτ.
(19)

The above bound illustrates the effects of the logarithmic
Lipschitz constant on certain system’s properties, such as
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stability and perturbation. As shown by Söderlind (2006),
two fundamental cases should be considered for the error
‖E(t)‖ = ‖ŷ(t)− y(t)‖ from (19).

Case 1. When p(t) = 0, the bound in (19) gives

‖ŷ(t)− y(t)‖ ≤ eM [F]t‖ŷ(0)− y(0)‖.
When F is infinitesimally contracting, i.e., M [F] < 0, the
solution is exponentially stable.

Case 2. When E(0) = 0, i.e., the initial conditions y0 and
ŷ0 are the same, the bound in (19) gives

‖ŷ(t)− y(t)‖ ≤ etM [F] − 1

M [F]
max

t∈[0,∞)
‖p(t)‖,

by using a straightforward integration. Notice that when
F is infinitesimally contracting, i.e., M [F] < 0, we have
etM [F] ∈ (0, 1) and the bound becomes ‖ŷ(t) − y(t)‖ ≤
−1

M [F] maxt∈[0,∞) ‖p(t)‖, which implies that ŷ(t)→ y(t)

as maxt∈[0,∞) ‖p(t)‖ → 0.
Based on the discussion above, it follows that it

is essential to maintain the contractivity of the vector
field when constructing the approximate low-dimensional
system, so that the fundamental behaviors of the original
system are preserved.

3. Model order reduction

In order to derive a contractivity-preserving reduced-order
modeling, this section will first consider a well-known
method called proper orthogonal decomposition
(POD) and its combination with the discrete empirical
interpolation method (DEIM).

Recall the nonlinear differential equation (1) in the
form of the autonomous system

dy

dt
= F(y), y(0) = y0, (20)

where y : [0,∞) → R
n is the state variable and F :

Y ⊆ R
n → R

n is the nonlinear vector field. The
projection-based model reduction method can construct
a reduced-order system by projecting (20) onto a low
dimensional subspace. Let V ∈ R

n×k be a matrix
whose columns form a set of an orthonormal basis of
dimension k, where k ≤ n. Then we can approximate
the state variable y(t) in the space spanned by the
columns of V in the form y(t) ≈ Vỹ(t), where ỹ(t) ∈
R

k. After substituting this approximation into (20) and
applying the Galerkin projection to obtain the smallest
residual error in the direction of span{V}, we have
VT

[
d
dtVỹ(t)− F(Vỹ(t))

]
= 0. Note that span{V} is

defined to be the space spanned by the columns of matrix
V. Since the columns of V are orthonormal, the projected
reduced system is of the form

d

dt
ỹ(t) = VTF(Vỹ(t)), ỹ(0) = VTy0. (21)

In this setting, V can be obtained from any
orthogonal basis. However, to get an accurate
approximation from this reduced system, proper
orthogonal decomposition (POD) will be used to
construct this basis. POD can optimally extract the
dominant characteristics from any given system of
interest as shown in its definition (22).

Proper orthogonal decomposition (POD) is also
known by other names, for example, the Karhunen-Loève
decomposition (KLD), principal component analysis
(PCA), or singular value decomposition (SVD). POD
has been used with the Galerkin projection in many
applications to reduce the number of variables of
large-scaled discretized systems ( e.g., Berkooz et al.,
1993; Lanata and Grosso, 2006; Kunisch and Volkwein,
2010; Schenone, 2014; Gurka et al., 2006). One of
the most important properties of POD is that it can
construct an approximation that minimizes the error in the
2-norm for a given fixed basis rank k. POD also can be
obtained by using singular value decomposition (SVD) as
discussed next.

Definition 4. (POD basis) (Volkwein, 2008) Let Y =
[y1, . . . ,yns ] ∈ R

n×ns be a snapshot matrix with rank
r ≤ min{n, ns}. The POD basis of dimension k, where
k ≤ r, is the solution to the following optimization
problem:

min
Φk∈Rn×k

ns∑
j=1

‖yj −ΦkΦ
T
k yj‖22 (22)

such that
ΦT

kΦk = Ik

where Ik ∈ R
k×k is the identity matrix.

It can be shown (Volkwein, 2008) that the POD
basis defined above can be obtained from the left singular
vector of the snapshot matrix Y. Let Y = ÛΣZT be
the singular value decomposition of Y, where matrices
Û = [u1, . . . ,ur] ∈ R

n×r and Ẑ = [z1, . . . , zr] ∈
R

ns×r are matrices with orthogonal columns and Σ =
diag(σ1, . . . , σr) ∈ R

r×r is a diagonal matrix with σ1 ≥
σ2 ≥ · · · ≥ σr > 0. Then the POD basis matrix
V ∈ R

n×k of dimension k, where k ≤ r, is given by
V = [u1, . . . ,uk], which consists of the first k columns
of Û. It is well-known (Volkwein, 2008) that

ns∑
j=1

‖yj −VVTyj‖22 =

r∑
�=k+1

σ2
� , (23)

which is the sum of the neglected singular values
σk+1, . . . , σr from the SVD of Y.

When the matrix V is obtained from POD, the
system (21) is called the POD reduced system or
the POD-Galerkin reduced system. Although the
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POD-Galerkin approach can reduce the number of
unknowns of the full-order system, it may not be able
to reduce the complexity for computing the projected
nonlinear term VTF(Vỹ(t)) in (21). To handle this
complexity problem, POD will be used with the discrete
empirical interpolation method (DEIM) (Chaturantabut
and Sorensen, 2010).

The DEIM approximates the nonlinear function
F(y) by projecting it onto the space spanned by the
columns of a basis matrix U ∈ R

n×m of rank m ≤ n.
The matrix U can be constructed from the POD basis
of the nonlinear snapshot matrix [F(y1), . . . ,F(yns)],
where yi

∼= y(ti). This DEIM approximation for
the POD vector field is therefore in the form of
F(Vỹ(t)) ≈ Uc(t), for some vector c(t) in R

m.
In order to specify c(t), a greedy selection procedure
given in Algorithm 1 is used to select m interpolated
row indices of the interpolation approximation. That
is, let ℘1, . . . , ℘m be the interpolation indices from
Algorithm 1 corresponding to the input basis set from
U and let P = [e℘1 , . . . , e℘m ] ∈ R

n×m, where e℘i =
[0, . . . , 0, 1, 0, . . . , 0]T ∈ R

n is the ℘i-th column of the
identity matrix In ∈ R

n×n, for i = 1, . . . ,m.
Since it has been shown by Chaturantabut and

Sorensen (2010) that PTU is nonsingular, the vector c(t)
can be uniquely determined from

PTF(Vỹ(t)) = (PTU)c(t), (24)

which gives a closed-form formula c(t) =
(PTU)−1PTF(Vỹ(t)). Therefore, the approximation is
given by

F(Vỹ(t)) = U(PTU)−1 PTF(Vỹ(t))︸ ︷︷ ︸
m×1

. (25)

In the case when the nonlinear function F is
componentwise, i.e., [F(z)]i = Fi(zi), for z ∈ Y ⊆ R

n,
i = 1, . . . , n and Fi(·) is the i-th component of F(·), we
have

F(Vỹ(t)) = U(PTU)−1 F(PTVỹ(t))︸ ︷︷ ︸
m×1

. (26)

The assumption on the componentwise function
might seem to be rather strong. However, many
partial differential equations have nonlinear terms
that correspond to componentwise functions in their
discretized systems, e.g., reaction terms in most flow
models. Also, this assumption can be avoided by using
the structure of the dependence in state variables in each
component of the nonlinear term (e.g., incorporating
a technique that uses a computational graph based on
“Automatic Differentiation by OverLoading in C++
(ADOL-C)” (Walther et al., 2003)).

Note that pre-multiplying by PT in (24) is
equivalent to extracting the m rows corresponding to

Algorithm 1. Algorithm to create interpolation indices
from DEIM.
INPUT: A set of linearly independent vectors
{u�}m�=1 ⊂ R

n.
OUTPUT: An index set �℘ = [℘1, . . . , ℘m]T ∈ R

m.

1: [|ρ|, ℘1] = max{|u1|}
2: U = [u1],P = [e℘1 ], �℘ = [℘1];
3: for �← 2 to m do
4: Solve (PTU)c = PTu�;
5: r = u� −Uc [|ρ|, ℘�] = max{|r|}
6: U← [U u�],P← [P e℘�

], �℘←
[
�℘
℘�

]

7: end

the interpolation indices ℘1, . . . , ℘m, and there is no
actual matrix multiplication required for PTF(Vỹ(t)).
The procedure for selecting these indices is shown in
Algorithm 1. It chooses each index by aiming to minimize
the residual error r = u�−Uc in each iteration �. Finally,
the POD-DEIM reduced system can be written in the
following two equivalent forms:

˙̃y = VTU(PTU)−1PTF(Vỹ), ỹ(0) = VTy0, (27)
˙̃y = VT

PF(Vỹ), ỹ(0) = VTy0, (28)

where P := U(PTU)−1PT is an oblique projector.
The first form (27) is generally used in practice by
precomputing the term VTU(PTU)−1. The second
form (28) will be used in this work to derive a
contractivity-preserving framework.

Although DEIM has been successfully used to obtain
accurate low-complexity models in various applications,
as can be seen in, e.g., the works of (Kellems et al.,
2010; Chaturantabut and Sorensen, 2011; Ştefănescu and
Navon, 2013; Feng and Soulaimani, 2007), it cannot be
theoretically proved to preserve the stability of original
systems through contraction analysis. This work aims to
derive a modified form of the POD-DEIM reduced system
to overcome this problem.

4. Contractivity-preserving model
reduction

Motivated by projection-based model reduction
approaches described in the previous section, this
section will first propose a general form of the model
reduction scheme that preserves the contractivity of
nonlinear vector fields in the original systems. The
derivation is performed through the Euclidean norm.
A specific form that preserves the contractivity will be
considered at the end of this section by enforcing certain
structure on the modified POD-DEIM reduced system.
The contractivity of the existing POD and POD-DEIM
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approaches will be also investigated. It will be shown
that while POD reduced systems always preserve the
contractivity, this may not be true for POD-DEIM reduced
systems. The conditions under which the POD-DEIM
approach preserves this property will be discussed.

4.1. Proposed general form of the contractivity-
preserving reduced model. Consider the autonomous
differential equation of the form (20). This section
proposes a general form of the projection-based model
reduction that preserves the contractivity of the original
system (20) with respect to the Euclidean norm.

Lemma 2. Suppose the nonlinear vector field F in (20)
is infinitesimally contracting, i.e., M [F] < 0. Consider
the reduced-order model of (20) in the form

˙̃y = F̃(ỹ), with F̃(ỹ) = VTWF(WTVỹ), (29)

where ỹ = ỹ(t) ∈ R
k, V ∈ R

n×k has orthonormal
columns, for k ≤ n, t ≥ 0, and W ∈ R

n×n is a ma-
trix such that WTV ∈ Rn×k has full column rank, i.e.,
rank(WTV) = k. Then the nonlinear vector field F̃(ỹ)
in (29) is also infinitesimally contracting.

Note that the solution y of the original full-order
system (20) can be approximated by Vỹ, where ỹ is
the solution from (29). Note also that the matrix W
is introduced in (29) to allow the reduced system to
introduce an additional efficient nonlinear complexity
reduction, e.g., as explained in Section 3.

Proof. Let M [F] and M [F̃] be the logarithmic Lipschitz
constants of F and F̃, respectively. For ũ, ṽ ∈ R

k

and u,v ∈ R
n, since F in system (1) is infinitesimally

contracting, i.e., M [F] < 0, we have, for W̃ := WTV ∈
Rn×k,

M [F̃] = sup
ũ�=ṽ

(ũ− ṽ)T (F̃(ũ)− F̃(ṽ))

‖ũ− ṽ‖2

= sup
ũ�=ṽ

(ũ− ṽ)T (W̃TF(W̃ũ)− W̃TF(W̃ṽ))

‖ũ− ṽ‖2

=
1

K2
sup
ũ �=ṽ

(W̃ũ− W̃ṽ)T (F(W̃ũ)− F(W̃ṽ))

‖W̃ũ− W̃ṽ‖2

≤ 1

K2
sup
u �=v

(u− v)T (F(u)− F(v))

‖u− v‖2

=
1

K2
M [F] < 0,

where K is a positive constant such that ‖ũ − ṽ‖ =

K‖W̃ũ − W̃ṽ‖. The assumption that W̃ has full
column rank guarantees the existence of the constant
K > 0 and ensures that the denominator ‖W̃ũ − W̃ṽ‖
is nonzero. Note that when W̃ has orthonormal columns,

‖W̃ũ − W̃ṽ‖ = ‖W̃‖‖ũ − ṽ‖ and we can use K =

1/‖W̃‖. Hence, we have M [F̃] < 0 and F̃ is therefore
infinitesimally contracting. �

The above result can be extended to guarantee the
stability and the existence of the equilibrium solution
of the reduced system in the form (29) as discussed in
Section 2.2.

Proposition 1. Suppose the nonlinear vector field F
in the full-order system (20) is infinitesimally contracting,
i.e., M [F] < 0. Then

(i) the reduced system (29) preserves the exponential
stability of (20) .

(ii) the reduced system (29) has a unique equilibrium
ỹe, i.e., F̃(ỹe) = 0. Moreover, if ye is the unique
equilibrium solution of (20), then ye can be approx-
imated by Vỹe with an error bound given by

‖ye −Vỹe‖ ≤ −‖p‖
M [F]

, (30)

where p = F(Vỹe).

Proof.
(i) This part follows the results of Söderlind (2006)
that the solution of the reduced system satisfies ‖ỹ‖ ≤
eM [˜F]t‖ỹ(0)‖ and that F in system (20) is infinitesimally
contracting: M [F̃] < 0 for t ≥ 0 from the previous
lemma.

(ii) First note that, after Söderlind (2006), M [F] < 0
implies that the map F is bijective and there must be a
unique solution ye such that F(ye) = 0. Similarly, from
Lemma 2, M [F] < 0 implies M [F̃] < 0, which also
further gives the existence of the unique solution ỹe such
that F̃(ỹe) = 0 (Söderlind, 2006). Note that, from the
definition of M [F],

〈Vỹe − ye,F(Vỹe)− F(ye)〉
‖Vỹe − ye‖2 ≤M [F].

By using F(ye) = 0 and p = F(Vỹe), we have

〈Vỹe − ye,p〉
‖Vỹe − ye‖2 ≤M [F].

Since M [F] < 0, we get

‖Vỹe − ye‖2 ≤ 1

M [F]
〈Vỹe − ye,p〉

≤
∣∣∣∣ 1

M [F]

∣∣∣∣ ‖Vỹe − ye‖ ‖p‖

=
−‖p‖
M [F]

‖Vỹe − ye‖,

‖Vỹe − ye‖ ≤ −‖p‖
M [F]

.

�
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Notice that the bound given in (30) can be used to
indicate the accuracy of the approximated equilibrium
solution Vỹe from the reduced system (29), even though
the exact value of ye is not known. In addition, this
bound guarantees the convergence of the approximate
equilibrium, i.e., Vỹe → ye, as ‖p‖ → 0.

Corollary 1. Suppose the nonlinear vector field F in
the full-order system (20) is infinitesimally contracting.
Then the nonlinear vector field of the POD reduced system
(21) preserves the exponential stability of (20) and has a
unique equilibrium ỹPOD

e . If ye is the unique equilibrium
solution of (20), then ye can be approximated by VỹPOD

e

with the error bound given in (30).

Proof. This is a direct result from Lemma 2 and
Proposition 1 when W = I. �

Although POD reduced system preserves the
contractivity of the original system, it does not truly
reduce the computational complexity for nonlinear
problems, as mentioned earlier. The matrix W is
therefore introduced in (29) It is desirable to choose W
so that the term VTWF(WTVỹ) is close to VTF(Vỹ).
Consider the difference of the nonlinear vector field of
the POD reduced system (21) and the proposed general
form (29)

‖VTF(Vỹ)−VTWF(WTVỹ)‖

≤ ‖VTF(Vỹ)−VTWF(Vỹ)‖
+ ‖VTWF(Vỹ)−VTWF(WTVỹ)‖
≤ ‖VT −VTW‖‖F(Vỹ)‖
+ ‖VTW‖‖F(Vỹ)− F(WTVỹ)‖
+ ‖VTW‖LF ‖(I−WT )Vỹ‖,

where LF is the Lipschitz constant of F. The above
bound for ‖VTF(Vỹ)−VTWf(WTVỹ)‖ implies that
the difference of the proposed general form and the POD
reduced system will be small when I −W is close to be
orthogonal to the POD basis matrix V. In particular,
if we use W that makes V ⊥ (I −W), we will have
V = WTV and ‖VTF(Vỹ) − VTWF(WTVỹ)‖ =
0. However, to reduce the computational complexity in
practical implementation, we may not be able to have W
that always makes V ⊥ (I−W).

The concept of DEIM will be used to come up
with W. However, this cannot be done directly. While
the POD reduced system can be shown to be in the
form of the reduced system (29), by setting W = I,
the DEIM reduced system cannot be rearranged in this
form. Therefore, based on Lemma 2, the POD reduced
system preserves the contractivity of the vector field and
it inherits other properties of the original full-order system
as stated in Corollary 1, but the POD-DEIM approach

does not. The following corollary provides the condition
that guarantees the contractivity as well as stability, of the
resulting POD-DEIM reduced system.

Corollary 2. Let F be the nonlinear vector field of
the full-order system (20). Suppose F is infinitesimally
contracting. The corresponding nonlinear vector field
F̂(ỹ) := VT

PF(Vỹ) of the POD-DEIM reduced system
(27) is infinitesimally contracting if M [PF] < 0, where
P = U(PTU)−1PT is an oblique projector from the
DEIM approximation and, V and U are matrices with
orthonormal columns from the POD bases of linear and
nonlinear snapshots, respectively.

Proof. Consider the POD-DEIM reduced system (27) in
the form ˙̃y = F̂(ỹ) where F̂(ỹ) := VT

PF(Vỹ),

M [F̂] = sup
û �=v̂

(û− v̂)T (VT
PF(Vû)−VT

PF(Vv̂))

‖û− v̂‖2

= sup
û �=v̂

(Vû −Vv̂)TP(F(Vû)− F(Vv̂))

‖Vû−Vv̂‖2
≤M [PF].

That is, M [PF] < 0 implies M [F̂] < 0. Note that we
have used ‖Vû−Vv̂‖2 = ‖û− v̂‖2, which follows from
the orthonormality of the columns in V. �

It is desirable to have a model reduction that can
both preserve important properties of the original systems
and maintain low complexity in computing the projected
nonlinear term. To achieve these two desired conditions,
the concept of the POD-DEIM approach will be applied to
the general form of the contractivity-preserving reduced
system (29).

4.2. Proposed specific form of the contractivity-
preserving reduced model. In order to use the general
form of the contractivity-preserving reduced system (29)
in practice, the matrix W ∈ R

n×n has to be specified.
Recall that the matrix W is initially introduced to reduce
the computational complexity of the reduced system (29),
which can be done through the concept of interpolatory
approximation as described in the DEIM approach. In
particular, consider a more specific form of (29) by setting
W = HPT , i.e.,

˙̃y = F̃(ỹ), with F̃(ỹ) = VTHPTF(PHTVỹ), (31)

where P and H are n × m matrices. To reduce the
computational complexity, the matrix P ∈ R

n×m will be
defined as the one given in the DEIM approximation.

For a given ỹ, the function F̃(ỹ) in (31) is computed
as grouped below

F̃(ỹ) = VTH︸ ︷︷ ︸
k×m

PTF(PHTVỹ︸ ︷︷ ︸
O(mk)

)

︸ ︷︷ ︸
m×1

,
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i.e., the matrix VTH ∈ R
k×m can be precomputed in

advance and it can also used for HTV = (VTH)T ;
computing PHTVỹ can be done with complexity
of order O(mk) due to the special structure of P;
and PTF(PHTVỹ) can be computed with complexity
depending on m, since premultiplying by PT is simply
equivalent to selecting m rows. We will not pre-multiply
by P or PT directly in actual computation.

To specify an appropriate matrix H in (31), consider
the POD reduced system (21) and the proposed form
(31) before applying the Galerkin projection, i.e., before
premultiplying by VT , which are, respectively, given by

V ˙̃y = F(Vỹ), (32)

V ˙̃y = HPTF(PHTVỹ). (33)

The system (32) can be viewed as the original system (20)
with projected solution y ≈ Vỹ. Notice that when the
above systems (32) and (33) are pre-multiplied by VT

in the Galerkin projection, they will become the reduced
systems in (21) and (31), respectively.

To make the proposed form (31) consistent with the
original system, it is ideal to have the same right-hand-side
vector fields of (32) and (33), i.e.,

F(Vỹ) = HPTF(PHTVỹ). (34)

However, the above constraint (34) may not be feasible
to specify an appropriate H in (31). Therefore, this work
only aims to have F(Vỹ) and HPTF(PHTVỹ) in (21)
and (31), respectively, equal (or as close as possible) at
certain selected components determined by DEIM. That
is, H will be chosen to either satisfy

PTF(Vỹ) = PTHPTF(PHTVỹ), (35)

or solve

min
H∈Rn×m

‖PTF(Vỹ)−PTHPTF(PHTVỹ)‖. (36)

In the case of a componentwise function F, i.e.,
PTF(y) = F(PTy), the vector field in (32) simply
becomes PTF(Vỹ) = F(PTVỹ) ∈ R

m, and the vector
field in (33) then becomes PTHPTF(PHTVỹ) =
PTHF(PTPHTVỹ) = PTHF(HTVỹ). This means
that, for a componentwise function F, the condition (35)
is equivalent to

F(PTVỹ) = PTHF(HTVỹ).

A straightforward option for H is obtained by comparing
terms in these vector fields, which implies that H should
satisfy PTH = I ∈ Rm×m and HTV = PTV. In this
case, an obvious choice is thereforeH = P, which will be
used in this work. From Lemma 2, another condition that
has to be satisfied is that the rank of WTV = PPTV has

to be equal to k, i.e., rank(PPTV) = k. In general, this
condition may not be true for any matrix P from DEIM
and any POD basis matrix V. It can be shown that this
condition fails when k from POD is less than m in DEIM.
Hence, the numerical tests of this work always use m ≥ k
and ensure that rank(PPTV) = k, before applying this
approach.

In summary, the final form of reduced system
that both preserves contractivity and maintains the low
computational complexity is given by

˙̃y = VTPPTF(PPTVỹ) (37)

with
ỹ(0) = VTy(0),

where P ∈ R
n×m and V ∈ R

n×k are defined as in
the POD-DEIM reduced system (27) with m ≥ k and
rank(PPTV) = k. Note that, other forms of H are
possible and left for future research.

In our practical implementation, the vector field
F will be separated into linear and nonlinear terms to
maintain the accuracy as much as possible through the
linear part. Normally, F will be written as the sum of
two terms: F(y) = Ay + f(y), where A ∈ R

n×n and
f(y) = F(y)−Ay. In many applications from discretized
PDEs, A is obtained directly from the linear operator,
such as the discrete Laplace operator. The POD approach
will be applied to the linear term Ay and reduced system
of the form (37) will be used for the nonlinear term f(·),
i.e.,

˙̃y = Ãỹ +VTWf(WTVỹ), (38)

where Ã = VTAV ∈ R
k×k can be precomputed in

advance and W = PPT with P constructed from DEIM
approximation for f(·). The results on contractivity
earlier in (29) and (31) can still be obtained in the
same way, because logarithmic Lipschitz constants are
subadditive, i.e., M [F] = M [A + f ] ≤ M [A] + M [f ],
where M [A] = μ[A] for a constant matrix A ∈ R

n×n.
Numerical tests in the next section illustrate the

efficiency of the proposed model reduction form given in
(38) on a nonlinear reaction-diffusion problem.

5. Numerical results

Consider the nonlinear reaction-diffusion initial boundary
value problem

∂u

∂t
= ε

∂2u

∂x2
+ u− u3,

x ∈ Ω = [x0, xf ], t ≥ 0, (39)

with initial condition u(x, 0), and homogeneous boundary
conditions u(x0, t) = 0, and u(xf , t) = 0, for t ≥ 0.
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The numerical tests considered in this section use the
finite-difference discretizaion with the number of spatial
points n = 1000 on the domain Ω = [0, 1] to obtain a
full-order system, which can be written in the form:

du

dt
= Au+ f(u),

where A = (ε/h2)tridiag[1 − 2 1] ∈ R
n×n constitutes

a symmetric tri-diagonal matrix, f(u) = −u3 + u is a
componentwise nonlinear function with state variable u :
[0, T ] → R

n, ui = ui(t) = u(xi, t), i = 1, 2, . . . , n,
and h = (xf − x0)/(n+ 1) is the spatial stepsize with
n+ 1 spatial subintervals (i.e., there are n+ 2 grid points
including the two points on the boundaries). Note that the
logarithmic Lipschitz constant of the linear term A and
the nonlinear term f are given, respectively, by M [A] =
−(4ε/h2) sin2 (πh/2) = −επ2 + εh2π4/12+O(h4) and
M [f ] = supu∈Rn μ[Jf (u)] = 1, where the Jacobian of
f : Jf (u) = diag(−3u2

1 + 1,−3u2
2 + 1, . . . ,−3u2

n +
1) ∈ R

n×n. The contractivity of the discretized system
can be checked through the logarithmic Lipschitz constant
M [A+f ] ≤M [A]+M [f ] = −επ2+εh2π4/12+O(h4)+
1, by using the subadditivity property. When ε and h are
chosen so that−επ2 + εh2π4/12+O(h4)+ 1 < 0, it can
be guaranteed that the discretized system is contractive,
and so are the POD reduced system of the form (21) and
the contractivity-preserving POD-DEIM reduced system
of the form (38). Two numerical tests will be considered
for these contractivity-preserving reduced systems. The
first one is for a fixed value of parameter ε. The second
one is for various different parameter values ε, when only
one basis set for each of POD and DEIM approximations
is used.

5.1. First numerical test: A fixed parameter value.
This numerical test considers the differential equation
given in (39) with initial condition u(x, 0) = sin(5πx)
and homogeneous boundary conditions u(0, t) = 0,
u(1, t) = 0, for t ∈ [0, 0.2] and ε = 0.15.
Figure 1 compares the solutions obtained from the original
full-order system of the form (1) with the solutions from
two reduced models: (i) the POD reduced system (21),
and (ii) the POD-DEIM reduced system that preserves the
contractivity (38). It also shows the singular values of the
solution snapshots and nonlinear snapshots. As defined
earlier, k and m, respectively, denote the dimensions
of basis for POD and for DEIM approximation. The
numerical solutions in Fig. 1 seem to be indistinguishable
for all full-order system with dimension n = 1000, POD
reduced system with dimension k = 20, and POD-DEIM
reduced system with dimension k = m = 20.

The absolute error and the CPU time (normalized
with the simulation time of the original full-order
system) of the POD reduced model (21) and
contractivity-preserving POD-DEIM reduced model
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Fig. 1. Numerical test 1: solutions of (39) from the full-order
system (1), the POD system (21) with k = 20, and
the POD-DEIM system that preserves monotonicity (38)
with k = m = 20.

Table 1. Numerical test 1: run time and relative error of the
POD reduced system (top), the POD-DEIM reduced
system with monotonicity preserved (bottom). Each
run time is normalized with the CPU time of the origi-
nal full-order system (dimension n = 1000).

POD Relative Runtime

basis (k) error (scaled)

Full: n = 1000 – 1
k = 5 2.4601e-06 1/56
k = 10 3.7046e-08 1/51
k = 20 1.7271e-13 1/46
k = 30 1.0819e-13 1/39

POD (k) Relative Runtime

DEIM (m) error (scaled)

Full: n = 1000 – 1
k = m = 5 4.1170e-02 1/360
k = m = 10 6.2412e-03 1/301
k = m = 20 4.1483e-03 1/241
k = m = 30 5.4461e-04 1/210
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(38) are given in Table 1. Notice that, although the
POD approach gives more accurate approximations,
the proposed model can accurately approximate the
solution with much less simulation time, e.g., the
contractivity-preserving POD-DEIM reduced system
with k = 20, m = 20 has CPU time reduced to
approximately 1/241 of the simulation time used for the
original system, while CPU time for the POD reduced
system with k = 20 only reduced to approximately
1/46 of the time used in the original system. The next
numerical test extends these results to various parameter
values.

5.2. Second numerical test: Varying parameter val-
ues. This section considers an application for the same
nonlinear reaction-diffusion equation given in (39) with
various values of ε. The initial condition is u(x, 0) =
sin(5πx), the homogeneous boundary conditions are
u(0, t) = 0, u(1, t) = 0, for t ∈ [0, 1]. The finite
difference discretization is used with the number of spatial
points n = 1000 on [0, 1] and the number of time steps is
nt = 100 on [0, 1] .

The POD basis sets used in the Galerkin projection
and used for the DEIM nonlinear approximation are
constructed from the solution snapshots shown in Fig. 2,
which are corresponding to two parameter values ε =
0.01 and ε = 0.1. The last plot in Fig. 2 shows the
singular values corresponding to the POD basis of the
solution snapshots from the full-order systems with these
two parameter values. The solutions corresponding to
different parameter values ε in the interval [0.01, 0.1] will
be considered here. The plots in Fig. 3 demonstrate,
respectively, the solutions from the full-order system, the
POD reduced system, and the contractivity-preserving
POD-DEIM reduced system with parameter values ε =
0.015, 0.025. The solutions from these reduced system
in Fig. 3 are shown to accurately capture the dynamics
of the original systems although the projection basis sets
are constructed from snapshots with different parameter
values. Table 2 shows the average relative error and
the average runtime of the POD reduced system and
the contractivity-preserving POD-DEIM reduced system
for parameter ε = 0.015, 0.020, 0.025, 0.05, 0.07, which
are between the parameter values 0.001, 0.01 used for
constructing POD basis. As in the previous numerical test,
each runtime is normalized with the average CPU times of
the original full-order systems. Notice that, from Table 2,
although the POD approach has higher accuracy, the
contractivity-preserving POD-DEIM approach requires
an approximately 10 times shorter simulation time than
the POD approach.

6. Conclusion

This work proposes a general form of projection-based
nonlinear reduced-order modeling that preserves the
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Fig. 2. Numerical test 2: solution snapshots of (39) with dimen-
sion n = 1000, using ε = 0.01 and ε = 0.1, and the
corresponding singular values.

Fig. 3. Numerical test 2: solutions of (39) from the full-order
system (n = 1000) and the contractivity-preserving
POD-DEIM reduced system (k = m = 20) with pa-
rameter values ε = 0.015 and 0.025.

contractivity property of the original systems, which can
be used for guaranteeing the existence, uniqueness of
the solution, and stability of the dynamical system. A
specific formulation is also proposed by modifying POD
and DEIM approaches to satisfy some form of structure.
Other specific forms are still possible and left for future
research. The numerical tests on the nonlinear reaction
diffusion problem demonstrate that, while preserving the
contractive property of the original system, the proposed
model can accurately approximate the solutions with a
much shorter simulation time than both the original model
and the standard POD reduced model.
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Table 2. Numerical test 2: average relative error and av-
erage run time of the POD reduced system
(top), the contractivity-preserving POD-DEIM
reduced system (bottom) for parameter ε =
0.015, 0.020, 0.025, 0.05, 0.07 ∈ [0.001, 0.01].
Each run time is normalized with the CPU time of the
original full-order system (dimension n = 1000).

POD Avg. rel. Avg. runtime

basis (k) error (scaled)

Full: n = 1000 – 1
k = 5 2.2602e-06 0.02177
k = 10 1.4511e-07 0.03225
k = 20 5.7141e-11 0.04785
k = 30 3.8271e-13 0.05203
k = 50 1.1879e-13 0.07952

POD (k) Avg. rel. Avg. runtime

DEIM (m) error (scaled)

Full: n = 1000 – 1
k = m = 5 8.1730e-02 0.00220
k = m = 10 4.1270e-02 0.00288
k = m = 20 1.2412e-03 0.00489
k = m = 30 6.4383e-04 0.00505
k = m = 50 3.4561e-04 0.00703
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