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Fast and smooth trajectory planning is crucial for modern control systems, e.g., missiles, aircraft, robots and AGVs. How-
ever, classical spline based trajectory planning tools introduce redundant constraints and parameters, leading to high costs
of computation and complicating fast and smooth execution of trajectory planning tasks. A new tool is proposed that em-
ploys truncated power functions to annihilate some constraints and reduce the number of parameters in the optimal model.
It enables solving a simplified optimal problem in a shorter time while keeping the trajectory sufficiently smooth. With
an engineering background, our case studies show that the proposed method has advantages over other solutions. It is
promising in regard to the demanding tasks of trajectory planning.
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1. Introduction

Trajectory planning plays a significant role in guidance
and control of dynamical systems, such as robots (Qian
et al., 2020; Yu et al., 2020; Li et al., 2021; Tatematsu and
Ohnishi, 2003; Cheon and Kim, 2019) missiles (Liu et al.,
2018; 2020), autonomous underwater vehicles (Sun and
Liu, 2021) and flights (Muscio et al., 2018; Spedicato and
Notarstefano, 2018; Heidari and Saska, 2020; Park and
Kim, 2021). There are two ways to fulfill the task. Indirect
methods of trajectory planning resort to the necessary
conditions derived from the minimum principle, which
usually ends up with boundary value problems (Wang
et al., 2013). They yield good accuracies. However,
they suffer from some difficulties in deriving necessary
conditions (Wang et al., 2013; Gong et al., 2006) and
the sensitivities to initial guesses of boundary value
problems (Gong et al., 2006). Direct methods use a
strategy to discretize an optimal control problem into a
parameterized optimization problem that can be solved by
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applying the techniques of nonlinear programming (NLP)
(Fahroo and Ross, 2000). The parameterized methods
include S-curves (Tho et al., 2020; Wang et al., 2020;
Aguilar-Ibanez and Suarez-Castanon, 2019), polynomial
functions (Desai et al., 2019; Cui et al., 2020) , B-splines
(Schoenberg, 1969; Boor and Fix, 1973; Mercy et al.,
2018; Rousseau et al., 2019) and sinusoidal functions (Liu
et al., 2021; Fang et al., 2020). Among them, trajectory
planning via spline approximation attracts more attentions
(Berselli et al., 2016; Kroger and Wahl, 2010).

Spline approximation for trajectory planning has
different forms, which contains different groups of
parameters. Spline functions have been used extensively;
they include the piece-wise polynomial form (PPF) and
classical the cubic spline form (CCF). The forms for the
spline with some nodes of a fixed degree are given in
Table 1.

When using the PPF, splines are expressed via
piecewise polynomial functions under certain conditions
of smoothness (Berselli et al., 2016) and coefficients
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Table 1. Formulas for the PPF and CCF.
Name Formula

PPF sn,N (t) =
n∑

j=0

Ki, jt
j , t ∈ [ti, ti+1]

➀

CCF sn,N (t) =
s
(2)
i (ti+1−t)3+s

(2)
i+1(t−ti)

3+
(
6si−s

(2)
i δt2i

)
(ti+1−t)+

(
6si+1−s

(2)
i+1δt

2
i

)
(t−ti)

6δti
, t ∈ [ti, ti+1]

➁

➀ t1, t2, . . . , tN+1 are spline nodes, which are sorted from small to large.
➁ δti = ti − ti−1 , si = sn,N (ti) and s

(2)
i = s

(2)
nN (ti), for i = 1, 2, . . . , N .

of piece-wise polynomials are regarded as parameters
to be optimized. Therefore, the PPF introduces a
large number of optimization variables and equality
constraints. On the one hand, a large number of variables
and constraints would cost computational time in each
iterative step when solving optimization problems. On
the other hand, equality constraints tend to generate
sparse feasible regions which increase the number of
iterative steps and create possibly infeasible solutions.
When using the CCF, the functional and derivative
values at nodes are considered as parameters. In
addition, spline expressions and smoothness conditions
are obtained through integration and differentiation,
respectively. However, some issues are unsolved. For
example, there are some equality constraints for boundary
conditions and smoothness, which makes the feasible
solutions sparse. Furthermore, the CCF can only
guarantee the second-order smoothness, which restricts
the scope of application. In conclusion, the computing
speed of these classical forms is slow for generating a
smooth trajectory.

Currently, the computational efficiency is important
to the performance index of trajectory planning method.
This is because many industrial applications imply
dynamically changed environments where unpredictable
situations would affect the trajectories to be planned. Very
often, the trajectories should be altered on-line to cope
with unforeseen situations on site to avoid any damage
(Zhang et al., 2020; Cheon and Kim, 2019). Therefore,
how to improve the computational efficiency is a hot topic
in academia and industry, which needs to be investigated
further.

Admittedly, some advanced methods are developed
to alleviate the computational load. An artificial
intelligence method is used to decouple the multiple
joints of robots to divide a complex NLP into simple
ones, mitigating the computational load (Zhang et al.,
2020). Heuristic techniques are applied to minimize
the computational cost for finding optimal trajectories
of mobile robots (Kim, 2020). Unfortunately, artificial
intelligence tools rely on large databases and require
tedious off-line training, making the modeling process
complicated.

Here, we have two research objectives. First, we
focus on modifying the truncated power form (TPF) to
alleviate the computational load; another objective is
to propose a fast and smooth trajectory planning tool
for a class of linear systems with some normal form.
The modified truncated power form (MTPF) annihilates
original equality constraints and eliminates unnecessary
parameters, improving the computational efficiency. The
tool is incorporated into the process of optimal trajectory
planning. Experimental results show some advantages of
the MTPF over the existing tools including the PPF, DIF,
and TPF, e.g., the computational time.

The paper is organized as follows. Section 2
introduces a linear system with a certain normal form and
defines the TPF. Section 3 defines a problem of trajectory
parameterization. The MTPF-based method is proposed
and a simplified model of optimization is derived in
Section 4. In Section 5, some case studies are investigated
to evaluate the method’s performance. Final conclusion is
given in Section 6.

2. Preliminaries

2.1. System model. Consider the class of linear
systems described by

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(1)

where x(t) =
(
x1(t), x2(t), . . . , xn(t)

)T
is the state

vector,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

is the state matrix in R
n×n, B =

(
0, 0, . . . , b

)T
(b �= 0)

is the input matrix in R
n×1, and C =

(
1, 0, . . . , 0

)
is

the output matrix in R
1×n. In addition, ẋi(t) for i =

1, 2, . . . , n is bounded and Riemann integrable.
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2.2. Splines of the TPF. In trajectory planning, the
PPF is the most fundamental to express a spline via
piecewise polynomial functions under certain conditions
of smoothness (Berselli et al., 2016). However, it
introduces equality constraints and a large number of
parameters. To alleviate the problem, truncated power
functions are developed, which make these polynomial
functions simple (Powell, 1981).

Definition 1. The truncated power function is defined by

tl+ =

{
tl, t ≥ 0,

0, t < 0,
(2)

where tl+ is simplified as t+ for l = 1 and becomes 00 = 1
for t = 0 and l = 0.

Definition 2. The TPF is used to express a spline such
that sn,N : [t1, tN+1] → R is the spline function of the
n-th degree with its nodes t1, t2, . . . , tN+1 satisfying t1 <
t2 < · · · < tN+1, if sn,N (t) can be expressed as

sn,N (t) =

n∑

i=0

Kit
i +

N∑

i=2

αi(t− ti)
n
+ , (3)

where Ki, αj ∈ R, for i = 0, 1, . . . , n and j =
2, 3, . . . , N .

Given tl+ ∈ Cl−1, the smoothness is guaranteed.

3. Problem formulation

3.1. Some constraints of trajectory planning. In
control applications, the output variable is usually steady
about some value at the initial stage and about another
value at its final stage. For example, gantry cranes need to
be stable at the beginning and the ending of a conveying
task in order to avoid collisions or swings. This leads to
some conditions.

Condition 1. One of boundary conditions is the initial
condition given by

x(ts) = (ys, 0, . . . , 0)
T
, (4)

where ys is the initial output.

Condition 2. Another boundary condition is the final con-
dition

x(tf ) = (yf , 0, . . . , 0)
T
, (5)

where yf is the target output.
Moreover, many related physical variables which can

be expressed linearly by the state variables need to be in
numerical intervals.

Condition 3. The constraints on the state and control are
represented by

G
(
(x(t))

T
, u(t)

)T
≤ V , (6)

G
(
(x(t))

T
, u(t)

)T
≥ V , (7)

for G ∈ R
m×(n+1), V ∈ R

m and V ∈ R
m.

3.2. Optimal trajectory planning model. We
consider a task of trajectory planning for system (1)
subject to Conditions 1, 2 and 3. A general optimization
problem associated with trajectory planning is given by,

(x∗(t), u∗(t)) = argmin J(x(t), u(t)) (8)

subject to

ẋ(t) = Ax(t) +Bu(t),

x(ts) = (ys, 0, . . . , 0)
T
,

x(tf ) = (yf , 0, . . . , 0)
T
,

G
(
(x(t))

T
, u(t)

)T
≤ V ,

G
(
(x(t))T , u(t)

)T
≥ V ,

where J(x(t), u(t)) is a cost function.

3.3. Problem statement. With respect to system (1),
we consider a novel problem of spline approximation
associated with the generic constrained optimization
problem (8).

Problem 1. The problem is to seek a parameterized form
y(P, t) : RNP × R → R for the actual output y(t) such
that for any fixed P , y(P, t) is in Cn−1 with respect to t.

Remark 1. In many fields (e.g., robots and mechanical
control systems), the smoothness of the tracking trajectory
is desirable, which aids the tracking controller to perform
better.

Remark 2. To improve the computational speed, it
is desirable to reduce the number of variables (i.e.,
the parameters) and the number of the constraints of
the form y(P, t), because an increase in these numbers
may create sparse feasible regions, which aggravates the
computational load of optimization.

4. Main results

4.1. Proposed method of the MTPF. We consider
a classical TPF for spline approximation y(P, t) about
the output trajectory y(t). Its starting node t1 is fixed
at the initial time ts of y(t) and its ending node tN+1 is
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Fig. 1. Illustration for parameter variables.

fixed at the final time tf of y(t). The existing methods
of the TPF take n + 2N parameters into account, i.e.,
{ti, i = 2, 3 . . . , N + 1}, {Ki, i = 0, 1, . . . , n}, and
{αi, i = 2, 3, . . . , N}.

To begin with, the TPF is modified to decrease the
number of Ki under Condition 1.

Lemma 1. Consider boundary conditions sn,N (t1) = ys

and s
(i)
n,N(t1) = 0, for i = 1, 2, . . . , n − 1 for the spline

sn,N (t). This implies

sn,N (t) = ys +
(
(t− t1)

n
+, (t− t2)

n
+, . . . ,

(t− tN )n+
)× α

(9)

where α = (α1, α2, . . . , αN )
T ∈ R

N . Conversely, the
spline (9) implies also the given boundary condition.

Proof. See Appendix for details (A1). �

Remark 3. In comparison with n + 2N parameters
of the TPF, the proposed MTPF decreases the number of
parameters by n.

Secondly, our further treatment of the TPF is going
to reduce redundant variables in αi, for i = 1, 2, . . . , N
under Condition 2.

Definition 3. The element of a vector Δt =
(δt1, δt2, . . . , δtN )

T is defined by δti = ti+1 − ti. See
Fig. 1 for the definition.

For the convenience of calculation, we apply the
vector of parameters Δt instead of ti, for i =
2, 3, . . . , N+1. In this case, tj > ti for j > i is equivalent
to Δt > 0.

Definition 4. Define D : RN × R→R
n×N as

D(Δt, t) =

⎛

⎜
⎜
⎜
⎝

(t− t1)
n
+ (t− t2)

n
+

(t− t1)
n−1
+ (t− t2)

n−1
+

...
...

(t− t1)+ (t− t2)+

. . . (t− tN )n+

. . . (t− tN )n−1
+

. . .
...

. . . (t− tN )+

⎞

⎟
⎟
⎟
⎠

.

(10)

It is assumed that sn,N (t) is a spline in Eqn. (9).

Final conditions, sn,N (tN+1) = yf and s
(i)
n,N (tN+1) =

0, i = 1, 2, . . . , n− 1, are equivalent to

D(Δt, tN+1)α = β. (11)

for β = (yf − ys, 0, . . . , 0)
T.

Lemma 2. Given yf �= ys, the necessary and sufficient
condition for the existence of Δt ∈ R

N
+ , and α ∈ R

N is
given by

N ≥ n , (12)

which satisfies (11)

Proof. See Appendix for details (A2). �

Remark 4. According to Lemma 2, if N ≥ n, there
exists a pair of variables (Δt, α) in R

N
+ × R

N satisfying
(11). Otherwise, there is no pair in R

N
+ × R

N satisfying
(11).

Definition 5. Let D1(Δt) ∈ R
n×(N−n) be a matrix

consisting of the first N − n columns of D(Δt, tN+1),
i.e.,

D1(Δt) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
N∑

i=1

δti

)n (
N∑

i=2

δti

)n

(
N∑

i=1

δti

)n−1 (
N∑

i=2

δti

)n−1

...
...

N∑

i=1

δti
N∑

i=2

δti

. . .

(
N∑

i=N−n

δti

)n

. . .

(
N∑

i=N−n

δti

)n−1

. . .
...

. . .
N∑

i=N−n

δti

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(13)
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Furthermore, let D2(Δt) ∈ R
n×n be a matrix

consisting of the last n columns of D(Δt, tN+1), i.e.,

D2(Δt)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
N∑

i=N−n+1

δti

)n (
N∑

i=N−n+2

δti

)n

(
N∑

i=N−n+1

δti

)n−1 (
N∑

i=N−n+2

δti

)n−1

...
...

N∑

i=N−n+1

δti
N∑

i=N−n+2

δti

. . . (δtN )n

. . . (δtN )
n−1

. . .
...

. . . δtN

⎞

⎟
⎟
⎟
⎠

.

(14)

D1(Δt) is not defined but D(Δt, tN+1) = D2(Δt) holds
for N = n.

Definition 6. Let α1 ∈ R
N−n be a vector consisting

of initial elements of α from 1 to N − n that leads to
α1 = (α1, α2, . . . , αN−n)

T. Let α2 ∈ R
n be a vector

consisting of final elements of α from N−n+1 to N that
gives α2 = (αN−n+1, αN−n+2, . . . , αN )T.

According to Definitions 5 and 6, Eqn. (11) has a
form β = D1(Δt)α1 +D2(Δt)α2, which implies

α2 = (D2(Δt))−1(β −D1(Δt)α1), (15)

where D2(Δt) is an invertible matrix for all Δt > 0. It
leads to a revised definition of α.

Definition 7. For brevity,

α =

(
α1

(D2(Δt))−1(β −D1(Δt)α1)

)

(16)

is used to represent α = α(Δt, α1).
An update parameterized form for y(t) with P :=

(ΔtT, α1T)T is obtained by

y(P, t) =ys +
(
(t− t1)

n
+, (t− t2)

n
+, . . . ,

(t− tN )n+
)× α(Δt, α1).

(17)

Furthermore, the state vector x(t) and the control input
u(t), derived from y(P, t), have parameterized forms

x(P, t) =

(

y(P, t),
∂1y(P, t)

∂t1
, . . . ,

∂n−1y(P, t)

∂tn−1

)T

,

(18)

u(P, t) =

n∑

i=0

ai
b

∂iy(P, t)

∂ti
, (19)

where b and ai ,i = 0, . . . , n − 1 are as given in
Section 2.1, and an = 1. They can also be expressed
by

x(P, t) = (ys, 0, . . . , 0)
T
+ ΛD(Δt, t)α(Δt, α1),

(20)

u(P, t) =
a0ys
b

+
(a0
b
, . . . ,

an
b

)
Λ (21)

×D(Δt, t)α(Δt, α1), (22)

where

Λ = diag
{
1,
∏N

i=N i, . . . ,
∏N

i=2 i
}
,

Λ = diag
{
Λ,
∏N

i=1 i
}
,

D(Δt, t) =

⎛

⎜
⎜
⎜
⎝

(t− t1)
n
+ (t− t2)

n
+

(t− t1)
n−1
+ (t− t2)

n−1
+

...
...

(t− t1)
0
+ (t− t2)

0
+

. . . (t− tN )n+

. . . (t− tN )n−1
+

. . .
...

. . . (t− tN )0+

⎞

⎟
⎟
⎟
⎠

.

Remark 5. For any P ∈ R
2N−n, the parameterized form

x(P, t) must satisfy Conditions 1 and 2, i.e., x(P, ts) =
(ys, 0, . . . , 0)

T and x(P, tN+1) = (yf , 0, . . . , 0)
T.

This implies that Conditions 1 and 2 can be eliminated.
In summary, the proposed MTPF has fewer

parameters and constraints than the same number
associated with the original TPF.

4.2. Trajectory planning with the MTPF.

4.2.1. Revised Condition 3. Inequalities (6) and (7) in
Condition 3 are transformed to

gi(P ) ≤ 0, i = 1, 2, . . . , 2m, (23)

where the group of functions gi(P ) is defined by

gi(P )

= sup
t∈[t1,tN+1]

(
Gi

(
(x(t))

T
, u(t)

)T
− V i

)
, (24)

for i = 1, 2, . . . , m, and as

gi(P ) = sup
t∈[t1,tN+1]

(
V i−m −Gi−m

×
(
(x(t))

T
, u(t)

)T )
,

(25)
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Fig. 2. Results with P 1
init obtained by different spline form based methods: MTPF (a), TPF (b), CCF (c), PPF (d).

for i = m + 1, m + 2, . . . , 2m, with Gi being the i-th
row vector of G, V i being the i-th element of V , and V i

being the i-th element of V .

It is noted that revised Condition 3 is equivalent to
Condition 3, when output, state and control are given
by (17), (20) and (21), respectively. In this case, the
inequality constraints on trajectories are reduced to the
constraints on parameters.

4.2.2. Optimal trajectory planning algorithm. If
the state and control are parameterized as (20) and (21),
respectively, the trajectory planing problem (8) with
respect to P = (ΔtT , α1T)T can be rewritten as

P ∗ = argmin J(x(P, t), u(P, t)) (26)

subject to

Δt > 0,

gi(P ) ≤ 0, i = 1, 2, . . . , 2m,

which takes advantage of the MTPF to construct an
optimization problem for trajectory planning. Then,
one can revoke some optimization tool to solve the
optimization problem and generate a set of desirable
trajectories that include y∗(t) = y(P ∗, t), x∗(t) =
x(P ∗, t) and u∗(t) = u(P ∗, t), where the smoothness
is guaranteed. The novel approach employs fewer
parameters and constraints than those of the TPF. The
optimal trajectory planning algorithm is described in
Algorithm 1.



Fast and smooth trajectory planning for a class of linear systems . . . 17

0 0.2 0.4 0.6

t

-50

0

50

100

y(
t)

0 0.2 0.4 0.6

t

-400

-300

-200

-100

0

y(1
) (t

)

0 0.2 0.4 0.6

t

-2000

-1000

0

1000

2000

y(2
) (t

)

0 0.2 0.4 0.6

t

-1

-0.5

0

0.5

1

y(3
) (t

) 
(u

(t
))

104

(a)

0 0.2 0.4 0.6 0.8 1 1.2

t

-50

0

50

100

y(
t)

0 0.2 0.4 0.6 0.8 1 1.2

t

-250

-200

-150

-100

-50

0

y(1
) (t

)

0 0.2 0.4 0.6 0.8 1 1.2

t

-500

0

500

y(2
) (t

)

0 0.2 0.4 0.6 0.8 1 1.2

t

-3000

-2000

-1000

0

1000

2000

y(3
) (t

) 
(u

(t
))

(b)

0 0.2 0.4 0.6 0.8 1

t

-50

0

50

100

y(
t)

0 0.2 0.4 0.6 0.8 1

t

-300

-200

-100

0

y(1
) (t

)

0 0.2 0.4 0.6 0.8 1

t

-2000

-1500

-1000

-500

0

500

1000

y(2
) (t

)

0 0.2 0.4 0.6 0.8 1

t

-1

-0.5

0

0.5

1

y(3
) (t

) 
(u

(t
))

104

(c)

0 1 2 3 4

t

-50

0

50

100

150

y(
t)

0 1 2 3 4

t

-250

-200

-150

-100

-50

0

y(1
) (t

)

0 1 2 3 4

t

-400

-200

0

200

400

600

800

y(2
) (t

)

0 1 2 3 4

t

-2000

-1000

0

1000

2000

3000

y(3
) (t

) 
(u

(t
))

(d)

Fig. 3. Results with P 2
init obtained by different spline form based methods: MTPF (a), TPF (b), CCF (c), PPF (d).

5. Case study

5.1. Trajectory planning of an ideal motor. We take
an ideal motor as a case study to evaluate the proposed
trajectory planning method, where the trajectory planing
of the motor’s rotational variable y(t) is formulated as the
optimization problem (8) with the state and input matrices
given by

A =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , B =

⎛

⎝
0
0
1

⎞

⎠ ,

and the corresponding constraints given by

G = diag{1, 1, 1, 1},
V =

(
418.88, 1.05× 103, 3.14× 103, 1.05× 104

)T
,

V = − (418.88, 1.05× 103, 3.14× 103,

1.05× 104
)T

,

ys = 94.02,

yf = −46.60.

In the experiments, the optimization problem (8)
refers to a time-optimal performance index
J(x(t), u(t)) =

∫ tf
ts
, dt with the segment number N = 5

and the degree n = 3. Sequential quadratic programming
(SQP) is used to solve the constrained optimization
problem to design some desirable trajectories, where two
initial points are set in Table 2.
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Algorithm 1. Trajectory planning algorithm with the
MTPF.
Require:

n, ai, i = 0, 1, . . . , n− 1, b: the system parameters
m, G, V , V : the parameters of inequality constraints
ts, ys, yf : the parameters of boundary conditions
J : the cost function

Ensure:
y∗(t): the optimal output trajectory
x∗(t): the optimal state trajectory
u∗(t): the optimal control trajectory

Step 1. Set N for N ≥ n.

Step 2. y(P, t)← Eqn. (17) with N , n, ys and yf .

Step 3. x(P, t)← Eqn. (20) with N and n.

Step 4. u(P, t)← Eqn. (21) with N , n, ys and ai for
i = 0, 1, . . . , n− 1.

Step 5. J(x(P, t), u(P, t)) ← J with x(P, t) and
u(P, t).

Step 6. Set inequality constraints by Eqns. (24), (25)
and Δt > 0 for m, n, G, V , V , x(P, t) and u(P, t).

Step 7. Derive P ∗ via an iterative optimization
procedure.

Step 8. y∗(t)← y(P ∗, t).
Step 9. x∗(t)← x(P ∗, t).
Step 10. u∗(t)← u(P ∗, t).

For a fair comparison, P 1
init and P 2

init in Table 2
are used for the tools that include the MTPF, TPF,
CCF and PPF. All experiments are executed in the same
environment of MATLAB 2021a operated on a laptop
computer with an Intel (R) core (TM) i7-7700HQ CPU
@ 2.80GHz, a 8.00GB RAM (7.89GB available) and a 64
bit operating system.

5.2. Experimental results for an ideal motor. The
trajectory planing problem of the ideal motor is solved
by the MTPF, TPF, CCF and PPF respectively, where
both P 1

init and P 2
init are used in the iterative processes.

As a result, two groups of the planned y(t), the motor’s
rotational variable, are generated, which are shown in
Figs. 2 and 3 respectively. It is to be noted from
y(3)(t) that the results of the MTPF took full advantage
of the constraints, −1.05 × 104 rad/s3 and 1.05 × 104

rad/s3, while those of the TPF, CCF and PPF are a
far cry from these constraints. These advantages the
time-optimal performance index arising improve from the
MTPF defined by Eqn. (8).

To draw a fair comparison, the performance details
associated with the computational time, the minimal cost,
the boundary conditions, the smoothness conditions and
the inequality conditions are listed in Table 3. All

Table 2. Setting-up of initial points.

Δt α1 Feasibility

P 1
init (1, 1, 1, 1, 1)

T
(−1,−1)T Yes

P 2
init (1, 1, 1, 1, 1)T (80,−150)T No

Table 3. Performance comparison of different methods.

IP➀ Form CT➁ MC➂ BC➃SC➄IC➅

P 1
init

MTPF 0.24 0.76 Y➆ Y Y
TPF 0.95 2.72 N➇ Y Y
CCF 0.91 3.60 N N Y
PPF 1.79 3.72 N N Y

P 2
init

MTPF 0.31 0.76 Y Y Y
TPF 0.81 1.29 Y Y Y
CCF 0.88 1.08 N N N
PPF 0.98 4.29 Y Y Y

➀ the initial point
➁ the computational time
➂ the minimal cost
➃ the boundary conditions
➄ the smoothness conditions
➅ the inequality conditions
➆ the meeting of the tolerance 1.5× 10−6

➇ the violation of the tolerance 1.5× 10−6

conditions are satisfied by the MTPF while they cannot
be met totally by the TPF, CCF and PPF although the
performance of the TPF is better than those of the CCF
and PPF. Furthermore, the MTPF consumes the least time,
either 0.24 s or 0.31 s, in the derivation of the optimal
trajectories and the PPF consumes the most, either 1.79 s
or 0.98 s. Another observation is that the MTPF leads to
the minimal cost by 0.76 because it takes sufficiently the
advantages of the constraints.

5.3. Trajectory planning for a UVW robot. We
take a UVW robot as an application of the ideal motor’s
trajectories. The UVW robot has three degrees of
freedom, two translation variables and one rotational
variable, which are driven by three motor driven systems.
Figure 4 shows the UVW robot’s initial and final
settings due to two translation variables and one rotation
variable. These variables are derived by the time-optimal
trajectories of three motors through the MTPF shown
in Fig. 5. It is clear that the designed trajectories
have met the constraints in the time-optimal problem of
three motors that include the constrains on y(3)(t) with
−1.05 × 104 rad/s3 and 1.05 × 104 rad/s3, those on
y(2)(t) with −3.14 × 103 rad/s2 and 3.14 × 103 rad/s2,
those on y(1)(t) with −1.05 × 103 rad/s and 1.05 × 103

rad/s, and those on y(t) with −418.88 rad and 418.88 rad.
All trajectories of motors meet the boundary conditions
(94.02, 91.08, 112.02)T and (−46.60, −2.94, 331.57)T.
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(a) (b)

Fig. 4. UVW robot with two translation variables and one rota-
tion variable: initial setting (a), final setting (b).
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Fig. 5. Time optimal trajectories of three ideal motors of the
UVW robot.

6. Conclusions

The proposed tool of the MTPF that takes advantage of
truncated power functions could annihilate some original
constraints and reduce parameters for a class of linear
systems. It reduces the redundant parameters and
eliminates the equality constraints in the TPF so that
some sparse distribution of feasible solutions is avoided.
By contrast, sparse distribution of feasible solutions is a
common trouble in the existing methods. As a result, the
performance of the MTPF is fast and efficient for the task
of smooth trajectory planning. The experimental results
show the advantages of the MTPF over the other methods.
The tool of the MTPF is promising in trajectory planning
for practical applications.
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Appendix

A1. Proof of Lemma 1

The boundary conditions are equivalent to

di

dti
(

n∑

i=0

Kit
i − ys)|t=t1 = 0,

for i = 0, 1, . . . , n − 1. It is easily checked that∑n
i=0 Kit

i−ys = α1(t−t1)n, where α1 ∈ R. Therefore,
(3) can be rewritten as (9) under the boundary conditions.

A2. Proof of Lemma 2

Note that rank(D(Δt, tN+1)) = min {n,N} for Δt > 0,
because

∣
∣
∣
∣
∣
∣
∣
∣
∣

λk
1 λk

2 , . . . , λk
k

λk−1
1 λk−1

2 . . . λk−1
k

...
...

...
λ1 λ2 . . . λk

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

⎛

⎝
∏

i<j

(λi − λj)

⎞

⎠×
(

k∏

i=1

λi

)

. (A1)

Firstly, the sufficiency is proved. When N ≥
n, rank(Dn,N (Δt, tN+1)) = n, which implies that
there exists α ∈ R

N such that D(Δt, tN+1)α =

(yf − ys, 0, . . . , 0)
T.

In the second place, the necessity is proved. Suppose
that there exists Δt ∈ R

N
+ , α ∈ R

N with N ≤ n− 1 for

D(Δt, tN+1)α = (yf − ys, 0, . . . , 0)
T . This equation

can be divided into d1α = yf − ys by

d1 =

((
N∑

i=1

δti

)n

,

(
N∑

i=2

δti

)n

, . . . , (δtN )n

)

and Dα = 0 by

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
N∑

i=1

δti

)n−1 (
N∑

i=2

δti

)n−1

(
N∑

i=1

δti

)n−2 (
N∑

i=2

δti

)n−2

...
...

N∑

i=1

δti
N∑

i=2

δti

. . . (δtN )n−1

. . . (δtN )n−2

. . .
...

. . . δtN

⎞

⎟
⎟
⎟
⎠

.

It is to be noted that rank(D) = N leads to α = 0.
Substituting α = 0 into d1α = yf − ys gives yf = ys
which contradicts the condition yf �= ys.
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