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We propose a decision support framework (DSF) assisting insulin therapy of diabetic children. Our DSF relies on a medical
treatment graph (MTG), which models and graphically represents clinical pathways. Using the MTG, it is possible to
plan and adapt medical decisions dependent upon the current health state of a patient and the progress of the treatment.
Our MTG fits well with the requirements of clinical practice. The presented work is a cooperative effort of researchers in
computer science and medicine. The MTG model has been thoroughly tested and validated using real-world clinical data.
The usefulness of the approach has been confirmed by physicians.
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1. Introduction

Diabetes mellitus is one of the most common civilization
diseases. Recently, the number of cases has grown rapidly,
especially among children suffering from type 1 diabetes.
This trend is distressing, as patients with type 1 diabetes
must be treated with insulin injections immediately after
the diagnosis of the disease. Therapy must be precisely
adjusted to the child’s energy requirements and lifestyle.
Due to the numerous factors influencing the human
blood glucose level, according to the American Diabetes
Association (ADA), establishing this therapy is difficult
(ADA, 2020).

The main challenge in setting up a diabetic therapy
is the discovery of care-flow patterns that would be
representative enough (Yadav et al., 2017). By having
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those patterns available, it is possible to support the
physician in planning diabetic therapy for a particular
patient. The problem is known in the literature as mining
clinical pathways (CPs).

According to the Australian Queensland Health
Board definition, a clinical pathway describes “a
standardized, evidence-based medical plan, which
identifies the appropriate sequence of clinical
interventions, time frames, milestones, and expected
outcomes for a homogenous patient group”. According
to the same organization, the major aim of a clinical
pathway is to “support the evidence-based practice,
improve clinical processes by reducing risk, and finally,
reduce variation in health service process delivery.”

The work presented in this paper is in line with one
of the most active research areas focusing on mining CPs
for chronic care delivery (Zhang and Padman, 2016; Haq

© 2021 R. Deja et al.  
This is an open access article distributed under  
the Creative Commons Attribution-NonCommercial-NoDerivs license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

mailto:rdeja@wsb.edu.pl
mailto:wojciech.froelich@us.edu.pl
mailto:gdeja@sum.edu.pl


108 R. Deja et al.

et al., 2019; Papiez et al., 2019). In Section 2, we
give a review of the representative works addressing that
problem.

Let us note that, in this paper, we are continuing our
previous research on modeling CPs for juvenile diabetic
patients. The main limitation of the method we proposed
earlier (Froelich et al., 2013) is the necessity to define
therapeutic templates. Over time, that task alone turned
out to be difficult and cumbersome for physicians. Also,
our further work proposing the representation of CPs as
differential sequences (Deja et al., 2015) revealed some
limitations. The patients were not initially clustered.
This led to a significant number of CPs that were hardly
interpretable.

Previously (Deja et al., 2017), we focused on mining
frequent episodes from temporal data and presented them
as CPs. The major limitation of that approach was
poor visualization of clinical pathways. The simple
graph proposed by Deja et al. (2017) was just the direct
presentation of frequent episodes. Furthermore, using the
frequent episodes approach, it was impossible to filter out
less frequent paths or events.

In addition to the above limitations of our previous
works, physicians requested to focus our modeling
attempts on a single-day therapy, which is a common
method used in medical practice (Davidson, 2015).
According to medical science, diabetic therapy is based on
the so-called “therapeutic day”, which is a plan specifying
a single day of medical examinations and interventions.
After properly setting up that single-day plan, physicians
use it repetitively.

To the best of our knowledge, there is no available
tool enabling the modeling of the “therapeutic day” at
the diabetes onset. At this stage the knowledge about
the patient health state, like insulin sensitivity, is limited
and therapy has to be established as soon as possible.The
absence of such a tool motivates the research presented in
this paper. We bridge the gap in the current state-of-the-art
by proposing a new approach to modeling the “therapeutic
day” of diabetic therapy. Also, we address the issues
related to the use of our previous approaches. We meet
the requirements stated by physicians asking to make
our model transparent and convenient to use in clinical
practice.

The modeling approach, which is the contribution of
this paper, consists of the following elements:

• a medical treatment graph, which is a model of the
“therapeutic day” of a juvenile patient;

• a data mining algorithm enabling the construction of
the MTG using raw medical data;

• a set of measures enabling the assessment of diverse
clinical pathways represented by the MTG.

Let us note that the application of our MTG brings
numerous advantages against competitive approaches.
First of all, it provides transparent visualization of
alternative medical pathways. Together with the certainty
coefficients assigned to the paths of the MTG, it is
possible to easily assess the consequences of diverse
medical therapies.

The remainder of this paper is organized in the
following way. First, in Section 2, we provide a survey
of the existing techniques used for the modeling of
clinical pathways. The medical problem related to the
therapy of diabetic children is described in Section 3.
Later, in Section 4, we give the reader a comprehensive
presentation of our contribution. Then, based on a
real-world case study, we illustrate in Section 5 the work
of our approach in practice. In Section 6, we compare our
MTG with the other most competitive approaches, i.e.,
those based on Bayesian networks and Markov decision
processes. In Section 7, we validate the MTG using
real medical data. Thus, we provide evidence for the
credibility of our approach. Section 8 concludes the paper.

2. Decision support systems for diabetic
therapy

We position our research in the area of decision support,
which is an established field of computer science. In
particular, we address the problem of planning sequential
actions supporting diabetic therapy (Bennett and Hauser,
2013). To solve that problem, we create an MTG that
models the decision process and thus supports physicians
in decision making. In the following, we make a review
of the existing, alternative decision support systems that
serve a similar task.

It is possible to distinguish two types of models of
diabetes, namely, non-disease-specific or disease-specific
(Bennett and Hauser, 2013). The former models focus on
the organizational or economic perspective of a patient’s
stay in the hospital, e.g., the cost of it, while the latter
cover medical therapy, i.e., making medical examinations
and administering drugs.

In this study, we consider a clinical, disease-specific
model focused on mining clinical pathways from raw
medical data. The targeted model is intended to
be used by physicians for the diagnosing, controlling,
monitoring of the progression, and planing the therapy
of diabetes. There are a plethora of diverse types of
models serving that purpose. Below, we compare their
main characteristics.

Let us first note that the models of diabetes are
evaluated qualitatively by physicians during their clinical
practice. Therefore, there are no established standards that
could be used for the quantitative evaluation of diabetic
models (ADA, 2020). However, based on the literature
review and the opinions of physicians, we consider the
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Table 1. Comparison of models.
Method Observations Decisions Dependencies

mathematical models variables variables mathematical operators
ontologies terms terms terms
fuzzy cognitive maps fuzzy sets fuzzy sets real-valued weights
process mining events terms graphs, operators, weights
templates events events terms
Bayesian network random variables random variables conditional probabilities
Markov decision process events terms probabilities of transitions
MTG events events probabilities of transitions

Table 2. Advantages and limitations of diabetic models.
Method Reliability Transparency Flexibility

mathematical models excellent poor poor
ontologies poor good excellent
fuzzy cognitive maps poor excellent poor
process mining good excellent good
templates good good excellent
Bayesian network good good good
Markov decision process good excellent good
MTG good excellent excellent

following three qualitative criteria that can be used for the
comparison of diabetic models.

• Reliability: this criterion assesses whether the model
applied represents well the physiological processes
governing the glucose–insulin interaction in the
human body. High reliability of the model means
it has been validated in clinical practice and can be
used by physicians for confident planning of insulin
therapy. Note, however, that in the case of diabetes
there is no perfect, fully reliable model of the disease.
This is because of the unique physiological traits of
each patient. This means that each model of diabetes
is approximate and must be used for the therapy
of a particular patient under careful supervision of
physicians.

• Transparency: this criterion enables physicians to
gain insight into the progression of the disease using
the model considered. If the model is transparent,
the physician can indicate the reasons that led to the
patient’s current state and predict the consequences
of administering a particular dose of insulin, all
without profound mathematical knowledge.

• Flexibility: due to the specificity of human
physiological reactions, each employed model of
diabetes should be adapted to a particular patient.
The flexibility of the model can be achieved by
its incremental learning using the data that has
been gathered during the initial phase of the given,
individual therapy.

Keeping the above criteria in mind, we compare in
Table 2 diverse models of diabetes.

Mathematical models rely on formulas expressing
the dependencies among diverse variables reflecting
physiological processes occurring in the human body. The
main one is the glucose–insulin interaction. Mathematical
models are considered very reliable. An example
model of that type is presented by De Gaetano et al.
(2008). Although crucial for modeling the progression of
diabetes, mathematical models are difficult to interpret by
physicians who are usually not familiar with mathematics.
The flexibility of mathematical models relies on proper
tuning of many parameters. A review of mathematical
models of diabetes is given by Palumbo et al. (2013).

An alternative to using mathematical models is to ask
experts to construct a diabetic ontology (Szwed, 2013). It
consists of concepts (nodes of the graph) and relationships
(arcs of the graph). Both concepts and arcs are linguistic,
medical terms. The main advantage of that approach is the
ease with which physicians can reuse knowledge gathered
this way. Ontological models might be treated as reliable
but quite approximate. That is because of the qualitative
terms used for modeling and the so-called semantic gap
between ontological terms and the data standing behind
them (separation of the given representation scheme from
raw data). Even after augmenting the designed ontology
by data-driven representations, e.g., fuzzy rules (Szwed,
2013), the obtained hybrid models still suffer from a
semantic gap. For that reason, the ontological approach
is more suitable to be applied for the construction
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of expert-based medical guidelines than for data-driven
models of diabetes.

Another approach to the modeling of diabetes is
fuzzy cognitive maps (FCMs) (Bourgani et al., 2013). In
that case, medical events are represented as fuzzy sets.
The dependencies among events are modeled as weighted
arcs. The real-valued weights measure the rate of a
specific causal effect occurring between concepts. When
confronted with the clinical practice of diabetic therapy,
the cumulative impact of causal concepts on an effect
concept used by FCMs turned out to be unsuitable for our
purpose. The issue is that the model does not properly
represent the relationship between the measurements of
glycemia and the following insulin injections. Also, the
iterative approach to the reasoning does not represent well
the actual temporal dependencies among medical events
occurring in diabetic therapy.

Another approach to modeling diabetes relies on
extracting information from process logs. The technique
is called process mining. Using that approach it is
possible to discover models relying on Petri nets (Weijters
et al., 2006). The issue is that the obtained model might
be heavily obscured by incidental, less representative
events. This limits the flexibility of the model. Process
mining was used to construct causal nets (Augusto et al.,
2016). The proposed approach extracts useful information
from the hospitalization database gathered during medical
therapy. On that basis, a graphical model of clinical
pathways was constructed. The limited possibility of
modeling complex relationships between patient states
underlying diabetic therapy is, from our point of view,
the main limitation of that approach. Another limitation
of process mining is the assumption that the training
data considered do not contain noise (Weijters et al.,
2006). A formal specification along with all the necessary
assumptions for using the process mining technique is
presented by Huang et al. (2012).

The approach based on Bayesian networks (BNs)
enables the probabilistic modeling of diabetes (Marini
et al., 2015). The BN approach assigns conditional
probability tables to the graph nodes, which are random
variables related to medical observations and decisions.
BNs are a very efficient tool for modeling uncertainties
embedded within CPs. Let us, however, note that the
interpretation of BNs might not be easy for physicians.
That is due to the necessity of interpreting conditional
probability tables assigned to the nodes of the network.
In Section 6 we make an in-depth comparison of the BN
approach with our MTG.

Another approach represents diabetic therapy in the
form of Markov models (Elghazel et al., 2007; Yang
et al., 2012; Bennett and Hauser, 2013; Zhang et al., 2015;
Mattila et al., 2016). In particular, the Markov decision
process (MDP) can be efficiently used to determine an
optimal therapy (policy) (Schaefer et al., 2005). Similarly

as for the BN, the approach requires gathering a large
amount of data (Huang et al., 2012). In addition,
Markov models are hard to be learned incrementally
(Elghazel et al., 2007). This means that the probabilities
of transitions between an MDP’s states have to be
recalculated using all available data, also those that have
arrived recently.

Another limitation of the MDP is the Markov
assumption that the state of the model at time t depends
only on the information available at time t−1. In Section 6
we compare our approach with Bayesian network and the
Markov decision methods.

It is also worth noting that the models of
diabetic therapy can be constructed using multi-criteria
optimization methods. The goal, in that case, is the
optimization of treatment and care protocols taking into
account non-disease-specific criteria like the cost of
treatment and others. For example, the optimization
of medical templates using an evolutionary algorithm
was proposed by Funkner et al. (2017). A minimax
optimization model was developed to generate optimal
input parameters for the developed model of CPs (Ozcan
et al., 2011). Also in that case, the proposed approach
was designed with the intention of optimizing the
non-disease-specific aspects of health care. Recently,
a mixed-integer linear programming-based approach for
day-level scheduling of CPs has been proposed (Schwarz
et al., 2019). The approach used a multi-criteria objective
function considering several hospital-related aspects;
however, also in that case, the proposed method targeted
mainly the optimization of health care management.

Let us also note that some works propose grouping
patients’ data aiming at improving the quality of the
obtained models. The approach proposed by Zhang
et al. (2015) is similar to ours; however, it clusters
patients’ sequences (temporal data). The first difference
of our approach with respect to the work of Zhang
et al. (2015) is that in our study we cluster patients
into cohorts using static data describing patient clinical
state at the submission. Using this type of clustering,
we obtain reduction of patients’ diversity within cohorts.
In addition, Zhang et al. (2015) present only the most
probable pathway to physicians. Using our MTG, it is
possible to observe deviations from the most probable
pathway the patient can potentially follow during medical
treatment.

A review of works devoted to modeling diabetes
is given by Bennett and Hauser (2013) or Aspland
et al. (2019). A comprehensive comparison of diverse
probabilistic models can be found in the work of Barber
(2012)
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Table 3. Static variables.
Feature Medical meaning

Age Age of the patient at the onset
Sex 0 (female) or 1 (male)
Weight Patient’s weight at onset
C-peptide Insulin secretion
CRP Certificate of inflammation
PH ACID based balance

3. Medical context of the computational
problem

As mentioned in Introduction, the problem we address in
this paper is supporting physicians in planning effective
insulin therapy at the onset. The objective of this
therapy is stabilization of the patient’s blood glucose
level (BGL) within an acceptable range, which is called
normoglycemia. The targeted stabilization should be
accomplished as soon as possible. This is the reason why
identification of the proper therapeutic procedure becomes
a challenge, both from medical and computational points
of view.

Let us first note that each diabetic clinical therapy,
independent of the patient considered, relies on a series of
insulin doses that should lead to keeping the BGL within
a normal range. The adjustment of these doses is the issue
that physicians face in clinical practice.

To assess the effectiveness of insulin injections
administered by physicians, the patient’s BGL is
measured several times a day. In this way, insulin
doses and glycemia measurements mold a sequence of
medical events that, in theory, should lead to long-term
normoglycemia.

The initial, first insulin dose the physician
administers is based on the patient’s energy requirements
(a number and content of meals) and the patient’s clinical
state evaluated upon admission to the hospital. Also, some
personal data about the patient are taken into account.
Those are the patient’s weight, age, and some other data
presented in Table 2. As those do not change over time,
following the medical literature (Marini et al., 2015), we
relate them to static variables characterizing each of the
patients considered in Table 3.

For this research, according to medical standards, we
define the notions of hypo-, hyper- and normoglycemia
(ADA, 2020). The ranges of the BGL characterizing
each of those notions are presented in Table 4. Note that
they are dependent on the pre- or post-meal period the
BGL was measured. We assigned numerical values to
the related medical terms. The mapping is presented in
Table 5.

Another issue the physician faces is related to the
standardization of insulin doses. The so-called pre-meal
insulin ratio is calculated as delivered insulin units per

100 kcal of the meal (a balanced diabetic diet is used
in the hospital). Moreover, the insulin pre-meal ratio
should be related to the patient’s weight (specifically 100
kg of the weight). This way, the pre-meal insulin ratio
is calculated using 100 kcal of the meal and 100 kg of the
body weight. The obtained value is rounded. For example,
when considering the before-breakfast period, the patient
(see Table 6) got 3.5 units of insulin per 240 kcal (i.e., 1.46
per 100 kcal). Since the patient’s weight was 23 kg, the
insulin ratio was calculated as 6.3 and rounded to 6 units
(based on 100 kg of weight and 100 kcal of the meal).

In Table 6 we give an example sequence of medical
events gathered for an anonymous patient. By I and G we
denoted (dynamic) variables related to insulin injections
and glycemia measurements, respectively.

4. Mining clinical pathways

The approach we propose in this paper consists of five
major stages.

1. First, we group patients into representative cohorts
(clusters). As explained in Section 3, we use static
variables for that purpose, i.e., those that do not
change their values over time. We follow here
the medical conviction that patients from the same
cohort are treated similarly, which is in rapport with
the common clinical practice (Zhang and Padman,
2016).

2. We define the notions of an event and a clinical
sequence of events. According to those definitions,
for each of the previously obtained clusters, we
prepare a set of clinical sequences.

3. We define the MTG as a graphical model
generalizing clinical sequences. At this stage,
we also calculate the values of specific measures
related to the MTG.

4. For each of the patients’ cohorts, we train a separate
MTG using the previously gathered data. For that
purpose, we provide a dedicated algorithm.

5. Finally, we use the trained MTG as a decision
support tool assisting the physician while planning
diabetic therapy of new patients.

In the following, we proceed to a detailed
explanation of our approach.

4.1. Grouping patients. Before grouping patients
into cohorts, the values of the static variables must be
normalized. This way, the influence of each variable on
the clustering process becomes the same. To accomplish
that, we use a simple min-max normalization that turned
out to be well-suited for the problem we address (García
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Table 4. Glycemic ranges and their clinical meaning.
Glycemia Clinical meaning
[mg/dl] before breakfast before other meals after meal

< 70 hypoglycemia hypoglycemia hypoglycemia
[70, 90] normoglycemia normoglycemia normoglycemia
(90, 100] mild-hyperglycemia normoglycemia normoglycemia
(100, 140) mild-hyperglycemia mild-hyperglycemia normoglycemia
[140, 200] mild-hyperglycemia mild-hyperglycemia mild-hyperglycemia
> 200 hyperglycemia hyperglycemia hyperglycemia

et al., 2015). The parameters, i.e., the minimum and
maximum values of each variable, are provided by
physicians.

After the normalization, we cluster the static data
using the fuzzy c-means method proposed by Dunn
(1973). For that purpose, we use the Euclidean distance
between data instances. The main advantage of using
fuzzy c-mean clustering is that the method calculates
for each data instance the degree to which it belongs to
each cluster. This means that, for each of the patients
considered, we obtain a vector of values which are
the degrees to which the patient belongs to the distinct
clusters. This vector is provided to physicians, who
approve the assignment of a patient to one of the cohorts.

4.2. Clinical events and sequences. Let us define a
medical event u ∈ U as a pair u = 〈Vi = v, τ〉, where
Vi ∈ V is a variable and v denotes the value that Vi takes
on at time τ . In other words, we say that an event u occurs
at time τ when the variable Vi obtains a certain value v
from its domain dom(Vi) at a particular time τ . The set U
is the universe of all possible events.

At this stage of research, we assume V = {G, I},
i.e., we consider only those variables related to the
measurements of the BGL (variable G) and insulin ratios
(variable I). The domain of G contains the discretized
values of the BGL provided in Table 5, i.e., dom(G) =
{1, 2, 3, 4}. The domain of I is the set of positive
integer values determined by the insulin ratio described
previously in Section 3.

Let us define a clinical sequence as s =
〈uτ1 , uτ2 , . . . , uτn〉, were τi is the real-time at which an
event occurs. The length of s depends on the period the
patient stays in the hospital. By S we denote the set of
all those sequences. The clinical sequences defined in
the aforementioned way serve as the source data for the
training of the MTG.

The next step of our modeling approach is related to
the time flow. Note that the patient’s state highly depends
on the time of meals. That, in turn, depends on a particular
patient. For that reason, as suggested by Hripcsak et al.
(2015), we decided to sequence time. However, in our
study, we do not sequence the entire period of therapy.

Table 5. Blood glucose level discretization.
Blood glucose level Discrete value

Hypoglycemia 1
Normoglycemia 2
Mild-hyperglycemia 3
Hyperglycemia 4

According to medical knowledge, we sequence time as
shown in Table 7, within a single therapeutic day of a
patient. This is in accordance with the discrete time
scale used by physicians for the planning of daily insulin
therapy.

As presented in Table 7, the patient’s therapeutic
day is partitioned concerning the predefined time intervals
which are related to the meals eaten by the patient. Note
that the time intervals may overlap, which is in accordance
with clinical practice. This way, instead of dealing
with the continuous-time flow, physicians plan therapy
according to a specific, discrete time scale.

To sequence time, we create the set of labels T =
{t1, t2, . . . , t11} and map them to the consecutive time
intervals provided by physicians. Table 7 illustrates the
created mapping. Thus, we construct a discrete time scale
with the time horizon limited to a single therapeutic day.
Furthermore, to map medical events to the discrete time
scale, we define a function t : RT→ T , where RT denotes
the domain of real-time. This means that each uτ that
occurs in real-time τ is mapped to a new, discrete time
scale as ut(τ).

As shown in Table 7, the events related to glucose
measurements and insulin injections may occur solely at
certain periods. In particular, all insulin injections occur
at meal periods, all glycemia measurements, in turn, may
be labeled only by ‘before meal’ or ‘after meal’ terms.
Note also that by introducing the discrete time scale, we
abstract not only from the continuous-time flow but also
from the particular day at which a medical event occurs.

4.3. Medical treatment graph. Let us define the
MTG as a directed acyclic graph MTG = (N,E, σ, ω),
where N is the set of nodes, E ⊆ N × N is the set of
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Table 6. Example of raw clinical data.
Time Description Value

7:55 G: glycemia measurement 139 mg/dl
8:00 I: insulin injection 3.5 units
8:05 Breakfast 240 kcal
10:55 G: glycemia measurement 189 mg/dl
11:00 I: insulin injection 2 units
11:05 Second breakfast 170 kcal
13:55 G: glycemia measurement 65 mg/dl
14:00 I: insulin injection 4 units
14:05 Lunch 380 kcal
16:55 G: glycemia measurement 71 mg/dl
17:00 I: insulin injection 4.5 units
17:05 Dinner 480 kcal
19:55 G: glycemia measurement 109 mg/dl
20:00 I: insulin injection 3 units
20:05 Supper 190 kcal
22:00 G: glycemia measurement 66 mg/dl

edges representing pairwise node-to-node dependencies.
Functions σ : N → [0, 1] and ω : E → [0, 1] assign
real-valued weights to each node and edge, respectively.
The semantics of the MTG are explained below.

Let us consider Ut ⊂ U as a subset of events that
occur at time t ∈ T (in the discrete time scale related
to the patient’s therapeutic day). We distinguish within
Ut the subset of those events Ntj ⊂ Ut determined by
a particular variable and its value. This means all u ∈
Ntj refer to the same variable G or I , assuming a certain
constant value of glucose or insulin, respectively.

We assume Ntj ∈ N is the node of the MTG, where
the index t refers to the time period of the daily therapy
and the index j refers to the unique pair of the given
variable and its value. This means that the set Ntj contains
similar events, i.e., those that occur at the same period
of the therapeutic day and in addition refer to the same
variable and value.

Let

σ(Ntj) =
card(Ntj)

card(Ut)

estimate the probability of an event from Ntj in the group
of events from Ut. The value of σ(Ntj) plays the role
of the weight of the node Ntj within the MTG. Let us
consider now the mutual dependencies between nodes.
Let us define the edge of the MTG as an ordered pair
Etjk = 〈Ntj , N(t+1)k〉, where Ntj , N(t+1)k are the nodes
related to the sets of events occurring at time t and t + 1,
respectively. Note that, for the sake of clarity, in the case
of edges, we use time as a superscript.

Let St ⊂ S be the set of the shortest possible
subsequences consisting of only two consecutive events
ut, ut+1. Let us distinguish from St those sequences
S′
t that match the given pair of neighboring nodes of

Table 7. Periods of daily therapy.
T Description Period Event

t1 before breakfast [6:00–10:00] G
t2 breakfast [6:00–10:00] I
t3 after breakfast [9:00–12:00] G
t4 second breakfast [9:00–12:00] I
t5 after second breakfast [11:00–15:00] G
t6 lunch [11:00–15:00] I
t7 after lunch [14:00–17:00] G
t8 dinner [14:00–17:00] I
t9 after dinner [16:00–20:00] G
t10 supper [16:00–20:00] I
t11 after supper [19:00–23:00] G

the MTG. We define that set as S′
t = {ut, ut+1}|ut ∈

Ntj , ut+1 ∈ N(t+1)k.
Let

ω(Etjk) =
card(S′

t)

card(St)

estimate the probability of the consecutive events
occurring within the clinical sequences. The function
assigns the weights of the edges Etjk of the MTG.

To extend the interpretation of alternative pathways
within the MTG, we introduce a specific certainty
coefficient. For an edge of the MTG, we define

cer(Etjk) =
ω(Etjk)

σ(Ntj)
.

Note that the certainty coefficient describes the
distribution of events along the edges starting at the
given node.

Let us assume p = [p1, p2, . . . , pn] is any path within
the MTG, where pi is the node selected from the MTG
and pi ∈ N , 1 < n ≤ 11. In this case, the index i points
the place of the node within the path. Note that p is a
clinical pathway that conforms to the definitions provided
in Section 1.

We scale up ω aiming at the evaluation of any
pathway within the MTG, i.e.,

ω(p) = σ(p1) ·
n−1∏

i=1

ω〈pi, pi+1〉
σ(pi)

= σ(p1) · cer(p1) · . . . · cer(pn)

= σ(p1) · cer([p1, . . . , pn]).

We scale up also the certainty coefficient for the
pathway of any length as cer(p) =

∏n−1
i=1 cer(pi, pi+1).

By using functions ω(p) and cer(p), physicians can
assess the credibility of any pathway within the MTG.
They can also filter from the MTG those paths less
likely to occur, i.e., those related to the exceptional
medical cases. Assuming ωmin is a threshold given by
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physicians, it is possible to produce a sub-graph MTG’ =
(N ′, E′, σ, ω) for which ω(p) > ωmin for any p.

To verify this idea, we performed experiments
generating different MTGs for different values of ωmin.
The resulting MTGs were provided to physicians, who
selected the most useful one for further application. This
way, it was possible to adjust the most suitable value of
ωmin for each of the clusters considered.

Note also that it is possible to transform the MTG to
a single pathway, representing the most likely course of
diabetic therapy. For that pathway, we have pmax = arg
maxp∈P ω(p).

4.4. Constructing the MTG. To construct the MTG
from data, we propose Algorithm 1. We assume that the
initial MTG is empty. This means that the content of MTG
concepts is gathered on the fly.

The algorithm searches through the list of sequences
of medical events. Every event in a sequence is the
candidate for a node in the graph, and each pair of events
is a candidate for an edge of the graph. They will become
a node and an edge if they are not already registered in the
graph.

First, in Lines 2 and 3, the algorithm initiates the
collections N and E, which are used for storing nodes
and edges of the MTG, respectively.

Later on, the algorithm iterates through the clinical
sequences (the loop starts in Line 4) and events within
them (the loop starts in Line 5). The clinical sequences
are given as an input to the algorithm in the form of the
array S. The first index of that array, denoted by j, refers
to the sequence considered, and the second one, denoted
as i, indicates the i-th event within the j-th sequence and
refers to time τ . The sequencing of time occurs in Line 6.

Then, the algorithm searches through the collections
N and E, checking whether they contain a particular
event (Line 12) and edge (Line 16) detected in the j-th
sequence. That loop starts in Line 11.

If the node or edge is found within the MTG, the
algorithm increments the related counters NCount and
ECount (Lines 14 and 18). Otherwise, the node or the
edge is added to the corresponding collections (Lines 22
and 26).

Finally, in Lines 31–36, the algorithm iterates
through the constructed MTG to calculate ‘cer’ and ω.

Let us note that the algorithm has a linear
computational complexity concerning both the number of
the patient’s sequences and the number of events within
the sequence.

4.5. Applying the MTG in clinical practice. Below,
we provide an instruction facilitating the use of our MTG
in clinical practice.

Algorithm 1. Constructing the MTG.
Require: S—set of clinical sequences, w—number of

clinical sequences
1: Function GraphBuild(S, w)
2: N = null; NCount← 0; {a collection of nodes}
3: E = null; ECount← 0; {a collection of edges}
4: l = 1;
5: for j = 1 to w do {for each sequence}
6: for i = 1 to length(S[j]) do {for each event}
7: l = l+(i mod card(T ));{determine the offset}

8: t = t(τi);
9: node = S[l][t]; {create a node}

10: edge = 〈node, S[l][t+ 1]〉 ; {create an edge}
11: Nexists = false; {lacking node}
12: Eexists = false; {lacking edge}
13: for k = 1 to l do {for the added nodes}
14: if N [k][t] == node then
15: {Is the node added?}
16: NCount[k][t]++; Nexists = true; {a number

of nodes}
17: end if
18: if E[k][t] == edge then
19: {Is the edge added?}
20: ECount[k][t]++; Eexists = true; {a number

of edges}
21: end if
22: end for
23: if not Nexists then
24: N [l][t] = node; NCount[l][t] = 1;
25: {adding the node}
26: end if
27: if not Eexists then
28: E[l][t] = edge; ECount[l][t] = 1;
29: {adding the edge}
30: end if
31: end for
32: end for
33: for j = 1 to l do
34: for i = 1 to card(T )− 1 do

35: σ[j][i] = NCount[j][i]/
l∑

k=1

(NCount[k][i])

36: ω[j][i] = ECount[j][i]/
l∑

k=1

(ECount[k][i])

37: cer[j][i] = ECount[j][i]/NCount[j][i]
38: end for
39: end for
40:

41: return MTG

1. After admission to the hospital, the patient should
be assigned to one of the cohorts considered.
Let us remember here our assumption that the
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Table 8. Clustering validity check.
No. of clusters 3 4 5 6 7 8 9

CH index 45.97 45.30 45.72 45.48 52.83 50.21 49.97
XB index 0.76 0.65 0.81 0.72 0.62 0.68 0.90

Table 9. Cluster centroids (values after denormalization).
# Patients Weight Age Sex C-peptide CRP PH Within-cluster variation

1 16 56.3 15.4 0 0 0.02 0 0.44
2 6 45.7 13.9 1 1 0.01 0 0.18
3 23 24.4 6.7 0 0 0.01 0 0.28
4 27 29.7 8.7 1 0 0.01 0 0.24
5 8 48.7 12.6 0 1 0.02 0 0.39
6 15 40.4 11.1 0 0 0.02 1 0.29
7 7 25.2 7.6 1 0 0.01 1 0.18

patient belongs, to a certain degree, to each of the
constructed cohorts, as explained in Section 4.1.
For that purpose, the related uncertainty degrees
calculated by the fuzzy c-means method are shown to
physicians. Based on that and the medical expertise,
the physician assesses which cluster is the most
representative for a given patient and makes an
ultimate assignment.

2. Now the MTG relevant to the patient’s cluster is
presented to the physician. Depending on the actual
state of the patient, the physician may filter from
the MTG those paths less likely to occur, forming
in this way a sub-graph. The filtering is usually
performed several times, allowing the physician to
analyze alternative pathways.

3. The physician interprets the obtained MTGs and on
that basis constructs the plan of therapy.

4. As therapy proceeds, the physician confronts the
current state of the patient with the related part of
the MTG. On that basis, the physician adjusts the
diabetic therapy.

5. Case study

Let us first note that, due to the confidentiality of the
personal information conveyed by medical data, hospitals
are not allowed to make them publicly available. This
is especially valid in the case of diabetic children. For
that reason, we were restricted to, for validation purposes,
the data of 102 patients gathered at a single hospital—the
Diabetes Center located in Katowice, Poland.

The statistical properties of the static data are shown
in Table 10. Let us note that despite a single child
much older and heavier than the others, we did not detect
outliers in data. For this kind of data, centroid-based
clustering is usually a good choice.

Table 10. Data statistics.
Min Max Mean Stdev

Weight 10.0 85.9 36.06 16.96
Age 1.1 17.7 9.81 4.34
Sex 0 1 0.40 0.49
C-peptide 0 1 0.16 0.37
CRP 0 1 0.05 0.22
PH 0 1 0.23 0.42

In accordance with the presented approach, the
available data were normalized and partitioned using the
fuzzy c-means clustering algorithm. The number of
clusters was chosen using the Calinski–Harabasz (CH)
criteria (Calinski and Harabasz, 1974). Also, a Xie–Bieni
index was considered (Xie and Beni, 1991). The highest
value of the CH index (and the lowest of XB) was reached
for 7 clusters, and so this number of clusters was chosen
for our purposes (see Table 8 for details). The cluster
centroids and within-cluster variation we obtained are
presented in Table 9. The stability of the clustering has
been verified by changing the random initialization over
several runs. We repeated the clustering 10 times with
different random initialization of the cluster centers. The
Rand index, calculated as the number of pairs of patients
distributed in the same clusters or always in different
clusters to the total number of pairs, was 0.97. The
stability (and quality) of the clustering was satisfactory.

For each cluster, the historical data related to the
BGL and pre-meal insulin dosages were discretized
and converted into clinical sequences, as explained in
Section 4.2. Then we used the proposed Algorithm 1 to
construct MTGs.

Due to space limitations, we present in Fig. 1
only a sub-graph for the first cluster. The cohort
here can be characterized as mainly female, completely
insulin-dependent, without diabetic ketoacidosis, older,



116 R. Deja et al.

G=3 I=4 ω=0.14
cer=0.52

ω=0.12
cer=0.44

first breakfast second breakfast
BGL

t1

Insulin
t2

I=5

ω=0.20
cer=0.24

G=3

G=4

I=2

σ=0.27

σ=0.22

ω=0.10
cer=0.22

σ=0.45

σ=0.37

G=2

σ=0.29σ=0.53

BGL
t3

BGL
t5

Insulin
t4

ω=0.24
cer=0.29

σ=0.85

ω=0.12
cer=0.55

I=2

σ=0.57

ω=0.24
cer=0.83 G=2

σ=0.40

ω=0.28
cer=0.49

G=3

σ=0.32

ω=0.14
cer=0.25

BGL
t7

Insulin
t6

lunch

ω=0.09
cer=0.17

G=2 ω=0.04
cer=0.40

σ=0.11

ω=0.16
cer=0.29

G=3

σ=0.52

ω=0.09
cer=0.17

ω=0.40
cer=0.78

I=2

σ=0.26

G=2

σ=0.13

ω=0.22
cer=0.26

ω=0.07
cer=0.25

ω=0.13
cer=1

I=5

σ=0.25

ω=0.16
cer=0.43

ω=0.16
cer=0.64

I=4

σ=0.28

G=1

σ=0.27

ω=0.03
cer=0.10

ω=0.09
cer=0.32

ω=0.14
cer=0.25

Fig. 1. Example of a medical treatment graph.
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Fig. 2. MTG updated for 〈G = 3, t1〉.

and heavier than the others.

The pathways were filtered out using the threshold
ωmin = 0.00015. As explained previously, the value
of that parameter was suggested by physicians after
performing several trials. For the sake of clarity, we
simplified in Fig. 1 the notation, which is self-explanatory.

Following the first path in the graph, we interpret
it in the following way. A group of 85% of patients
from the first cluster elevated mild hyperglycemia in the
morning 〈G = 3, t1〉, whereas 29% of them within the
first breakfast were administered around 4 units of insulin
per 100 kcal per 100 kg of body weight. On the other
hand, 40% of patients with normoglycemia in the morning

〈G = 2, t1〉 got 2 pre-meal insulin units for the first
breakfast. Around 3 hours after the first breakfast 〈G =
4, t3〉, an excess of the BGL was observed in around 37%
of the patients, and 32% of them were administered 4 units
of insulin before 〈I = 4, t2〉.

Some conclusions drawn from the graph have
an obvious medical explanation. When starting with
normoglycemia in the morning, a lower insulin dose is
required for the first breakfast and it is easier to keep the
proper BGL after the meal (see events in t1, t2, t3). It
can be noted that insulin doses vary, especially during the
first breakfast, and this is mainly because of the different
BGL before meals. Also, the body response differs even
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after applying the same insulin dose 〈I = 2, t6〉. It is also
worth noting that glycemia is usually above normal before
and after the first breakfast.

In the next stage of our experiments, we considered
only the pathways exhibiting the highest value of the ω
coefficient. It should be noted (Table 11) that the daily
treatment path usually starts with mild-hyperglycemia but
at the end of the day it decreases to the normal level.
Therefore, the insulin dose is much higher in the morning
than in the evening. Depending on the cluster, we observe
changes in insulin doses during the day. For example,
for the second cluster, the BGL remains approximately
normal the whole day.

In the last column of Table 11, the values of ω
calculated for selected pathways are quite small. This was,
however, expected by physicians because of the numerous
fluctuations of the BGL that usually occur during diabetic
therapy.

As the physician proceeds with the therapy of a
particular patient, our MTG can be shortened (cut off)
using the currently recognized patient state. More
precisely, let us consider the node Ntj and the set of
nodes N(t+1)∗ connected with it by the set of edges
Etj∗. Assuming that the event represented by the node
Ntj already occurred, the graph can be shortened to
present only the consecutive paths, i.e., coming out from
Ntj . After shortening the graph, the σ coefficients for
consecutive nodes were recalculated as σ(N(t+1)k) =
ω(Etjk). Consequently,ω of each edgeE(t+1)jk had to be
adjusted proportionally to the σ distribution. The values
of the ‘cer’ coefficient obviously remain unchanged.

To give an example, after the mild-hyperglycemia
observed before the first breakfast 〈G = 3, t1〉, the MTG
was accordingly updated. That part of the MTG is shown
in Fig. 2. Please note that the values of σ and ω in the
figure are rounded to the hundredth fractional part, and the
cer coefficient has been calculated before rounding (and is
the same as before shortening). Thanks to the performed
update, the MTG was simplified, enabling physicians to
focus their attention on therapy following the event that
already occurred.

6. Comparative study

In this section, we analyze differences among the
three most competitive approaches to modeling medical
pathways, namely, our MTG, Bayesian networks (BNs),
and Markov decision process (MDPs). For that purpose,
we used data gathered for the first cluster of our patients.
For the sake of readability of the comparison, we
produced all three models for the first three time steps
t1, t2, t3 of the therapeutic day corresponding to the
first breakfast period, namely a before breakfast BGL,
before-breakfast insulin injection and after-breakfast
BGL.
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Fig. 3. Example MTG.

Fig. 4. Example Bayesian network.

The produced MTG is presented in Fig. 3. For
the sake of clarity, we consider at the time t1 only a
single node that refers to the most probable amount of
BGL measured at that time. Also, for t2, we depicted
only a single, most promising consecutive node related
to the injection of four units of insulin. Later, at time
t3, we consider all possible consecutive nodes referring
to the alternative values of G. The σ coefficient assigned
to nodes gives the physician explicit information on the
probability of the related event. In turn, the values ω and
‘cer’ enable us to evaluate the likelihood of transitions
between events that occurred within the therapies of
similar (with respect to their static data) patients. It
becomes clear, by looking at the MTG, that physicians are
able to identify not only a single pathway best supported
by data, but also other pathways, alternative in terms of
their probabilities of occurrence.

An alternative to using the MTG is the application of
the Bayesian network, presented in Fig. 4. In this case,
variables G and I are assigned to the nodes of the graph,
so it is not possible to differentiate events as nodes of the
graph. The probability distribution tables corresponding
to nodes are depicted below them. As can be noted,
the Bayesian network contains similar information as the
MTG. The main difference between both approaches lies
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Table 11. Expected pathways (# is the cluster number).
# Pathway ω(p)

1 G = 3I = 4G = 3I = 2G = 2I = 2G = 2I = 2G = 1I = 1G = 2 0.0015
2 G = 2I = 2G = 2I = 2G = 2I = 2G = 2I = 2G = 1I = 1G = 2 0.0018
3 G = 3I = 6G = 3I = 2G = 2I = 2G = 1I = 1G = 1I = 1G = 2 0.0002
4 G = 3I = 6G = 3I = 6G = 3I = 6G = 1I = 1G = 1I = 1G = 2 0.0001
5 G = 3I = 6G = 3I = 6G = 3I = 6G = 3I = 6G = 1I = 1G = 2 0.0011
6 G = 3I = 6G = 4I = 6G = 4I = 6G = 3I = 5G = 1I = 1G = 2 0.0001
7 G = 3I = 6G = 2I = 4G = 2I = 2G = 2I = 2G = 1I = 1G = 2 0.0005

G=3

G=4

G=1

0.44

0.04

0.52I=4

I=4

I=4

U=?

U=?

U=?

Fig. 5. Example Markov decision process.

in better transparency of our MTG, which can be easily
interpreted by physicians. The distribution of events is
directly visible in MTG. Furthermore, interpreting paths
of the MTG as the clinical pathways allows physicians
to easily adjust the current therapy as its different
alternatives are clearly shown within the MTG.

In Fig. 5 we show a model of the Markov decision
process representing the discussed part of the therapeutic
day. As can be noted, the MDP deals with state
nodes and decision nodes that relate to the BGL and
insulin injections, respectively. The edges of the MDP
model are marked by the probabilities of the related
state-to-state transitions. Note also that the MDP contains
a loop, i.e., it is not an acyclic graph as the MTG and
the BN are. The MDP aims at finding decisions that
maximize the expectation of some accumulative reward
(utility). Therefore, the MDP requires defining a utility
function that cannot be defined in the case of diabetic
therapy. Since the patient’s state is evaluated subjectively
by physicians considering a number of diverse medical
factors, we are not able to calculate the rewards required
to be given for the MDP. Using a distance between
normoglycemia and the current BGL could be considered
a simplified proxy for utility. However, this would not
fully reflect the long-term oriented deviation of the BGL.
For the above reasons, the unknown values of the utility
function are denoted in Fig. 5 by a question mark.

Table 12. Mean value of κ for 5 learn and test trials.
Cluster 1 2 3 4 5 6 7

κ 5.1 3.8 4.1 3.3 3.3 4.3 3.0

7. Validation

As mentioned in the literature review, there is no
established measure that could be used for quantitative
evaluation and comparison of different models of medical
pathways.

However, specifically, for the validation of our MTG,
we designed a benchmarking procedure based on the
cross-validation technique. We randomly partitioned all
available 102 clinical sequences into the training set
containing 80% of them and the testing set containing the
rest of them. For the training set, we produced 7 clusters
(as was previously chosen) and the corresponding MTGs.
To eliminate the noise (exceptional medical situations)
involved in data, we filtered the obtained MTGs using
ωmin = 0.000006. This parameter was thoroughly
adjusted in cooperation with physicians.

For validation purposes, we define a therapy
matching coefficient

κ = avgs′∈Sc length(s′),

where Sc is the set of patients’ sequences from the
testing group assigned to cluster c. The higher value of
κ indicates that a longer clinical sequence matches any
pathway within the MTG.

For the patients from the testing set, we calculated
κ. The results of the experiments performed for each of
the clusters are presented in Table 12. We underline that
the obtained results relate only to the longest continuous
clinical sequences. From that perspective, the 3–5 steps
ahead of medical therapy supported by the MTG can be
interpreted as a good result.

Finally, we asked our physician for qualitative
evaluation of the proposed approach. The initial
classification of a new anonymous patient into one of the
existing clusters was straightforward. Then, the MTG (see
Fig. 1) of the first cluster was presented to the physician.
As the starting point of therapy, the physician proposed
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a daily insulin dose and the doses of pre-meal insulin.
Concerning the example patient, the physician estimated,
on the basis of the MTG that the daily insulin ratio is ca
10 units per 100 kcal of a meal and 100 kg of patient
weight. The physician initially chose a higher dose, taking
into account mild-hyperglycemia in the morning and the
possibility to adjust the dose later.

Note that insulin requirements often decrease during
therapy, and the patient clinical state is changing over
time. The patient finally finished the day with the
following clinical sequence: G = 3I = 4G = 4I =
2G = 2I = 2G = 3I = 2G = 3I = 1G =
1. Hyperglycemia after the first breakfast was observed
despite a relatively high rate of the insulin dose and
hypoglycemia in the evening (despite a relatively low rate
of insulin dose). According to the MTG, normoglycemia
after the first breakfast occurred along normoglycemia in
the morning and a relatively low insulin ratio. At this
stage of therapy, the physician decided not to change
the treatment and insulin dose distribution. The obtained
MTG reveals that the decrease in the BGL after the first
breakfast can be achieved without increasing the insulin
dose (see Fig. 1). Also, decreasing the already very low
insulin dose before the supper is not recommended. Later
on, the following sequence was observed: G = 3I =
4G = 3I = 2G = 1I = 2G = 1I = 2G = 2I =
1G = 2, and the glucose balance was improved. It means
that the MTG helped the physician to decide on keeping
insulin doses unchanged.

The next day, because of the observed
normoglycemia in the morning, the physician decided
to reduce the insulin dose for the first breakfast, as the
MTG suggested. The patient, however, finished the day
with the following sequence: G = 2I = 2G = 4I =
2G = 2I = 2G = 2I = 2G = 1I = 1G = 1 (so again
with hyperglycemia after the first breakfast). After two
subsequent days of the therapy, the patient ended up with
the following sequence: G = 2I = 4G = 3I = 2G =
1I = 2G = 2I = 2G = 2I = 2G = 2, which was only
partially covered by the MTG. Therefore, the MTG was
helpful only to some degree, namely, in those parts that
matched the occurred sequence.

The major conclusions coming from the above
validation are the following:

• The proposed approach supports the initial
classification of patients to appropriate groups.
This information helps to compare the patient’s state
with the other patients, and thus makes the planning
of the patient’s initial therapy substantially easier.

• The MTG allows physicians to follow and adapt
medical decisions for each insulin application.

• The physician found the possibility of visualizing the
consequences of therapy changes, e.g., of reducing

the insulin dose for a given meal, very useful. Also,
the distribution of insulin doses over the therapeutic
day can be adjusted easier when using the MTG.

8. Conclusions

In this paper, we proposed a new approach to modeling
CPs of diabetic therapy. Our method proposes abstracting
from raw medical data at diverse levels. First, it introduces
a symbolic time scale aiming at the representation of the
typical therapeutic day. Second, our approach generalizes
groups of similar medical events as the nodes of the
proposed medical treatment graph. Finally, by counting
events that co-occur, the proposed method creates the
edges of the MTG. Later on, those edges can be filtered,
enabling further abstraction from the noise involved in
data. By the proposed abstractions, we developed our
MTG as a powerful tool used by physicians in their
clinical practice. Let us also mention some limitations
of our approach. Firstly our MTG concerns only
the pathways related to daily medical treatment. The
adaptation to night therapy, during which the patients
consume no food, requires further investigation. We
also must admit that, due to its data-driven nature, our
method can be deemed less reliable than the mathematical
models known from the literature. We consider two
possible directions for further research. The first one is
the modeling of pathways using more data, especially
those that can be retrieved from the continuous glucose
monitoring system. Modeling pathways leading to
extreme hypo-and hyperglycemia is another problem we
would like to address.
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