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Real life data often suffer from non-informative objects—outliers. These are objects that are not typical in a dataset and
can significantly decline the efficacy of fuzzy models. In the paper we analyse neuro-fuzzy systems robust to outliers in
classification and regression tasks. We use the fuzzy c-ordered means (FCOM) clustering algorithm for scatter domain
partition to identify premises of fuzzy rules. The clustering algorithm elaborates typicality of each object. Data items with
low typicalities are removed from further analysis. The paper is accompanied by experiments that show the efficacy of our
modified neuro-fuzzy system to identify fuzzy models robust to high ratios of outliers.
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1. Introduction

A crucial feature of machine learning techniques is the
ability to elaborate answers to questions unseen before.
In order to answer first-time questions, an artificial
intelligence method creates an internal representation of
knowledge. Train data are used to create an internal
representation of knowledge that it used to formulate
answers to unseen (test) cases.

There are many artificial intelligence techniques.
One of them are neuro-fuzzy systems. They elaborate
a very convenient representation of knowledge: a set of
fuzzy rules. Elaborated rules have intelligible form—they
can be easily read by humans. A reverse approach is
also possible: rules formulated by humans can be easily
incorporated into a fuzzy rule base (Siminski, 2014).
Rules proposed by humans in linguistic terms can be
translated from the “human” to the “computer” language
with application of fuzzy terms (Leski and Kotas, 2018).

Fuzzy set theory has twofold effect in neuro-fuzzy
systems: (i) it transforms human terms into computer
entities and (ii) it can better handle intrinsic imprecision
of data (Sholla et al., 2020; Grzegorzewski et al., 2020;
Piegat and Dobryakova, 2020). Lotfi Zadeh claims that
the more complicated the model, the more suitable the
fuzzy approach (Zadeh, 1973). Interpretability of a fuzzy

model (a set of fuzzy rules) is an important feature
of neuro-fuzzy systems extensively investigated recently
(Riid, 2002; Cpałka et al., 2014; Słowik et al., 2020;
Leski, 2015; Alcalá et al., 2006; Alonso and Magdalena,
2011; Evsukoff et al., 2009; Bartczuk et al., 2016; Otte,
2013).

Creation of a fuzzy rule base is commonly run in two
steps: (i) identification of the model structure (the number
of rules, attributes used, etc.) and (ii) identification of
parameter values. The first step has a significant impact
on the quality of an elaborated model. There are three
common techniques: grid partition, scatter partition, and
hierarchical partition of the input domain. Grid partition is
the oldest approach and has many drawbacks, of which the
curse of dimensionality is the most severe one (Matthews
et al., 2013). This technique was used in the first
neuro-fuzzy system ANFIS (Jang, 1993). Scatter partition
is the most popular approach (Siminski, 2015; 2017c).
It is based on the clustering of the input domain. Its
main drawback is the necessity of providing a number of
rules. The third approach (hierarchical partition) avoids
drawbacks and takes advantages of both techniques above,
but suffers from longer computation times (Jakubek and
Keuth, 2006; Siminski, 2008; 2009; 2010).

An outlier is a commonly used term for a
non-informative object that is not typical (with very
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uncommon values of attributes). Outliers are sometimes
called outstanding data. For informative data (typical) we
use term inlier in this paper. Many techniques have been
proposed for the clustering of data with outliers (Jiang and
Yin, 2019; Jiang et al., 2018). The main approaches are
preprocessing (e.g., 2σ-rule, 3σ-rule (Lehmann, 2013)),
modification of the objective function in clustering (e.g.,
possibilistic clustering (Krishnapuram and Keller, 1993)),
application of special metrics and quasi-norms (Hathaway
et al., 2000), a special cluster for outliers (Dave and
Krishnapuram, 1997), repulsive clusters (Timm et al.,
2004), subtractive clustering (Yang et al., 2009), kernel
density clustering (Latecki et al., 2007; Tang and He,
2017; Geng et al., 2018), manifold learning (Olson
et al., 2018), the data ordering technique (Yager, 1988)
and typicalities (Leski and Kotas, 2015; Leski, 2014;
Siminski, 2020).

Identification of fuzzy rules is a crucial part in
elaboration of a fuzzy model (a fuzzy rule base), and
clustering is the most common technique of extraction
of rule premises. This is why we focus on application
of a clustering algorithm robust to outliers to construct a
neuro-fuzzy system that can handle a wide range of outlier
ratios in data sets.

2. Fuzzy c-ordered means clustering
algorithm

The fuzzy c-ordered means (FCOM) clustering algorithm
(Leski, 2014) addresses the vulnerability of the FCM
algorithm (Dunn, 1973) to outliers and noise. The FCOM
algorithm follows the Pickard iteration pattern used by
FCM. It introduces two techniques to handle outliers:
(i) modification of distance metrics and (ii) data ordering.

Modification of distance metrics. The Euclidean
distance is a commonly used metric in clustering
algorithms. Unfortunately, it is very vulnerable to outliers.
The FCOM algorithm modifies the Euclidean distance
with a loss function. The distance d between two items
x1 and x2 is calculated with

d(x1, x2) = dEu(x1, x2) · h (|x1 − x2|) , (1)

where dEu is a Euclidean distance and h : R → R
+ ∪{0}

is a loss function defined in various ways (Table 1) (Leski,
2014). The idea of application of loss functions aims at
reducing the influence of distant objects on the location
of clusters. In the Euclidean metric, the distance is
squared and outliers may have a significant but unjustified
impact on the clustering procedure. Application of loss
functions may reduce the impact of outliers (Kłopotek
et al., 2020). Unfortunately, there is no theoretical
basis on how to choose the optimal function. Thus,
some preliminary experiments have to be run to find the

best function. Some research suggests logarithmic and
linear-logarithmic functions are a good choice (D’Urso
and Leski, 2020; Siminski, 2017a).

Data ordering. The FCOM clustering algorithm applies
an ordering technique. It orders all objects in each cluster
by their distances from cluster centres. This is applied
for each attribute separately. The closest object with
respect to the d-th attribute is labelled with kd = 1, the
most distant with kd = X (where X is the number of
objects). The label k is used to elaborate typicality of
the objects in question with regard to the d-th attributes
and the c-th clusters. We use the sigmoidally ordered
weighted averaging function (SOWA) (Leski, 2014) of
ordering number k,

β(k) =
1

1 + exp
(
2.944
aX (k − cX)

) . (8)

The k-th object (where k = cX) has typicality 0.5. The
value 2.944 in (8) is chosen so that for a · 100% of objects
the function has values greater than 0.95, and for a ·100%
the values are less than 0.05. The steepness of the function
depends on the parameter a. The function is presented in
Fig. 1 for X = 100 and a = 0.2, c = 0.5 (Siminski,
2017a). It is possible to use other functions, for instance,
the piecewise linear OWA (PLOWA) function (Siminski,
2017a).

Typicality βcid of the d-th attribute (descriptor) of
the i-th object in the c-th cluster is elaborated for each
attribute separately. We use here the ‘a chain is only as
strong as its weakest link’ approach: typicality βci of the
i-th object in the c-th cluster with regard to all attributes
is no greater than the lowest typicality elaborated for any
attribute. We model this approach with a t-norm (�):

βci = βci1 � βci2 � . . . � βciD. (9)
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Fig. 1. SOWA weighting function (for X = 100 with a = 0.2
and c = 0.5. For a ·100% (here: 20%) of data the values
of the SOWA function are greater (resp. less) than 0.95
(resp. 0.05).
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Table 1. Examples of loss functions.
Name of loss function Formula

absolute (linear) h(x) =

{
0, x = 0

|x|−1, x �= 0
(2)

Huber (with parameter δ > 0) h(x) =

{
δ−2, x = 0

(δ|x|)−1, x �= 0
(3)

sigmoidal (with parameters α, β > 0) h(x) =

{
0, x = 0

x−2
[
1 + e(−α(|x|−β)

]−1
, x �= 0

(4)

sigmoidal-linear (with parameters α, β > 0) h(x) =

{
0, x = 0

|x|−1
[
1 + e−α(|x|−β)

]−1
, x �= 0

(5)

logarithmic h(e) =

{
0, x = 0
log(1+x2)

x2 , x �= 0
(6)

logarithmic-linear h(e) =

{
0, x = 0
log(1+x2)

|x| , x �= 0
(7)

An object may be very typical for some cluster and
atypical for others. This is why for the global typicality
ti of the i-th object we use an s-norm (�) operator,

ti = β1i � β2i � . . . � βCi. (10)

In our experiments, we use the product t-norm and the
maximum (∨) s-norm. Thus, the global typicality can be
expressed as

ti =

C∨

c=1

D∏

d=1

βcid, (11)

where C is the number of clusters and D is the number of
attributes.

3. Neuro-fuzzy systems

In our experiments, we use TSK (Takagi and Sugeno,
1985; Sugeno and Kang, 1988) and ANNBFIS (Czogała
and Łęski, 2000) neuro-fuzzy systems. Here we only
highlight the main features of the systems. For details,
please see the references mentioned above.

3.1. Architecture of the system. The neuro-fuzzy
systems we use in our research are composed of two
crucial components: the fuzzy rule base and the fuzzy
inference engine. They take a vector of values (attributes)
x = [x1, x2, . . . , xD]T ∈ R

D as an input and elaborate
one value y ∈ R as an output. Each rule l in a fuzzy rule
base L is a fuzzy IF-THEN rule:

l : IF x is a THEN y is b, (12)

where a and b are linguistic descriptions of inputs and
output, respectively.

In our research we use two architectures of
neuro-fuzzy systems: TSK and ANNBFIS. They have
the same form of rule premises, but differ in the form of
consequences and evaluation of rule values.

3.1.1. Premises of fuzzy rules. The premise of the l-th
fuzzy rule is modelled with Gaussian fuzzy setsAd in each
dimension d. For the d-th dimension (attribute), a fuzzy
set is defined with membership function u:

uAd
(xd) = exp

(

− (xd − vld)
2

2s2ld

)

, (13)

where vld is the core value for the d-th attribute and
sld is the fuzziness of the attribute. We use the
Gaussian membership function because it is differentiable
in its whole domain. The memberships of all attributes
(descriptors) are aggregated in order to elaborate the
membership uA of an object to the premise of the rule.
A T-norm � is used as an aggregation operator (we use the
product T-norm):

uA = uA1 � uA2 � . . . � uAD =

D∏

d=1

uAd
. (14)

The next step is a cooperation of ruzzy rules.
The formulae (13) and (14) yield the activation (firing
strength) F of the premise of l-th rule for object x:

Fl(x) = ulA(x) =

D∏

d=1

exp

[

− (xd − vld)
2

2s2ld

]

, (15)

which is a real number for any x: F (x) ∈ (0, 1].
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3.1.2. Consequences of fuzzy rules in the TSK system.
The term b, in the formula (12), describing the l-th rule’s
consequence is represented by a fuzzy singleton. The
localisation yl of the singleton is determined by a linear
combination of input attribute values:

yl = pT
l · [1,xT

]T

= [pl0, pl1, . . . , plD] ·

⎡

⎢
⎢
⎢
⎣

1
x1

...
xD

⎤

⎥
⎥
⎥
⎦

=

D∑

d=0

pldxd, (16)

where x0 = 1 and pi’s are linear coefficients. The height
of the singleton is the firing strength Fl(x) of the premise.
The singletons of all rules are aggregated into the final
answer of a TSK system with

y (x) =

∑L
l=1 Fl (x) yl(x)
∑L

l=1 Fl (x)
. (17)

3.1.3. Consequences of fuzzy rules in the AN-
NBFIS system. The term b, in the formula (12),
describing the l-th rule’s consequence is a normal
isosceles triangle fuzzy set Bl with the base width wl

(as in the Mamdami–Assilan architecture (Mamdani and
Assilian, 1975)). The localisation yl of the core of the
triangle fuzzy set is determined by a linear combination
(Eqn. (16)) of input attribute values (as for a singleton in
the Takagi–Sugeno–Kang architecture).

In the ANNBFIS architecture the IF-THEN rule
is a true logical fuzzy implication. The membership
function ulB′ of the l-th rule is a fuzzy value of the fuzzy
implication:

uB′
l
(x) = ulA (x) � uBl

(x) , (18)

where ulA (x) is a membership of the x tuple to the fuzzy
set A in the l-th rule (Eqn. (15)), uBl

is the membership
function in the consequence, and the squiggle arrow (�)
stands for a fuzzy implication. The shape of the fuzzy set
B
′ depends on the fuzzy implication used (Czogała and

Łęski, 2000). In the system, the Reichenbach implication
(Reichenbach, 1935) is used:

p � q = 1− p+ pq. (19)

It is possible to use other fuzzy implications such
as the Łukasiewicz, Kleene–Dienes, Rescher, Goguen,
Gödel, or Zadeh ones. There is no theoretical research
on the choice of the implication. Multiple experiments
point out the Reichenbach implication is effective in
neuro-fuzzy systems with logical interpretation of fuzzy
rules (Siminski, 2017b).

The answers B
′
l of all L rules are then aggregated

into one fuzzy answer of the system:

B
′ (x) =

L⊕

l=1

B
′
l (x) , (20)

where
⊕

stands for the aggregation operator. The fuzzy
answer B

′ is defuzzified in a crisp (non-fuzzy) value y0
with the MICOG method (Czogała and Łęski, 2000).
This approach aggregates only the informative part of
implication sets. In general terms the defuzzification
procedure may be quite expensive, but it has been proved
(Czogała and Łęski, 2000) that combining aggregation
and defuzzification in the MICOG method can be
expressed with

y (x) =

∑L
l=1 gl (x) yl(x)∑L

l=1 gl (x)
. (21)

The functions g depends on the fuzzy implication; in the
system, the Reichenbach one is used, so for the l-th rule
function g is

gl (x) =
1

2
wlulA (x) . (22)

For function g for other applicable implications, please
see the original work introducing the ANNBFIS system,
(Czogała and Łęski, 2000) (with some inaccuracies
discussed by Nowicki (2006)).

3.2. Forming the fuzzy model. The fuzzy model (the
fuzzy rule base) is created in three steps:

(i) partition of the input domain with the fuzzy c-means
clustering (Dunn, 1973) and fuzzy c-ordered means
clustering (Leski, 2014) algorithms,

(ii) extraction of premises of rules from clusters
(Section 3.2.2) (de Souza, 2020; Dovžan and
Škrjanc, 2011; Siminski, 2012),

(iii) tuning of rules (Section 3.2.3) (Seresht and Fayek,
2020; Škrjanc et al., 2019; Siminski, 2016; Harifi
et al., 2020).

Organisation of a system with the FCOM clustering
algorithm is presented in Fig. 2. The algorithm has
a twofold task: (i) identification of rule premises and
(ii) identification of outliers. Outliers are removed from
the training data set and the model is further tuned with
inliers only. This makes the tuning procedure faster and
more reliable because outliers do not interfere and disturb
the tuning of parameters.
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input data

FCOMdomain partition outliers no further used

inliers identification of rule base

initial fuzzy rule base

tuning of rule base

final rule base

Fig. 2. System organisation.

3.2.1. Partition of the input domain. Because
premises of fuzzy rules split the domain into regions,
we use the reverse approach: we split the input domain
in order to identify rule premises. For partition of
the input domain we use the scatter approach. The
domain is partitioned with two clustering algorithms FCM
(Dunn, 1973) and FCOM (Leski, 2014). The former is a
commonly used clustering algorithm—we do not describe
it in the paper. The latter is a clustering algorithm that
applies two techniques to handle outliers: the ordering of
data and modification of distance metrics.

In an FCM cluster, centres are determined with
Langrange multiplies and fortunately the localisation of
cluster centres may be expressed with a closed-form
formula. Unfortunately, in FCOM, cluster centres are
determined in an iterative way. Objects with low
typicalities have lower influence on localisation the cluster
centres.

The FCOM is used not only to partition the input
domain of the task, but also to elaborate typicalities of
objects. Items with typicalities below the typicality cut-off
are removed from the train data set and are not used for
tuning the neuro-fuzzy system’s parameters.

3.2.2. Extraction of rules from clusters. The FCOM
clustering procedure estimates the locations of cluster
centres (gathered in the U = {uij} matrix) and typicality
of each object in the data set (t = [t1, . . . , tX ]). The
number of rules equals the number of clusters: L = C.
The membership matrix U is used to calculate the centres
of a cluster that are the cores of premises, and fuzzification
of descriptors in premises.

3.2.3. Tuning of rule parameters. In neuro-fuzzy
systems, the parameters of the model are tuned to better
fit the data. The premises are built with Gaussian fuzzy
sets. Because a Gaussian function is differentiable for all
arguments, we can apply a gradient optimisation method.
We use this technique for optimisation of parameters
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Fig. 3. ROC curve for a classifier with eight values of threshold.
Each value results in one point pi on the curve. R stands
for recall, S for specificity, p1, . . . , p8 for thresholds, Y
for the Youden index, dmin for the distance of the closest
point of the ROC curve to the (0, 1) point. With the
Youden index, p4 is chosen, with the minimal distance
dmin corresponding to p5.

of premises and support width w in the ANNBFIS
consequences. Linear coefficients pi (Eqn. (16)) for the
calculation of the localisation of the cores of fuzzy sets
in the consequences of rules are calculated precisely with
linear regression.

3.3. Class separation threshold. The systems used
in the experiments produce continuous answer that has to
be mapped into values representing positive and negative
classes. We have to decide which values should be
labelled with a positive and which with a negative class.
We use the ROC curve to find an optimal threshold. We
sort all answers produced for a train set and analyse all
possible thresholds. For each threshold we calculate recall
R (25) and specificity S (26), and plot the ROC curve. We
use three methods to find the optimal threshold:

• the mean value of both positive and negative classes
(the only method that does not need the ROC curve);
e.g., if the negative class is 0 and the positive class is
1, then the threshold is 0.5;

• the Youden index Y (Youden, 1950): we analyse all
possible thresholds using the Youdex index

Y = R+ S − 1 (23)

(where R stands for recall, Eqn. (25), and S for
specificity, Eqn. (26)) and choose the threshold with
the maximal Youden index Y ; the Youden index has
a simple geometrical interpretation (Fig. 3).

• the minimal distance dmin criterion: we analyse
all possible thresholds pi and choose the one
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corresponding to the point closest to (0, 1) on the
ROC curve (Fig. 3).

Objects for which classifiers return a value above the
threshold are labelled with a positive class, otherwise with
a negative one.

4. Experiments

4.1. Datasets. All data sets are prepared in the same
way. The data are not normalised. The set is partitioned
at random into train and test data sets of the same size.

A set of outliers is added to the train test in each data
set. The ratio of the added outliers is 30% of the original
items in the train set. In each outlier all non-decisive
attributes are generated from the Gaussian distribution
Na(m,σ) with the average and standard deviation defined
separately for each attribute. In each outlier one attribute
has an extreme value. It is generated with Gaussian
distribution No(10m, 0.1σ). In outliers the decisive
attribute is generated with the same probability as in the
original train set. Thus the distribution of classes is very
close to the original distribution in the training set.

We add outliers only to the train data set, because
we do not want systems to learn the outliers, but to ignore
them. We do not add outliers to test sets, to verify whether
a system manages to detect and ignore outliers.

Experiments were run for all data sets with multiple
values of parameters:

• (for classification) three types of threshold
calculation: the mean, minimal distance, and
Youden criterion (cf. Section 3.3);

• the number of rules in neuro-fuzzy systems: 3, 4, 5,
. . . , 12;

• typicality cut-off: 10−12, 10−11, 10−10, . . . , 10−1

(cf. Section 3.2.1);

• neuro-fuzzy systems: TSK, ANNBFIS,
FCOM-TSK, FCOM-ANNBFIS;

• the experiment for each set of parameters was
repeated 13 times.

The total number of experiments is 70980 for
classification and 82810 for regression. We use a
fast free C++ implementations from the Neuro-Fuzzy
Library of the TSK and ANNBFIS neuro-fuzzy systems
(Siminski, 2019) for our modifications and experiments.

In all experiments we use the logarithmic-linear loss
function. We have chosen the logarithmic-linear function
based on preliminary experiments. For brevity, we do
not present the comparison of results for different loss
functions.

We run the experiments both for classification
and regression. All data sets for classification can

be downloaded from the UCI data repository (Frank
and Asuncion, 2019). Essential statistics of data sets
used for classification are gathered in Table 2 and for
regression—in Table 3. The tables present the distribution
of classes in training data sets. The distribution in test
sets is very similar. Data sets for the regression tasks:
‘power’, ‘beijing’, and ‘carbon’ can be downloaded from
the UCI repository (Frank and Asuncion, 2019). The data
set ‘synthetic’ is first defined in this paper.

Synthetic data set (‘synthetic’). The ‘synthetic’ data
set is a two-dimensional surface presented in Fig. 4. It
has been created with four fuzzy rules:

Rule 1: IF x1 is low AND x2 is low THEN y is small,
Rule 2: IF x1 is low AND x2 is high THEN y is large,
Rule 3: IF x1 is high AND x2 is low THEN y is large,
Rule 4: IF x1 is high AND x2 is high THEN y is small.

Linguistic terms are modelled with Gaussian fuzzy sets.

4.2. Measures. We use different quality measures of
classification and regression.

4.2.1. Classification. For the classification task we use
the confusion table (Fig. 4) to analyse results.

We use accuracy defined as (we use notation defined
in Fig. 4, the symbol [→] stands for number of all items)

A =
[p → p] + [n → n]

[p → p] + [n → p] + [n → n] + [p → n]

=
[p → p] + [n → n]

[→]
, (24)

Recall (sensitivity, hit rate, probability of detection,
power) is defined as

R =
[p → p]

[p → p] + [p → n]
=

[p → p]

[p →]
(25)

0
2

4

0

2

4

0

5

10

x1
x2

y

Fig. 4. Surface defined by the ‘synthetic’ data set.
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Table 2. Essential statistics of data sets for classification. The table presents the distributions of classes in training data sets (without
outliers). Test data sets have very similar distribution of classes.

Number of Distribution of classes
Dataset attributes tuples negative positive References

‘banknote’ 5 1372 378 (55.1%) 308 (44.9%) Frank and Asuncion, 2019
‘wilt’ 6 4889 487 (97.4%) 13 (2.6%) Johnson et al., 2013
‘vertebral’ 6 310 52 (33.5%) 103 (66.5%) Rocha Neto and Barreto, 2009
‘htru’ 9 2000 919 (91.9%) 81 (8.1%) Keith et al., 2010; Lyon et al., 2016
‘haberman’ 3 306 116 (75.8%) 37 (24.1%) Haberman, 1976
‘parkinsons’ 23 197 24 (24.0%) 76 (76.0%) Frank and Asuncion, 2019
‘blood’ 5 748 277 (74.1%) 97 (25.9%) Yeh et al., 2009

Table 3. Essential statistics of datasets for regression.
Number of

attributes train tuples test tuples
Dataset original with outliers References

‘synthetic’ 2 400 520 400 This paper
‘CO2’ 12 2653 3448 2654 Sikora and Krzykawski, 2005
‘carbon’ 5 5360 6968 5360 Acı and Avcı, 2016; 2017
‘power’ 4 4784 6219 4784 Tüfekci, 2014; Kaya et al., 2012
‘beijing’ 4 1000 1300 1000 Liang et al., 2015

Table 4. Confusion table for binary classification.
Predicted class

positive negative
[→] [→ p] [→ n]

Original positive [p → p] [p → n]
class [p →] true positive false negative

negative [n → p] [n → n]
[n →] false positive true negative

and specificity (selectivity or true negative rate) as

S =
[n → n]

[n → n] + [n → p]
=

[n → n]

[n →]
. (26)

4.2.2. Regression. For the regression task we use the
root mean square error (RMSE) defined as

ERMSE(X) =

√√
√
√ 1

X

X∑

i=1

[y(xi)− ŷ(xi)]
2
, (27)

where X is a data set (for which the RMSE is calculated)
with X objects. Given xi, the actual value of the response
is denoted as y(xi), whereas the corresponding calculated
(predicted) value is ŷ(xi).

4.3. Results of experiments.

4.3.1. Classification. In the presentation of results we
show only accuracy. Most of the data sets are unbalanced

and such a presentation may seem faulty. However, our
approach produces accuracy A = 1.0 that means a perfect
classification with recall and sensitivity also equals 1.0.
The medians of accuracies produced by the neuro-fuzzy
systems with our approach are presented in Table 5. The
default accuracy is the frequency of the majority class in
a data set.

It can be easily seen that the technique most common
in practice for threshold determination (the mean value
of classes) is the worst approach. It is better to use
the minimal distance criterion or the Youden index. For
all tested data sets the ANNBFIS neuro-fuzzy system
with the FCOM clustering algorithm for fuzzy model
identification reaches a 1.000 accuracy. This means that
all test objects have been correctly classified. The simpler
TSK neuro-fuzzy system with FCOM reaches the same
accuracy for all datasets except for ‘banknote’. It is also
worth mentioning that our modification results in more
compact fuzzy models (with fewer rules).

Figure 5 presents classification accuracy of the
‘parkinsons’ data set for the ANNBFIS neuro-fuzzy
system with FCM and FCOM (with various typicality
cut-offs). We can notice that the ANNBFIS system cannot
reach the default accuracy with models with four and more
rules.

Figure 6 presents, analogously, the accuracy for the
‘vertebral’ data set and the TSK neuro-fuzzy system.

Figures 7 and 8 present maximal, average, and
minimal typicalities of inliers and outliers for the ‘htru’
and ‘blood’ data sets, respectively. The ratio between
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Table 5. Accuracy of classification. Italicised accuracy denotes values not greater than the default majority class frequency. ‘All’ in
the ‘rules’ columns stands for models with 3, 4, . . . , 12 fuzzy rules.

Dataset TSK ANNBFIS
(default Threshold FCM FCOM FCM FCOM
accuracy) type accuracy rules accuracy rules accuracy rules accuracy rules

‘banknote’ mean 0.9905 7 0.9970 3 1.0000 11 0.989 3
(0.551) Youden 0.9985 7 0.9970 3 1.0000 11 1.000 3

min. dist. 0.9985 7 0.9948 3 1.0000 11 1.000 3
‘wilt’ mean 0.7180 10 0.6970 11 0.6730 10 0.780 12
(0.974) Youden 0.7640 12 1.0000 all 0.6950 11 1.000 all

min. dist. 0.7340 12 1.0000 all 0.6960 9 1.000 all
‘vertebral’ mean 0.8516 3 0.8451 8 0.8516 7 0.854 9
(0.665) Youden 0.8516 4 1.0000 4 0.8419 9 1.000 all

min. dist. 0.8516 4 1.0000 3 0.8258 5 1.000 all
‘htru’ mean 0.9780 12 0.9270 10 0.9820 4 0.926 11
(0.919) Youden 0.9730 12 1.0000 all 0.9660 5 1.000 all

min. dist. 0.9720 12 1.0000 all 0.9530 12 1.000 all
‘haberman’ mean 0.7418 10 0.7582 11 0.7516 9 0.748 7
(0.758) Youden 0.7582 5 1.0000 all 0.7778 3 1.000 all

min. dist. 0.7582 5 1.0000 all 0.7843 3 1.000 all
‘parkinsons’ mean 0.7253 12 0.4894 5 0.7211 8 0.415 6
(0.760) Youden 1.0000 4 1.0000 all 0.6842 7 1.000 all

min. dist. 1.0000 4 1.0000 all 0.8263 3 1.000 all
‘blood’ mean 0.7941 5 0.7834 all 0.8128 5 0.783 all
(0.741) Youden 0.7540 6 1.0000 all 0.7459 5 1.000 all

min. dist. 0.7299 10 1.0000 all 0.7459 5 1.000 all

average typicalities of inliers and outliers is approximately
1010 for the ‘htru’ dataset and 105 for ‘blood’. We
do not present similar plots for other data sets because
they are very similar. In Table 6 we gather minimal,
average, and maximal typicalities for models with five
rules produced by our system for all data sets. The
difference between typicalities elaborated for inliers and
outliers is significant. This is why we use this technique
to detect outliers. The smallest difference is obtained for
the ‘haberman’ dataset.

4.3.2. Regression. The results of experiments are
presented in Figs. 10, 12, 14, 16, 18, 20, 22, 24, 26 and
28.

The results for the ‘carbon’ data set present a
characteristic slope of the error surface. The threshold
cut-off value 10−6 splits the results into two parts: in
one the outliers are correctly identified and removed
from model elaboration, in the second part the outliers
heavily distort the elaborated model. In experiments for
both neuro-fuzzy systems (Figs. 10 and 12) the typicality
approach outperforms the reference neuro-fuzzy systems.

The results for the ‘synthetic’ data set are presented
in Figs. 14 and 16. The 3D plot presents the RMSE for
a grid of a number of rules and typicality cut-offs. The
2D plot is less readable, but also presents the reference

system’s results (with the FCM clustering algorithm).
For the ‘synthetic’ data set we can see that a typicality
cut-off threshold is 10−5 for both the TSK and ANNBFIS
systems. If the typicality cut-off is lower, the outliers
start to influence the elaboration of a fuzzy model and
deteriorate its quality. For this data set we can see a
window for the best number of rules. If the number of
rules is too low (three or four rules), the model is too weak.
If the number of rules is too high (eight and more rules),
the model overfits the data. For a typicality cut-off that
removes outliers our modification of the NFS elaborates
fuzzy models that outperform the reference NFSs.

Similar conclusions can be drawn for the ‘power’
and ‘beijing’ data sets. A typicality cut-off threshold
can be found at 10−6 (Fig. 18). However, for the
ANNBFIS based system the low number of rules leads to
a poorer model and higher error ratios (Fig. 20). For ten
and more rules the model overfits the data and loses the
generalisation ability. For the ‘beijing’ data set the low
number of rules is not sufficient and the elaborated model
results in high error rates (Fig. 22).

This phenomenon is not clearly seen for the ‘CO2’
data set. However, we can observe that neuro-fuzzy
systems with typicalities can outperform an atypical
neuro-fuzzy system and yield a lower error rate (RSME)
for test data. This can be seen in Fig. 27, where the
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Table 6. Examples of typicalities (minimal, average, and maximal) for inliers and outliers in models with 5 rules.
Typicalities

inliers outliers
Dataset min avg max min avg max

‘banknote’ 6.37 · 10−19 1.20 · 10−1 10.00 · 10−1 5.25 · 10−17 1.73 · 10−7 2.33 · 10−6

‘wilt’ 1.51 · 10−24 7.78 · 10−2 9.99 · 10−1 6.72 · 10−23 2.56 · 10−8 1.23 · 10−6

‘vertebral’ 1.33 · 10−27 6.16 · 10−2 9.97 · 10−1 2.39 · 10−22 5.07 · 10−9 2.05 · 10−7

‘haberman’ 2.68 · 10−12 2.76 · 10−1 10.00 · 10−1 5.10 · 10−15 2.30 · 10−2 10.00 · 10−1

‘parkinsons’ 2.25 · 10−89 2.18 · 10−2 9.79 · 10−1 1.71 · 10−62 5.14 · 10−30 1.49 · 10−28

‘blood’ 3.62 · 10−22 1.56 · 10−1 10.00 · 10−1 1.03 · 10−16 1.11 · 10−7 1.48 · 10−6

‘htru’ 1.79 · 10−43 7.28 · 10−2 9.98 · 10−1 7.07 · 10−38 1.01 · 10−13 2.85 · 10−11
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Fig. 5. Classification accuracy of the ‘parkinsons’ data set with
the ANNBFIS system with FCOM and various typical-
ity cut-offs (‘annbfis’ stands for the reference ANNBFIS
system with the FCM clustering algorithm, ‘default’ for
the majority class frequency in the data set).
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Fig. 6. Classification accuracy of the ‘vertebral’ data set with
the TSK system with FCOM and various typicality cut-
offs (‘tsk’ stands for the reference TSK system with
the FCM clustering algorithm, ‘default’ for the majority
class frequency in the data set).
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in the ‘htru’ dataset produced by the ANNBFIS neuro-
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objects (inliers) and non-informative items (outliers) in
the ‘blood’ data set produced by the ANNBFIS neuro-
fuzzy system with the FCOM clustering algorithm.
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Fig. 9. Root mean square errors for the ‘carbon’ data set with
the FCOM-TSK neuro-fuzzy system.
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Fig. 10. Root mean square errors for the ‘carbon’ data set with
the FCOM-TSK neuro-fuzzy system.

dotted line represents results elaborated by the ANNBFIS
reference system.

4.4. Comparison with the 3σ method. The 3σ rule is
a common technique to detect outliers. For each attribute
in a dataset, the mean m and the standard deviation σ are
determined. The values exceeding m ± 3σ are treated
as outliers (Hekimoglu et al., 2015; Lehmann, 2013).
Some researchers use this approach to define outliers
(Hekimoglu and Koch, 2000). This method also has some
disadvantages, e.g., the mean value itself m is prone to
outliers (Leys et al., 2013). Figures 29–33 present a
comparison of the proposed method with preprocessing
with the 3σ heuristics to identify and remove outliers from
a training data set that are not used in the identification
and tuning of a fuzzy rule base of the TSK and ANNBFIS
neuro-fuzzy systems. For lower ratios of outliers it is very
hard to tell which method (ours or 3σ preprocessing) is
more effective. For higher values of outliers our approach
produced fuzzy models with lower errors in the ‘beijing’
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Fig. 11. Root mean square errors for the ‘carbon’ data set with
the FCOM-ANNBFIS neuro-fuzzy system.
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Fig. 12. Root mean square errors for the ‘carbon’ data set with
the FCOM-ANNBFIS neuro-fuzzy system.

(Fig. 29), ‘carbon’ (Fig. 31), ‘CO2’ (Fig. 32), ‘synthetic’
(Fig. 33) data sets. For the ‘carbon’ data set the superiority
of our method is not very significant. The ‘test RSME’
axis does not start with zero to better show the difference
(Fig. 31). In the ‘power’ (Fig. 30) data set the most
effective performance of our method is for medium outlier
ratios.

The same methodology is the classification task.
Table 7 presents a comparison of 3σ preprocessing and
our method for the classification task. We omit ratios
of added outliers 0.01, 0.02, 0.05, because both the
approaches handle such ratios very well. In classification
our approach can better handle high ratios of outliers
than the 3σ preprocessing. We do not present results
for 3σ+ ANNFIS and FCOM-ANNBFIS neuro-fuzzy
systems–they are similar to the results presented in Table 7
for the 3σ+ TSK and FCOM-TSK techniques.

5. Conclusions

Identification of fuzzy rules is a crucial part in elaboration
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Table 7. Classification accuracy produced by TSK neuro-fuzzy systems with 3σ preprocessing and TSK with FCOM premise identi-
fication. Both systems apply the Youden index (Eqn. (23)).

Added outliers ratio
Data set Method 0.10 0.20 0.30 0.40 0.50

‘banknote’ 3σ+ tsk 1.0000 0.9985 0.9927 0.9388 0.7974
fcom-tsk 1.0000 0.9985 0.9956 0.9636 0.9067

‘wilt’ 3σ+ tsk 1.0000 1.0000 1.0000 0.9660 0.9140
fcom-tsk 1.0000 1.0000 1.0000 1.0000 0.9640

‘vertebral’ 3σ+ tsk 1.0000 1.0000 0.9790 0.9419 0.8903
fcom-tsk 1.0000 1.0000 1.0000 1.0000 0.9806

‘htru’ 3σ+ tsk 1.0000 1.0000 1.0000 0.9710 0.9750
fcom-tsk 1.0000 1.0000 1.0000 1.0000 0.9580

‘haberman’ 3σ+ tsk 1.0000 1.0000 1.0000 0.9412 0.9281
fcom-tsk 1.0000 1.0000 1.0000 1.0000 1.0000

‘parkinsons’ 3σ+ tsk 1.0000 1.0000 1.0000 1.0000 0.9300
fcom-tsk 1.0000 1.0000 1.0000 1.0000 0.8900

‘blood’ 3σ+ tsk 1.0000 1.0000 0.9840 0.9813 0.9893
fcom-tsk 1.0000 1.0000 1.0000 1.0000 0.9920

of a fuzzy model (fuzzy rule base). Clustering is the
most common technique of extraction of rule premises
for neuro-fuzzy systems. In the paper we use a fuzzy
c-ordered algorithm that applies modification of a distance
measure and typicalities to detect outliers and reduce their
impact on clustering. Application of this algorithm for
fuzzy model identification makes neuro-fuzzy systems
robust to outliers. FCOM successfully identifies the
outliers and assigns them low typicalities. This makes it
possible to exclude them and ignore in the fuzzy model
identification process. Application of the method to
both regression and classification tasks shows that this
approach can successfully identify outliers and create a
fuzzy model robust to high ratios of outliers.
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