
Int. J. Appl. Math. Comput. Sci., 2022, Vol. 32, No. 1, 35–49
DOI: 10.34768/amcs-2022-0004

EXACT AND APPROXIMATION ALGORITHMS FOR SENSOR PLACEMENT
AGAINST DDOS ATTACKS

KONSTANTY JUNOSZA-SZANIAWSKI a,∗, DARIUSZ NOGALSKI b, PAWEŁ RZĄŻEWSKI a,c

aFaculty of Mathematics and Information Science
Warsaw University of Technology

ul. Koszykowa 75, 00-662 Warsaw, Poland
e-mail: {konstanty.szaniawski,pawel.rzazewski}@pw.edu.pl

bMilitary Communication Institute
ul. Warszawska 22A, 05-130 Zegrze, Poland

e-mail: d.nogalski@wil.waw.pl

cFaculty of Mathematics, Informatics and Mechanics
University of Warsaw

ul. Banacha 2, 02-097 Warsaw, Poland

In a distributed denial of service (DDoS) attack, the attacker gains control of many network users through a virus. Then
the controlled users send many requests to a victim, leading to its resources being depleted. DDoS attacks are hard to
defend because of their distributed nature, large scale and various attack techniques. One possible mode of defense is
to place sensors in a network that can detect and stop an unwanted request. However, such sensors are expensive, as a
result of which there is a natural question as to the minimum number of sensors and their optimal placement required
to get the necessary level of safety. Presented below are two mixed integer models for optimal sensor placement against
DDoS attacks. Both models lead to a trade-off between the number of deployed sensors and the volume of uncontrolled
flow. Since the above placement problems are NP-hard, two efficient heuristics are designed, implemented and compared
experimentally with exact mixed integer linear programming solvers.

Keywords: DDoS, sensor placement, network safety optimization, heuristics.

1. Introduction

1.1. Distributed denial of service. Denial-of-service
(DoS) attacks are intended to stop legitimate users from
accessing a specific network resource (Zargar et al.,
2013). A DoS attack is an attack on availability,
which is one of the three dimensions from the well
known CIA security triad: Confidentiality, Integrity
and Availability. Availability is a guarantee of reliable
access to information by authorized people. In
1999 the computer incident advisory capability (CIAC)
reported the first distributed DoS (DDoS) attack incident
(Criscuolo, 2000). In a DDoS attack, the attacker gains
the control of a large number of users through a virus
and then simultaneously performs a large number of

∗Corresponding author

requests to a victim server via infected machines. As
a result of this large number of tasks, the victim server
is overwhelmed and out of resources, unable to provide
services to legitimate users.

DDoS attacks are a problem not only on the Internet
(Ramanathan et al., 2018), but also in the context of a
smart grid (Wang et al., 2017; Cameron et al., 2019;
Huseinović et al., 2020), cloud (Bonguet and Bellaïche,
2017) and control systems (Cetinkaya et al., 2019).
According to Cameron et al. (2019), availability is more
critical than integrity and confidentiality for smart grid
environments.

DDoS attacks are difficult to defend against because
of the large number of machines that can be controlled
by botnets and participate in an attack. In consequence,
an attack may be launched from many directions. A

© 2022 K. Junosza-Szaniawski et al.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

mailto:{konstanty.szaniawski,pawel.rzazewski}@pw.edu.pl
mailto:d.nogalski@wil.waw.pl

36 K. Junosza-Szaniawski et al.

single bot (compromised machine) sends a small amount
of traffic which looks legitimate, but the total traffic at the
target from the whole botnet is very high. This leads to an
exhaustion of resources and disruption to legitimate users
(Mirkovic and Reiher, 2004; Ranjan et al., 2009). Another
difficulty is that the attack pattern may be changed
frequently. Typically, only a subset of botnet nodes
conduct an attack at the same time (Belabed et al., 2018).
After a certain time, the botnet commander switches to
another subset of nodes that conduct the attack.

As pointed out by Zargar et al. (2013), there are
basically two types of DDoS flooding attacks:

(i) Disruption of a legitimate user’s connectivity by
exhausting bandwidth, router processing capacity
or network resources. These are essentially link-
flooding attacks. Within this group we have Coremelt
attacks (Studer and Perrig, 2009) and Crossfire at-
tacks (Kang et al., 2013). Both of these attacks
aim at intermediate network links located between
attack sources and targets. Traditional target-based
defenses do not work with these types of attacks
(Liaskos and Ioannidis, 2018; Gkounis et al., 2016).

(ii) Disruption of a legitimate user’s service by
exhausting server resources (e.g., CPU, memory,
bandwidth). These are essentially target-flooding
attacks conducted at application layer.

This work addresses target-flooding attacks with the
assumption that there are multiple targets.

Some other well-known attacks are: reflector at-
tacks (Ramanathan et al., 2018)—an attacker sends a
request with a fake address (of a victim) to the DNS
server, and the server responds to the victim; spoofed at-
tacks (Armbruster et al., 2007)—an attacker forges the
true origin of packets. Detailed classifications of DDoS
attacks are discussed by, e.g., Mirkovic and Reiher (2004),
Douligeris and Mitrokotsa (2004), Peng et al. (2007),
Zargar et al. (2013), Bonguet and Bellaïche (2017), and
Huseinović et al. (2020).

A detection algorithm of DDoS attacks and the
identification of an attack signature is out of the
scope of this research. In the literature one can find
various works in this field. Many works use machine
learning or other artificial intelligence techniques, e.g.,
de Miranda Rios et al. (2021) use a multi-layer perceptron
(MLP) neural network with backpropagation, K-nearest
neighbors (K-NN), a support vector machine (SVM) and
a multinomial naive Bayes classifier (MNB); Daya et al.
(2020) incorporate graph-based features into machine
learning. Other works focus on general methods
of anomaly detection, including signature-based and
profile-based methods, e.g., Huang et al. (2021) propose a
multi-channel network traffic anomaly detection method
combined with multi-scale decomposition; Hwang et al.

(2020) present an anomaly traffic detection mechanism,
which consists of a convolutional neural network (CNN)
and an unsupervised deep learning model; Zang et al.
(2019) use the ant colony optimization (ACO) to construct
the baseline profile of the normal traffic behavior. Other
related results are reported by, e.g., Liu et al. (2021), Gera
and Battula (2018), Jiao et al. (2017), Zekri et al. (2017),
de Assis et al. (2017), Kallitsis et al. (2016), and Afek
et al. (2013). Comprehensive surveys of DDoS detection
are also available: Jafarian et al. (2021) overview anomaly
detection mechanisms in software defined networks;
Khalaf et al. (2019) focus on the defense methods that
adopt artificial intelligence and statistical approaches.

1.2. Sensor placement. One of the ways to
defend against a DDoS attack is to place sensors in
the network which recognize and stop unauthorized
demands. However, placing such sensors in every node
of the network would be very expensive and inefficient.
Commercial IPS (intrusion prevention system)/firewall
solutions that detect and eliminate DDoS attacks have
a high acquisition price (Fayaz et al., 2015; Blazek
et al., 2019). Hence, a natural question arises concerning
what the number of sensors should be, and where they
should be placed. The detection precision may be
higher closer to attack sources since it is easier to detect
spoofed addresses and other anomalies. On the other
hand, the traffic closer to targets is large enough to
accurately recognize an actual flooding attack. In order to
efficiently control the flooding, sensors should be placed
in the core of the network, where most of the traffic
can be observed. A taxonomy of defense mechanisms
against DDoS flooding attacks, including source-based,
destination-based, network-based, and hybrid (also known
as distributed) defense mechanisms is discussed by Zargar
et al. (2013).

El Defrawy et al. (2007) formulate the problem of the
optimal allocation of DDoS filters. They model single-tier
filter allocation as a 0-1 knapsack problem and two-tier
filter allocation as a cardinality-constrained knapsack.
However, both models assume a single victim, while the
models in this study allow for multiple victims.

Armbruster et al. (2007) analyze packet filter
placement to defend a network against spoofed denial of
service attacks. They examine the optimization problem
(NP-hard) of finding a minimum cardinality set of nodes
(filter placements) that filter packets so that no spoofed
packet (with the forged origin) can reach its destination.
They relate the problem to the vertex cover one and
identify topologies and routing policies for which a
polynomial-time solution to the minimum filter placement
problem exists. They prove that under certain routing
conditions a greedy heuristic for the filter placement
problem yields an optimal solution. The paper addresses
a specific version of DDoS—a spoofed attack.

Exact and approximation algorithms for sensor placement against DDoS attacks 37

Jeong et al. (2004) and Islam et al. (2008) minimize
the number of sensors such that every path of a given
length (r) contains a sensor. Any node less than r hops
away is permitted to attack another node, since the impact
of the attack is regarded as low, especially for a low r.
This paper considers the problem of sensor placement
under a different assumption.

Fayaz et al. (2015) propose a Bohatei
system for DDoS defense within a single Internet
service provider (ISP). They use modern network
architectures—software-defined networking (SDN) and
network function virtualization (NFV) and develop the
system orchestration capability to defend against a DDoS.
The system addresses a resource management problem
(NP-hard) to determine the number and location of
defense virtual machines (VMs). These VMs detect and
block attack traffic. Having fixed VMs, the system routes
the traffic through these VMs. The goal of the resource
manager is to efficiently assign available network
resources to the defense, (i) minimizing the latency
experienced by legitimate traffic, and (ii) minimizing
network congestion. The authors formulate an integer
linear program (ILP) to solve the resource management
problem. However, due to the long computation time,
they apply a hierarchical decomposition as well. For
that purpose, they designed two heuristics, the first for
data-center selection, and the second for server selection
at the data-center. When it comes to routing, this paper
does not assume any specific routing protocol; it simply
assumes that it is multi-path. Additionally, traffic is not
steered through a network; it is assumed that routing is an
independent problem.

Mowla et al. (2018) assume an SDN architecture
for their proposal. They propose a cognitive detection
and defense mechanism to distinguish DDoS attacks and
flash crowd traffic. The detection sensors are placed
in the OpenFlow switches, where approaching traffic
is identified and specific features are extracted. The
extracted data are handed over to the SDN controller for
analysis and production of security rules to defend against
the attack. They use two classification techniques, namely
SVM and logistic regression. It must be noted that such
an approach has its drawbacks; specifically, a centralized
SDN controller is a potential single-point-of-failure
(security risk).

Ramanathan et al. (2018) propose a collaboration
system (SENSS) to protect against DDoS. The SENSS
enables the victim of an attack to request an attack
monitoring and filtering on demand from an ISP. Requests
can be sent both to the immediate and to remote ISPs,
where SENSS servers are located. The victim drives all
the decisions, such as what to monitor and which actions
to take to mitigate attacks (e.g., monitor, allow, filter).
The number and location of monitoring sensors is not
thoroughly analyzed in the research. For certain types of

attack (direct floods without transport/network signature),
the article suggests a location-based filtering approach
that compares traffic volumes for ISP-ISP links during
normal operation and during an attack.

Monnet et al. (2017) place control nodes (CNs) in a
clustered wireless sensor network (WSN). The CN detects
abnormal behavior (DoS) and reports it to a cluster leader
up in the WSN hierarchy. The authors propose three
methods of CN placement. The first uses a distributed
self-election process. A node chooses a pseudo-random
number, checks the number against the threshold and
potentially elects itself as a CN. The second method is
based on the residual energy of nodes. Cluster heads select
nodes with the highest residual energy. The third method
is based on democratic election. Nodes vote for the nodes
that will be selected as a CN.

A related problem, the design of sensor networks
for measuring the surrounding environment (natural
floods, pollution etc.), is addressed in many works.
Khapalov (2010) discusses source location and sensor
placement in environmental monitoring. The first problem
here is linked to finding an unkown contamination
source. The second concerns the placement of sensors
to obtain adequate data. Uciński (2012) focuses on
the design of a monitoring sensor network to provide
proper diagnostic information about the functioning of a
distributed parameter system. Patan (2012) determines
a scheduling policy for a sensor network monitoring a
spatial domain in order to identify unknown parameters
of a distributed system. Suchanski et al. (2020) study
the dependency between density of a sensor network
and map quality in the radio environment map (REM)
concept. There have been a large number of works on
developing methods and technology of human activity
recognition and monitoring. Some use wearable devices
to collect vital sign signals, some use video analysis
and an accelerometer to recognize the activity pattern,
other use thermal sensors. Chou et al. (2019) develop a
framework to measure gait velocity (walking speed) using
distributed tracking services deployed indoors (home,
nursing institute). The work aims to minimize the sensing
errors caused by thermal noise and overlapping sensing
regions. The other goal is to minimize the data volume to
be stored or transmitted. One fundamental question is how
many sensors should be deployed and how these sensors
work together seamlessly to provide accurate gait velocity
measurements.

In the literature there is a well-known class of
interdiction problems, which can be related to our DDoS
problem. Altner et al. (2010) study the maximum flow
network interdiction problem (MFNIP). In the MFNIP a
capacitated s-t (directed) network is given, where each
arc has a cost of deletion, and a budget for deleting
arcs. The objective is to choose a subset of arcs to

38 K. Junosza-Szaniawski et al.

delete, without exceeding the budget, that minimizes the
maximum flow that can be routed through the network
induced on the remaining arcs. The special case of
the MFNIP when the interdictor removes exactly k arcs
from the network to minimize the maximum flow in the
resulting network is known as the cardinality maximum
flow network interdiction problem (CMFNIP) (Wood,
1993). One of the recent works on the interdiction
problem addresses a two-stage defender-attacker game
that takes place on a network whose nodes can be
influenced by competing agents (Hemmati et al., 2014). A
more general problem on graphs was proposed by Omer
and Mucherino (2020), and it includes the interdiction
problem. In our DDoS problem we delete vertices instead
of arcs in the CMFNIP.

1.3. Discussion. Defense mechanisms against DDoS
flooding attacks address specific attack types: link-
flooding (Studer and Perrig, 2009; Kang et al., 2013)
or target-flooding (Zargar et al., 2013). Link-flooding
attacks aim at intermediate network links located between
attack sources and targets. Target-flooding directly attack
targets. This research concentrates on the latter one.
The attacks may use reflection (Ramanathan et al., 2018),
spoofing (Armbruster et al., 2007) or other techniques
(Zargar et al., 2013). The existing works concentrate
on single-target while we concentrate on multiple-target
attacks. The defense mechanisms against DDoS are
complex systems. They need to address: identification
of attack signatures and detection algorithms (out of
scope of this paper), placing the detection sensors, and
stopping/filtering illegitimate traffic (Ramanathan et al.,
2018) (out of the scope of this paper). Some defense
approaches use attack load distribution (re-routing of
traffic) to limit the effect on targets (Belabed et al., 2018).

In this paper, the focus is on the placing of detection
sensors. There are several works in this field: Jeong
et al. (2004) and Islam et al. (2008) minimize the
number of sensors such that every path of a given
length (r) contains a sensor; Armbruster et al. (2007)
analyze the problem of packet filter placement to defend
a network against spoofed denial of service attacks;
Monnet et al. (2017) place control nodes in clustered
WSNs to save the energy of nodes; Fayaz et al. (2015)
address the resource management problem to determine
the number and location of defense VMs, which combines
detection node placement with a re-routing strategy. This
paper concentrates on the costly deployment of detection
sensors (probes) against multiple-target flooding attacks.
There is no assumption of any specific routing protocol,
though it is assumed that it is multi-path. Additionally,
traffic is not steered through a network; it is assumed
that routing is an independent problem. Future work may
address sensor placement with a knowledge of a specific
routing protocol to increase performance in a network.

1.4. Our proposal. A DDoS attack can be modeled
as a flow from multiple sources to a single target (single
commodity flow). Defined are a directed graph with a
capacity function on edges, a set of sources (S) and a set
of targets (T). An attacker can conduct an attack on any
vertex t ∈ T . The strength of an attack is given by a value
of a maxflowG(S, t), i.e., the value of the maximum flow
from S to t in the network G.

Within this DDoS defense approach sensors are to be
placed in network nodes to recognize and stop unwanted
traffic. If a sensor is placed in a vertex v ∈ V then all the
edges incident to v are assumed controlled. A set D ⊆ V
is called a set of sensors. The goal of this defense is to
limit maximum uncontrolled flow towards each t ∈ T .
Having a placement D, a maximum uncontrolled flow is
determined and easy to compute. For that purpose, for
each t ∈ T the max-flow algorithm (see, e.g., Goldberg
and Tarjan, 2014) can be used for a graph G \ D (|T |
runs of the algorithm). A super vertex ss is added to G,
connected with a directed edge to each s ∈ S. For each
run of the algorithm (t ∈ T) maximum flow from ss to t
is computed. Finally, the maximum uncontrolled flow as
maxt∈T maxflowG(ss, t) is computed.

In Section 2.2 a proof is given of the decision
problem as to whether d sensors suffice to reduce the
uncontrolled flow to some defined amount a ∈ R. When
there is just one protected node, the proof is based on
reduction from the cardinality maximum flow network in-
terdiction Problem (CMFNIP) (Wood, 1993). When the
number of pairs (S, ti) is more than one, the reduction
goes from multiway cut (cf. Garg et al., 1994).

For computational reasons two variants of the sensor
placement problem are given. First, the PQ problem,
where a tolerable amount a ∈ R of uncontrolled flow is
set and a minimum number of sensors needed to achieve it
is required. Second, the PC problem, where the number of
sensors is set and the question of how much uncontrolled
flow we can reduce with such a number of sensors is
asked.

The main result of this paper, besides the proofs of
NP-hardness, are two mixed integer models describing
PQ and PC problems of optimal sensor placement against
DDoS attacks. Moreover, two efficient heuristics (one for
each problem) are presented. Finally, an experimental
comparison of solutions given by the heuristics and the
mixed-integer programming solvers is given.

Preliminary work on sensor placement was published
as a conference paper (Junosza-Szaniawski et al., 2020).

2. Problem definition

2.1. Problem of optimal sensor placement.

The network model. It is assumed that the network
is modeled as a directed graph without multiple edges.
The node (vertex) set and the edge set are denoted,

Exact and approximation algorithms for sensor placement against DDoS attacks 39

respectively, by V and E. Every directed edge has a
nonnegative capacity assigned by the function c. Each
node in the network can be interpreted as a router or an
autonomous system.

Protected nodes. Let T ⊆ V denote a set of protected
nodes (also called target nodes) in the network. Each node
v ∈ T contains a protected resource and is a target of a
possible malicious flow.

Attack sources. We assume that network flooding
targeted at protected nodes t ∈ T can start from any
network node (source) s ∈ V \ T . In a practical scenario,
however, it may be desirable to limit our attention to a set
of sources S ⊆ V \ T . The selection may be based on
a node risk analysis. It is simply a case of choosing the
vertices with unacceptable risk.

Attacks. It is not assumed which traffic from a source s ∈
S is legitimate and which is hostile. Every potential attack
starts from S and is modeled as a single-commodity flow
to some target t ∈ T . Routing policies allow multi-path
transmissions from any s ∈ S to t.

Sensors. When a sensor is placed at a node v ∈ V , then all
the incoming and outgoing edges are assumed controlled.
A set of nodes where sensors are placed is denoted by D.
For the clarity of NP-completeness proofs, it is assumed
that the set D is disjoint with S ∪ T . However, in practice
this assumption can be easily omitted by adding artificial
copies for each source and target and joining it with the
original vertex (see Figs. 2 and 3).

Definition 1. (Attack flow) For t ∈ T , a function ft :
E → [0,∞) is called an attack flow on t ∈ T (or just
flow, if t is clear from the context) if

∀u∈V \(S∪{t})
∑

(v,u)∈E

ft(v, u) =
∑

(u,w)∈E

ft(u,w) (1)

and
∀e∈E ft(e) ≤ c(e). (2)

The attack flow value is given by

ft =
∑

(v,t)∈E

ft(v, t) −
∑

(t,w)∈E

ft(t, w). (3)

The maximum value of an attack flow on t is denoted by
maxflowG(S, t).

Definition 2. (G \D) For an instance G =
(V,E, c, S, T) and a set D ⊆ V \ (S ∪ T) of sensors,
by we denote G \ D the instance G′ = (V,E, c′, S, T),
where c′ : E → [0,∞) is defined as

c′(e) =

{
0 if e ∈ ED,

c(e) otherwise,

where ED is the set of edges incident to a node in D.

Definition 3. (Uncontrolled flow) For an instance G and
a set D of sensors, an uncontrolled flow to t ∈ T is a flow
to t in G \D with a positive value.

For example, in Fig. 1 all edges incident to nodes
5 and 7 are controlled. However, there still exists an
uncontrolled flow f8 in G \ {5, 7}.

In order to defend against a DDoS attack, sensors in
a network should be placed in such a way that they can
observe all or most of the traffic coming from sources
S to targets T . Placing sensors in every node of the
network would be very expensive and inefficient. Having
a limited number of sensors available, it is necessary
to find a placement such that uncontrolled flows are
“distributed” among all t ∈ T . The situation in which
some targets are left unprotected and receive a high
portion of an uncontrolled traffic, as a result of which they
are vulnerable to DDoS attacks, should be avoided.

In the optimization variant two models PQ
(Placement with required Quality) and PC (Placement
with required Cardinality) are considered. In the PQ
model, we want to minimize the number k of sensors
under the assumption that the amount of uncontrolled
flow does not exceed a given value. Formally, for a given
number a ∈ Q, it is asked what a minimum integer k is
such that there exists a k-element set D ⊆ V \ (S ∪ T)
satisfying

max
t∈T

maxflowG\D(S, t) ≤ a.

For a = 0 the question follows: What is the
minimum number of sensors that guarantees the total
control in the network?

In the second model, denoted by PC, it is assumed
the number k of sensors and the task is to find a k-element

2

3

4

5

6

7

1

8

A_t A’_t

Fig. 1. Instance G with source (attack) nodes S = {1, 2, 3, 4},
protected nodes T = {8} and sensors D = {5, 7}. The
dotted vertical line denotes a possible cut for t = 8 ∈ T .
The dashed lines denote the uncontrolled flow f8.

40 K. Junosza-Szaniawski et al.

set D ⊆ V \ (S∪T) such that maxt∈T maxflowG\D(S, t)
is minimum. Such a model is important from a practical
perspective. In many cases the number of available
sensors is limited and one needs to find an optimal
placement.

2.2. Complexity of optimal sensor placement. For
the complexity analysis a decision problem FLOW PRE-
VENTION is defined:

Input: Directed graph G = (V,E), capacity function
c : E → [0,∞), disjoint sets S, T ⊆ V , integer k,
real number a.

Question: Does there exist a set D ⊆ V \ (S ∪ T) of
size at most k, such that for every t ∈ T we have
maxflowG\D(S, t) ≤ a?

The problem has several natural parameters,
including k, a, |S|, and |T |. Its complexity is studded
under different combinations of these parameters.

First, there are simple boundary cases. If a = 0, then
the problem asks for an S-T -separator of a size at most k
and thus can be solved in polynomial time using standard
flow techniques. If k is a constant, then the problem can
be solved in polynomial time by exhaustive enumeration
combined with finding the maximum flow.

Now, consider the case when |T | = 1. This will
yield a reduction from CMFNIP, which is known to be
NP-hard (Wood, 1993). An instance of this problem is a
graph G = (V,E) with edge capacities c : E → [0,∞),
two distinct distinguished vertices s, t ∈ V , an integer
k and a real a. The question is whether we can remove
at most k edges so that the maximum s-t-flow in the
resulting graph is at most a. Observe that the difference
between this problem and FLOW PREVENTION is that
nodes, not edges, are removed.

Theorem 1. FLOW PREVENTION is NP-complete, even
if |S| = |T | = 1.

Proof. Let (G = (V,E), c, s, t, a, k) be an instance of
CMFNIP. Let Ḡ = (V̄ , Ē) be the graph obtained from G
in the following way. For every v ∈ V we create its k + 1
copies v1, v2, . . . , vk+1. For every arc e = (u, v) ∈ E we
define two vertices eu, ev and edges:

u1eu, u2eu, . . . , uk+1eu, euev, evv1, evv2, . . . , evvk+1.

Moreover, we add vertices s0, t0 and edges
s0s1, s0s2, . . . , s0sk+1, t1t0, t2t0, . . . , tk+1t0. We set
S = {s0} and T = {t0}. Finally, we define the capacity
function c̄ as follows. For e ∈ E, we set c̄(euev) =
c(e), and the capacities of all other arcs of Ḡ are set
to some large integer, e.g.,

∑
e∈E c(e). Observe that

maxflow(Ḡ, s, t) = maxflow(G, s, t). Furthermore, since
our budget is only k, it makes no sense to remove any

copy of a vertex v of G, and there will always be at least
one copy left. Finally, for e = (u, v) ∈ E, removing
eu or ev in Ḡ corresponds to removing e in G, and it
is sufficient to remove one of these vertices. Summing
up, it is straightforward to verify that (V̄ , Ē, c̄, S, T, k, a)
is a yes-instance of FLOW PREVENTION if and only if
(G, c, s, t, k, a) is a yes-instance of CMFNIP. �

Now consider the case when |T | ≥ 2. This time
we will reduce from NODE MULTIWAY CUT with 2
terminals, which is known to be NP-hard (Garg et al.,
1994). In this problem we are given a directed graph G
with two distinguished vertices x, y and an integer k. We
ask whether we can remove at most k vertices to destroy
all x–y- and all y–x-paths.

Theorem 2. FLOW PREVENTION is NP-complete, even
if a = 1, |S| = |T | = 2, and all capacities are unit. Fur-
thermore, it is even NP-hard to distinguish yes-instances
and those for which, for every set D′ of size at most k, we
have

max
t∈T

maxflowG\D′(S, t) = 2.

Proof. Let G = (V,E), x, y, k, be an instance
of NODE MULTIWAY CUT with 2 terminals. We may
safely assume that G contains a directed x–y-path and
a directed y–x-path, as otherwise the problem can be
solved in polynomial time by finding a minimum vertex
separator.

We construct an instance of FLOW PREVENTION as
follows. We start with a graph G. Next we add two new
vertices x′ and y′, and edges x′x, y′y with unit capacity.
We set S = {x′, y′} and T = {x, y}.

We observe that for every t ∈ T we have that
maxflowG(S, t) = 2, as G contains a directed x–y-path
and a directed y–x-path. Furthermore, for D ⊆ V \ (S ∪
T), it holds that maxt∈T maxflowG\D(S, t) = 1 if and
only if D is a multiway cut in G. �

Corollary 1. The following optimization problem admits
no polynomial-time 2-approximation algorithm, unless P
= NP.

Input: Directed graph G = (V,E), disjoint sets S, T ⊆
V , integer k.

Question: What is the minimum a, for which there is
some D ⊆ V \ (S ∪ T) of a size at most k, such that
for every t ∈ T we have maxflowG\D(S, t) ≤ a?

Finally, let us consider parameterization by k. The
problem is clearly in XP (i.e., can be solved in polynomial
time if k is fixed), so it is interesting if the problem
is FPT (i.e., can be solved in time f(k) · nO(1) on
instances of size n, where f is some computable function)
and, if so, if it admits a polynomial kernel. See Cygan

Exact and approximation algorithms for sensor placement against DDoS attacks 41

et al. (2015) for more information about parameterized
complexity classes.

Let us point out that a natural generalization of
the problem is not in FPT under standard complexity
assumptions. Consider a variant of FLOW PREVENTION

where to each sink t ∈ T we have assigned a possibly
distinct set St of sources, and we ask if there is a set
D ⊆ V \ ⋃

t∈T (St ∪ {t}) of a size at most k, such that
for every t ∈ T we have maxflowG\D(St, t) ≤ a. It turns
out that this problem is W[1]-hard, even if a = 0, |T | = 4,
and |St| = 1 for every t ∈ T . Indeed, one can readily
verify that the problem is equivalent to the well-known
NODE MULTICUT problem. An instance of this problem
is a directed graph G, a set of pairs of vertices (si, ti)

p
i=1

called terminals, and an integer k. The question is whether
we can remove at most k nonterminal vertices so that in
the resulting graph there is no si–ti path, for any i. As
shown by Pilipczuk and Wahlström (2018), this problem
is W[1]-hard even for p = 4. This is a strong evidence that
the problem is not in FPT (Cygan et al., 2015).

3. Description of models

Basic formulation of PQ and PC models. To solve
the problem of optimal sensor placement in the sense of
models PQ and PC we use mix-integer programming.
Our solution is based on the well-known Ford–Fulkerson
theorem (1956) stating that the maximum flow cannot
exceed the minimum cut and, actually, in our solution the
min-cuts are minimized. To compute minimum cuts for
every target t ∈ T we introduce a set At such that any
edge u, v is in a cut for t if and only if u ∈ At and v
∈ At

(Fig. 1). The set D ⊆ V denotes the set of vertices in
which sensors are placed.

Formally, we define the following variables:

• For every v ∈ V a binary variable d[v] with the
meaning d[v] = 1 if and only if v ∈ D (there is a
sensor in the vertex v).

• For every t ∈ T and v ∈ V a binary variable a[t, v]
with the meaning a[t, v] = 1 if and only if v ∈ At.
The sets At allow us to compute a cut for the target
t ∈ T .

• For every t ∈ T, e ∈ E a binary variable cutT [t, e]
with the meaning cutT [t, e] = 1 if and only if e ∈ E
belongs to a cut in G \D for t.

• A real variable M ∈ R that denotes the value of the
minimum cut in G \D.

In the PQ model, a function to minimize is∑
v∈V d[v] with respect to the restrictions

∀t∈T ∀s∈S a[t, s] == 1, (4)

∀t∈T a[t, t] == 0, (5)

∀t∈T ∀(u,v)∈E

cutT [t, u, v] ≥ a[t, u]− a[t, v]− d[u]− d[v],
(6)

∀t ∈ T
∑

(u,v)∈E

cutT [t, u, v] · c[u, v] ≤ a, (7)

∀s ∈ S d[s] = 0, (8)

∀t ∈ T d[t] = 0. (9)

The meaning is as follows. For every target t ∈ T
each vertex s ∈ S belongs to At, cf. (4). For every target
t ∈ T the vertex t does not belong to At, cf. (5). The
restriction (6) guarantees that an edge belongs to a cut if
none of its ends is in a set D, the first vertex is in At

and the second vertex is not. Equation (7) bounds the
value of the cut with a = (1− q) ·maxt∈T maxflowG(t),
where q ∈ [0, 1] is a quality factor (a parameter in the
problem formulation), q = 1 signifies total control (100%
traffic controlled), q = 0 signifies no control (zero sensors
placed); furthermore,maxt∈T maxflowG(t) is equal to the
value of max minimum cut Mt in G. The restrictions (8)
and (9) make sure that sensors cannot be placed in either
s ∈ S or t ∈ T . Obviously, the above statement which
assumes 100% control of traffic (q = 1) gives a theoretical
value, while in practice it depends on the volume of traffic
flowing via links, and on the processing capacity of a
detection sensor (technology).

In the PC model, a function to minimize is just M
with respect to the restrictions (4)–(6), (8) and (9),

∑

v∈V

d[v] = k, (10)

∀t ∈ T
∑

(u,v)∈E

cutT [t, u, v] · c[u, v] ≤ M. (11)

The restriction (10) makes sure that the number of sensors
is fixed, and given as parameter k to the problem.
Equation (11) bounds the value of the cut with M .

As shown in Section 5, the above models are very
efficient in terms of the number of deployed sensors and
the volume of uncontrolled flow. On the other hand, when
the number of vertices is high (large-scale networks) the
models may suffer from increased execution time. That is
why we designed and implemented two efficient heuristics
(one for each model, Section 4); they are reasonably
efficient in terms of a goal value, but much faster than the
models.

4. Algorithm description

Relaxed formulation of PQ and PC models. In this
formulation we relax two types of variables to allow the
fractional sensor placement (the first bullet point) and
fractional traffic control (the second bullet point). Let
us notice that fractional sensor placement is an artificial
concept without physical interpretation and defined only

42 K. Junosza-Szaniawski et al.

as an intermediate step, not present in the final step of the
algorithm. The relaxations are as follows:

• for every v ∈ V a real variable d[v] ∈ [0, 1],

• for every t ∈ T, e ∈ E a real variable cutT [t, e] ∈
[0, 1].

In the basic model formulation (Section 3) when an
edge u, v is in a cut for some t (u ∈ At and v
∈ At),
placing a sensor in either u or v classifies such an edge
as fully controlled. When no sensor is placed in either
u nor v, such an edge is uncontrolled. However, in the
relaxed formulation we allow fractional sensor placement
(d variables) and fractional control of edges in a cut (cutT
variables).

To solve the PQ and PC problems, additionally
to our two models (section 3), we have designed and
implemented two algorithms:

1. PQIterativeBestSensor (see Algorithm 1)

2. PCIterativeBestSensor (see Algorithm 2).

Both the algorithms assume the following common
input parameters: G a graph representing a network
with capacity function c, T a set of targets; S a set of
sources. Additionally, PQIterativeBestSensor heuristics
takes q (quality factor) as input and PCIterativeBestSen-
sor heuristics k (number of sensors) as input.

4.1. PQ iterative best sensor placement. The
preparatory step of the algorithm PQIterativeBestSen-
sor is a computation of the value of a = (1 − q) ·
maxt∈T maxflowG(t) (Line 1). In each while loop, a
linear program relaxation is solved (Line 5). From the
relaxed LP solution a subset of vertices L is selected
from the set V \ D such that d[v]
= 0 and d[v] ==
max{d[j]}j∈V \D (Line 6). Among the |L| best sensor
locations, a single best (max) one vmax is selected and
added to the model as a constraint (Line 8). The constraint
fixes a sensor in the location vmax in the next iterations.

4.2. PC iterative best sensor placement. The
algorithm PCIterativeBestSensor consists of k + 1
iterations. In each {1, . . . , k} iteration, a linear program
relaxation is solved (Line 4). From the relaxed LP solution
a subset of vertices L is selected from the set V \D such
that d[v]
= 0 and d[v] == max{d[j]}j∈V \D (Line 5).
Among the |L| best sensor locations, a single best (max)
one vmax is selected and added to the model as a constraint
(Line 7). The constraint fixes a sensor in the location vmax

in the next iterations.
In the last iteration, the LP relaxation is solved

assuming fixed sensor placements for all v ∈ D (Line 10)
to compute the final value of M .

Algorithm 1. PQIterativeBestSensor.
Require: G, c, T, S, q

1: Evaluate a = (1 − q) ·maxt∈T maxflowG(t)
2: Form the relaxed PQ problem (Section 4) with goal

minimize
∑

v∈V d[v]. Add constraints {(4)–(9)} to
the problem.

3: Initiate a set of vertices in which we place sensors
D = ∅.

4: while (∃t ∈ T
∑

(u,v)∈E cutT [t, u, v] · c[u, v] > (1−
q) ·maxt∈T maxflowG(t)) do

5: Solve the problem.
6: Let L = {v, s.t. v ∈ V \ D and d[v]
= 0 and

d[v] == max{d[j]}j∈V \D}.
7: Choose randomly vmax ∈ L, where the probability

of selecting an element vmax equals 1/|L| .
8: Add constraint d[vmax] == 1 to the problem
9: D = D ∪ {vmax}.

10: end while
11: return D

Algorithm 2. PCIterativeBestSensor.
Require: G, c, T, S, k

1: From the relaxed PC problem (Section 4)
with goal minimize M . Add constraints
{(4),(5),(6),(8),(9),(10),(11)} to the problem.

2: Initiate a set of vertices in which we place sensors
D = ∅.

3: for i = 1, . . . , k do
4: Solve the problem.
5: Let L = {v: v ∈ V \D and d[v]
= 0 and d[v] ==

max{d[j]}j∈V \D}.
6: Choose randomly vmax ∈ L, where the probability

of selecting an element vmax equals 1/|L|.
7: Add constraint d[vmax] == 1 to the problem.
8: D = D ∪ {vmax}.
9: end for

10: Solve the problem to compute M .
11: return (D,M)

We show that the algorithm PCIterativeBestSensor
may give a result 2 · OPT . In Fig. 2 we compare
the optimal solution OPT given by PC model (a) to the
solution given by the PCIterativeBestSensor (b),(c). We
assume two sources S = {1, 2} and two targets T =
{7, 8}, and we require to place k = 1 sensors. The optimal
solution is M = 1 (a). Then one fractional solution
given by the heuristics with its corresponding rounding
is given. The results (b) and (c) in a sub-optimal solution
M = 2, which is equal to 2·OPT . An additional example
where the algorithm PCIterativeBestSensor gives a result
3
2 ·OPT , is given in Fig. 3.

However, for practical scenarios the heuristics

Exact and approximation algorithms for sensor placement against DDoS attacks 43

3

4

5

6

d[3]=1

1

2

7

8

1

11

1

2

2 2

21

11

1

2

2 2

2

(a) model PC: M = 1 (OPT)

3

4

5

6

1

2

7

8

d[5]=1/2

d[6]=1/2

1

11

1

2

2 2

21

11

1

2

2 2

2

(b) heuristics PCIterativeBestSensor be-
fore rounding: M = 1

3

4

5

6

1

2

7

8

d[5]=1

1

11

1

2

2 2

21

11

1

2

2 2

2

(c) heuristics PCIterativeBestSensor af-
ter rounding: M = 2

Fig. 2. Algorithm PCIterativeBestSensor yields 2 ·OPT (solu-
tions (b) and (c)), where M is the value of uncontrolled
flow, S = {1, 2}, T = {7, 8}, k = 1, and D is
defined by gray striped circles.

exposes a solid ratio (see Section 5).

5. Computational results

5.1. Experiment setup. The following experiments
compare the efficiencies of the models with the
algorithms. The PQ model is compared with the PQIt-
erativeBestSensor algorithm, and the PC model with
the PCIterativeBestSensor algorithm. The comparison
assumes ideal (theoretical) sensors, which means that if
a sensor is placed in a node, it controls 100% of in/out
traffic. However, in practice it depends on the volume of
traffic flowing via links, and on the processing capacity
of a detection sensor (technology). In practice, for high
volume networks, typically only selected samples are
analyzed due to processing limitations.

The two models PQ and PC and two algorithms
PQIterativeBestSensor and PCIterativeBestSensor were
run with the use of CPLEX 12.10 for Python. Python 3.7
was utilized to implement heuristics and automate
simulations. The simulations were run on a personal
computer with 1.9GHz CPU, 16GB RAM and 64-bit
Windows platform.

The experiments were conducted on the following
types of grid networks: Net|V |, where |V | =
{64, 81, 100, 121, 144, 169, 196, 225, 256, 289} indicates

4

5
7

8
6

d[4]=1

1

2

3

1

1
1

1
1

1

2

2

2

9

10

3

3

(a) model PC: M = 2 (OPT)

4

5
7

8
6

d[7]=1/2

d[8]=1/2

1

2

3

2

2

2

1

1
1

1
1

1

93

103

(b) heuristics PCIterativeBestSensor be-
fore rounding: M = 1.5

4

5
7

8
6

d[7]=1

1

2

3

2

2

2

1

1
1

1
1

1

9

10

3

3

(c) heuristics PCIterativeBestSensor af-
ter rounding: M = 3

Fig. 3. Algorithm PCIterativeBestSensor yields 3
2
·OPT (so-

lutions (b) and (c)), where M is the value of uncontrolled
flow, S = {1, 2, 3}, T = {9, 10}, k = 1, and D is
defined by gray striped circles.

the number of vertices in a network. All these networks
are directed graphs, with a single edge in each direction
u, v and v, u. An example of a small grid network is
demonstrated in Fig. 4. Each vertex in a graph may
correspond to a router or an autonomous system in a
telecommunication network.

For simulation scenarios, for each network type, four
random instances of each network type were generated,
each with randomly selected capacities (c). Each edge
capacity was randomly selected from the range c(e)e∈E ∈
[100, 200] (random selection with uniform distribution).
Additionally, for each simulation scenario, four random
instances of target locations (Ti=1,...,4 ⊆ V) were
generated (all vertices V have equal probabilities). For
each target instance Ti, four random instances of source
locations were generated (Sj=1,...,4 ⊆ V \Ti) (all vertices
V \ Ti have equal probabilities). As a result, each value
(volume of uncontrolled flow; execution time) presented
on each diagram is the arithmetic mean computed from
64 measurements. Finally, we assumed the following
number of targets and sources: Scenarios 1–4: |T | = 10,

44 K. Junosza-Szaniawski et al.

1

4

7

2

5

8

3

6

9

Fig. 4. Example of a small grid network, |V | = 9.

|S| = 40; Scenarios 1b and 2b: |T | = 10; Scenarios 3b
and 4b: |T | = 20.

5.2. Scenario 1: A PC problem, Net100, an increasing
number of sensors. The experiments were conducted
for the grid network Net100. The number of sensors was
increasing from k = 0 to k = 10.

The diagram of Fig. 5(a) demonstrates the average
volume of uncontrolled traffic (the y axis) depending
on the number of sensors. As the number of sensors
increases, the average volume of uncontrolled traffic
decreases to zero (for k = |T |), for both the PC model
and the PCIterativeBestSensor heuristics. The observed
average objective values of PCIterativeBestSensor are
higher than those of PC by up to 8%.

The diagram of Fig. 5(b) demonstrates the average
time of execution (the y axis). The observed average
values of execution time of PC are up to 10 times higher
than those of PCIterativeBestSensor.

5.3. Scenario 2: A PC problem, k = 5, an increas-
ing size of the grid for Net64, Net81, . . . , Net169. The
experiments were conducted for grid networks: Net64,
Net81, Net100, Net121, Net144, Net169. The number of
sensors was fixed at k = 5.

The diagram of Fig. 5(c) demonstrates the average
time of execution (the y-axis) as the size of the network
increases (|V |). As |V | grows, the gap between PCItera-
tiveBestSensor and PC increases significantly in favor of
the heuristics.

5.4. Scenario 3: A PQ problem, Net196, an increas-
ing value of the quality factor. The experiments were
conducted for the grid network Net196. The value of
quality factor was increasing of q ∈ {0.1, 0.2, . . . , 1.0}.

The diagram of Fig. 5(d) demonstrates the average
number of sensors (the y-axis) required to control the
q-factor of the network traffic (the x-axis). As the value
of q-factor increases, the number of required sensors
increases on average, for both model PQ and PQItera-
tiveBestSensor heuristics. However, at a certain point

sensor usage becomes saturated. In the worst observed
cases PQIterativeBestSensor required approximately one
sensor more than PQ to achieve the same quality.

The diagram of Fig. 5(e) demonstrates the average
time of execution (the y-axis). The observed average
values of execution time of PQ are up to 5 times higher
than those of PQIterativeBestSensor.

5.5. Scenario 4: A PQ problem, q = 0.5, an increas-
ing size of the grid for Net121, Net144, . . . , Net256.
The experiments were conducted for grid networks
Net121, Net144, Net169, Net196, Net225, Net256. The
quality factor was fixed at q = 0.5.

The diagram of Fig. 5(f) demonstrates the average
time of execution (the y axis) as the size of the network
increases (|V |). As |V | grows, the gap between PQItera-
tiveBestSensor and PQ increases significantly in favor of
the heuristics.

5.6. Scenarios 1b–4b.

Super source formulation. In general, we would like to
assume, that network flooding targeted at protected nodes
t ∈ T can start from any network node (source) s ∈ V \
T . In practical scenarios however, we may want to limit
attention to a set of sources S ⊆ V \ T . For example,
after conducting a network risk analysis, we may know
that some sources (autonomous systems, subnetworks) are
more hostile than others. For experiment purposes, we
applied two methods of source selection.

First, explicit selection, as used in Experiments 1–4
(Sections 5.2, 5.3, 5.4 and 5.5). We selected subsets of
vertices as sources |S| = 40. The sources were selected
randomly with uniform distribution on set V \ T .

Second, instead of selecting a set of sources S
explicitly, we can limit the portion of traffic we want
to monitor from each source s ∈ V \ T based on risk
analysis R : V → [0, 1] (see single super source formula-
tion below for details). This method was applied within
Scenarios 1b–4b. Experiments 1b–4b were conducted
with the following settings: Scenario1b: Net100, the
number of sensors from k = 0 to k = 10; Scenario 2b:
k = 5, the size of the grid Net64, Net81,. . . , Net169;
Scenario 3b: Net289, the value of quality factor q ∈
{0.1, 0.2, . . . , 1.0}; Scenario 4b: q = 0.5, the size of the
grid Net144, Net169, . . . , Net256.

The algorithms efficiency demonstrated in Scenarios
1b–4b (Fig. 6) is similar to that demonstrated in Scenarios
1–4 (Fig. 5).

Single super source formulation. With a standard trick
the problem can be reduced to an equivalent one, with a
single source. Having a graph G = (V,E) and a risk
analysis as a function R : V → [0, 1], we create a new
graph G′ = (V ∪ {ss}, E ∪ {(ss, v)}v∈V \T), where ss

Exact and approximation algorithms for sensor placement against DDoS attacks 45

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10

Vo
lu

m
e

of
 u

nc
on

tr
ol

le
d

tr
af

fic
 (a

vg
)

Number of sensors (k)

PC
PCIterativeBestSensor

(a) Scenario 1: average volume of uncon-
trolled traffic.

0

2

4

6

8

10

12

14

0 2 4 6 8 10

Ti
m

e
of

 e
xe

cu
tio

n
(a

vg
)

Number of sensors (k)

PC
PCIterativeBestSensor

(b) Scenario 1: average time of execution
(sec.).

0

10

20

30

40

50

60

70

60 110 160

Ti
m

e
of

 e
xe

cu
tio

n
(a

vg
)

Number of network vertexes (|V|)

PC PCIterativeBestSensor

(c) Scenario 2: average time of execution
(sec.).

0

2

4

6

8

10

12

0 0,2 0,4 0,6 0,8 1

N
um

be
r o

f s
en

so
rs

 (a
vg

)

Quality factor (q)

PQ
PQIterativeBestSensor

(d) Scenario 3: average number of sensors.

0

5

10

15

20

25

0 0,2 0,4 0,6 0,8 1

Ti
m

e
of

 e
xe

cu
tio

n
(a

vg
)

Quality factor (q)

PQ

PQIterativeBestSensor

(e) Scenario 3: average time of execution (sec.).

0

5

10

15

20

25

30

120 170 220

Ti
m

e
of

 e
xe

cu
tio

n
(a

vg
)

Number of network vertexes (|V|)

PQ
PQIterativeBestSensor

(f) Scenario 4: average time of execution
(sec.).

Fig. 5. Results for Scenarios 1–4.

is an artificial super vertex, and capacities of edges in
{(ss, v)}v∈V \T) are given by

∀v∈V \T c(ss, v) = R(v) ·
∑

u:(v,u)∈E

c(v, u). (12)

For the graph G′ we assume a single attack source S =
{ss}. Within G′ we simply limit vertex production
(possible outgoing flow value) according to its risk value.

In case this formulation is used to characterize the
attack sources, we need to add the restriction

d[ss] = 0 (13)

to both PQ and PC models (models described in
Section 3). This is required since the super source vertex
ss in graph G′ is an artificial vertex and in fact a sensor
can not be placed in it. The same restriction (13) applies
to both algorithms PQIterativeBestSensor and PCItera-
tiveBestSensor (Section 4).

5.7. Summary of simulation results. The simulations
for the PC algorithm led to a number of observations.
Firstly, for all test networks, as the number of sensors
increases, the volume of uncontrolled traffic decreases to
zero, for both the PC model and the PCIterativeBestSen-
sor heuristics. Secondly, the observed average objective
values of the PCIterativeBestSensor are higher than those

of PC by up to 8% for tested networks. Finally, as
the size of the grid network increases, for fixed k, the
execution time gap between PCIterativeBestSensor and
PC increases significantly in favor of the heuristics.

The simulations of the PQ algorithm led to the
following observations. Firstly, as the quality factor
increases, the number of sensors increases on the average;
however, at a certain point sensor usage becomes
saturated, for both PQ model and PQIterativeBestSen-
sor heuristics. Secondly, in the worst observed cases the
PQIterativeBestSensor required approximately one more
sensor than PQ to achieve the same quality. Finally, as
the size of the grid network increases, for fixed q, the
execution time gap between PQIterativeBestSensor and
PQ increases significantly in favor of the heuristics.

6. Conclusions

We give a proof that the sensor placement problem
is NP-complete. Additionally, we prove that the
optimization problem admits no polynomial-time
2-approximation algorithm, unless P
= NP . So,
several natural questions arise: Is there a better exact
algorithm than brute-force? Can the number of sensors
be approximated with any constant?

Although the problem is computationally hard, it
can be efficiently solved with the use of a mixed integer
programming solver for medium-sized networks. As

46 K. Junosza-Szaniawski et al.

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10

Vo
lu

m
e

of
 u

nc
on

tr
ol

le
d

tr
af

fic
 (a

vg
)

Number of sensors (k)

PC
PCIterativeBestSensor

(a) Scenario 1 b: average volume of uncontrolled
flow.

0

5

10

15

20

25

30

0 2 4 6 8 10

Ti
m

e
of

 e
xe

cu
tio

n
(a

vg
)

Number of sensors (k)

PC
PCIterativeBestSensor

(b) Scenario 1 b: average time of execution (sec.).

0

10

20

30

40

50

60

70

60 110 160

Ti
m

e
of

 e
xe

cu
tio

n
(a

vg
)

Number of network vertexes (|V|)

PC PCIterativeBestSensor

(c) Scenario 2 b: average time of execution
(sec.).

0

5

10

15

20

25

0 0,2 0,4 0,6 0,8 1

N
um

be
r o

f s
en

so
rs

 (a
vg

)

Quality factor (q)

PQ PQIterativeLPBestSensor

(d) Scenario 3 b: average number of sensors.

0

10

20

30

40

50

60

70

0 0,2 0,4 0,6 0,8 1

Ti
m

e
of

 e
xe

cu
tio

n
(a

vg
)

Quality factor (q)

PQ
PQIterativeLPBestSensor

(e) Scenario 3 b: average time of execution
(sec.).

0
5

10
15
20
25
30
35
40

140 190 240

Ti
m

e
of

 e
xe

cu
tio

n
(a

vg
)

Number of network vertexes (|V|)

PQ
PQIterativeBestSensor

(f) Scenario 4 b: average time of execution
(sec.).

Fig. 6. Results for Scenarios 1b–4b.

demonstrated for the tested grid networks, computation
time is not high and qualifies both PC and PQ models
for practical applications. The models respond to the
challenges of the real DDoS problem. One challenge
is that an attack can be conducted from any network
node. The other is that sensors are expensive and placing
them in all network nodes is not possible in many cases.
Sensors can be placed dynamically, based on perceived
network indicators (e.g., a risk factor). The models
expose a highly desirable feature, that the deployment of
a relatively small number of sensors (proportional to the
number of protected nodes) can yield a significant quality.
Both the models lead to a trade-off between the number of
deployed sensors and the volume of uncontrolled flow.

Additionally to two models, we designed two
efficient solver-based heuristics (one for each problem).
For large networks, the execution time gap between the
two models and their corresponding heuristics increases
significantly in favor of the heuristics.

Acknowledgment

The work of Dariusz Nogalski was partially
supported within the statutory activity of the Military
Communications Institute financed by the Ministry
of Science and Higher Education (Poland). Paweł
Rzążewski was supported through a project that received
funding from the European Research Council (ERC)

under the European Union’s Horizon 2020 research and
innovation program (grant agreement 714704).

References
Afek, Y., Bremler-Barr, A. and Landau Feibish, S. (2013).

Automated signature extraction for high volume attacks,
Conference on Architectures for Networking and Commu-
nications Systems, San Jose, USA, pp. 147–156.

Altner, D.S., Ergun, Ö. and Uhan, N.A. (2010). The maximum
flow network interdiction problem: Valid inequalities,
integrality gaps, and approximability, Operations Research
Letters 38(1): 33–38, DOI: 10.1016/j.orl.2009.09.013.

Armbruster, B., Smith, J.C. and Park, K. (2007). A packet filter
placement problem with application to defense against
denial of service attacks, European Journal of Operational
Research 176(2): 1283–1292.

de Assis, M.V.O., Hamamoto, A.H., Abrão, T. and Proença,
M.L. (2017). A game theoretical based system using
Holt-Winters and genetic algorithm with fuzzy logic for
DoS/DDoS mitigation on SDN networks, IEEE Access
5: 9485–9496, DOI: 10.1109/ACCESS.2017.2702341.

Belabed, D., Bouet, M. and Conan, V. (2018). Centralized
defense using smart routing against link-flooding
attacks, 2nd Cyber Security in Networking Con-
ference, CSNet 2018, Paris, France, pp. 1–8, DOI:
10.1109/CSNET.2018.8602966.

Blazek, P., Gerlich, T. and Martinasek, Z. (2019). Scalable
DDoS mitigation system, 2019 42nd International Confer-

Exact and approximation algorithms for sensor placement against DDoS attacks 47

ence on Telecommunications and Signal Processing (TSP),
Budapest, Hungary, pp. 617–620.

Bonguet, A. and Bellaïche, M. (2017). A survey of
denial-of-service and distributed denial of service attacks
and defenses in cloud computing, Future Internet
9(3), Article no. 43, DOI: 10.3390/fi9030043.

Cameron, C., Patsios, C., Taylor, P.C. and Pourmirza, Z. (2019).
Using self-organizing architectures to mitigate the impacts
of denial-of-service attacks on voltage control schemes,
IEEE Transactions on Smart Grid 10(3): 3010–3019.

Cetinkaya, A., Ishii, H. and Hayakawa, T. (2019). An overview
on denial-of-service attacks in control systems: Attack
models and security analyses, Entropy 21(2): 210, DOI:
10.3390/e21020210.

Chou, J.-J., Shih, C.-S., Wang, W.-D. and Huang, K.-C. (2019).
Iot sensing networks for gait velocity measurement, Inter-
national Journal of Applied Mathematics and Computer
Science 29(2): 245–259, DOI: 10.2478/amcs-2019-0018.

Criscuolo, P.J. (2000). Distributed Denial of Service: Trin00,
Tribe Flood Network, Tribe Flood Network 2000, and
Stacheldraht, Lawrence Livermore National Laboratory,
Livermore.

Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D.,
Marx, D., Pilipczuk, M., Pilipczuk, M. and Saurabh, S.
(2015). Parameterized Algorithms, Springer, Cham, DOI:
10.1007/978-3-319-21275-3.

Daya, A.A., Salahuddin, M.A., Limam, N. and Boutaba,
R. (2020). BotChase: Graph-based bot detection
using machine learning, IEEE Transactions on Net-
work and Servive Management 17(1): 15–29, DOI:
10.1109/TNSM.2020.2972405.

Douligeris, C. and Mitrokotsa, A. (2004). DDOS attacks and
defense mechanisms: Classification and state-of-the-art,
Computer Networks 44(5): 643–666.

El Defrawy, K., Markopoulou, A. and Argyraki, K. (2007).
Optimal allocation of filters against DDoS attacks, 2007
Information Theory and Applications Workshop, La Jolla,
USA, pp. 140–149.

Fayaz, S.K., Tobioka, Y., Sekar, V. and Bailey, M. (2015).
Bohatei: Flexible and elastic DDOS defense, 24th
USENIX Security Symposium, USENIX Security 15,
Washington, USA, pp. 817–832, https://www.useni
x.org/conference/usenixsecurity15/tech
nical-sessions/presentation/fayaz.

Ford, L.R. and Fulkerson, D.R. (1956). Maximal flow through a
network, Canadian Journal of Mathematics 8: 399–404.

Garg, N., Vazirani, V.V. and Yannakakis, M. (1994). Multiway
cuts in directed and node weighted graphs, in S. Abiteboul
and E. Shamir (Eds), Automata, Languages and Program-
ming: 21st International Colloquium, ICALP94, Springer,
Berlin, pp. 487–498.

Gera, J. and Battula, B.P. (2018). Detection of spoofed and
non-spoofed ddos attacks and discriminating them from
flash crowds, EURASIP Journal on Information Security
2018(1), Article no. 9, DOI: 10.1186/s13635-018-0079-6.

Gkounis, D., Kotronis, V., Liaskos, C. and Dimitropoulos,
X.A. (2016). On the interplay of link-flooding attacks
and traffic engineering, Computer Communication Review
46(2): 5–11, DOI: 10.1145/2935634.2935636.

Goldberg, A.V. and Tarjan, R.E. (2014). Efficient maximum flow
algorithms, Communications of the ACM 57(8): 82–89,
DOI: 10.1145/2628036.

Hemmati, M., Cole Smith, J. and Thai, M.T. (2014).
A cutting-plane algorithm for solving a weighted
influence interdiction problem, Computational Op-
timization and Applications 57(1): 71–104, DOI:
10.1007/s10589-013-9589-9.

Huang, L., Ran, J., Wang, W., Yang, T. and Xiang, Y. (2021).
A multi-channel anomaly detection method with feature
selection and multi-scale analysis, Computer Networks
185: 107645, DOI: 10.1016/j.comnet.2020.107645.

Huseinović, A., Mrdović, S., Bicakci, K. and Uludag, S. (2020).
A survey of denial-of-service attacks and solutions in the
smart grid, IEEE Access 8: 177447–177470.

Hwang, R.-H., Peng, M.-C., Huang, C.-W., Lin, P.-C. and
Nguyen, V.-L. (2020). An unsupervised deep learning
model for early network traffic anomaly detection, IEEE
Access 8: 30387–30399.

Islam, M.H., Nadeem, K. and Khan, S.A. (2008). Efficient
placement of sensors for detection against distributed
denial of service attack, 2008 International Conference on
Innovations in Information Technology, IIT 2008, Al Ain,
UAE, pp. 653–657.

Jafarian, T., Masdari, M., Ghaffari, A. and Majidzadeh, K.
(2021). A survey and classification of the security
anomaly detection mechanisms in software defined
networks, Cluster Computing 24(2): 1235–1253, DOI:
10.1007/s10586-020-03184-1.

Jeong, S.B., Choi, Y. and Kim, S. (2004). An effective placement
of detection systems for distributed attack detection in
large scale networks, in C.H. Lim and M. Yung (Eds), In-
formation Security Applications: 5th International Work-
shop, WISA 2004, Springer, Berlin, pp. 204–210, DOI:
10.1007/978-3-540-31815-6_17.

Jiao, J., Ye, B., Zhao, Y., Stones, R.J., Wang, G., Liu, X., Wang,
S. and Xie, G. (2017). Detecting TCP-based DDoS attacks
in Baidu cloud computing data centers, 36th IEEE Sympo-
sium on Reliable Distributed Systems, SRDS 2017, Hong
Kong, China, pp. 256–258, DOI: 10.1109/SRDS.2017.37.

Junosza-Szaniawski, K., Nogalski, D. and Wójcik, A. (2020).
Exact and approximation algorithms for sensor placement
against DDoS attacks, 2020 15th Conference on Computer
Science and Information Systems (FedCSIS)/13th Interna-
tional Workshop on Computational Optimization, Sofia,
Bulgaria, pp. 295–301, DOI: 10.15439/2020F106.

Kallitsis, M.G., Stoev, S.A., Bhattacharya, S. and Michailidis,
G. (2016). AMON: An open source architecture for
online monitoring, statistical analysis, and forensics
of multi-gigabit streams, IEEE Journal on Selected
Areas in Communications 34(6): 1834–1848, DOI:
10.1109/JSAC.2016.2558958.

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/fayaz

48 K. Junosza-Szaniawski et al.

Kang, M.S., Lee, S.B. and Gligor, V.D. (2013). The
Crossfire attack, 2013 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, USA, pp. 127–141, DOI:
10.1109/SP.2013.19.

Khalaf, B.A., Mostafa, S.A., Mustapha, A., Mohammed,
M.A. and Abduallah, W.M. (2019). Comprehensive
review of artificial intelligence and statistical approaches
in distributed denial of service attack and defense methods,
IEEE Access 7 : 51691–51713.

Khapalov, A. (2010). Source localization and sensor placement
in environmental monitoring, International Journal of Ap-
plied Mathematics and Computer Science 20(3): 445–458,
DOI: 10.2478/v10006-010-0033-3.

Liaskos, C. and Ioannidis, S. (2018). Network topology effects
on the detectability of Crossfire attacks, IEEE Transactions
on Information Forensics and Security 13(7): 1682–1695.

Liu, X., Ren, J., He, H., Wang, Q. and Song, C. (2021). Low-rate
ddos attacks detection method using data compression and
behavior divergence measurement, Computers & Security
100: 102–107, DOI: 10.1016/j.cose.2020.102107.

de Miranda Rios, V., Inácio, P.R.M., Magoni, D. and
Freire, M.M. (2021). Detection of reduction-of-quality
ddos attacks using fuzzy logic and machine learning
algorithms, Computer Networks 186: 107792, DOI:
10.1016/j.comnet.2020.107792.

Mirkovic, J. and Reiher, P. (2004). A taxonomy of DDoS
attack and DDoS defense mechanisms, ACM SIGCOMM
Computer Communication Review 34(2): 39–53, DOI:
10.1145/997150.997156.

Monnet, Q., Mokdad, L., Ballarini, P., Hammal, Y. and
Ben-Othman, J. (2017). DoS detection in WSNs:
Energy-efficient methods for selecting monitoring nodes,
Concurrency and Computation: Practice and Experience
29(23), Article ID: e44266, DOI: 10.1002/cpe.4266.

Mowla, N.I., Doh, I. and Chae, K. (2018). CSDSM: Cognitive
switch-based DDoS sensing and mitigation in SDN-driven
CDNI word, Computer Science and Information Systems
15(1): 163–185, DOI: 10.2298/CSIS170328044M.

Omer, J. and Mucherino, A. (2020). Referenced vertex ordering
problem: Theory, applications and solution methods,
Working paper/preprint, https://hal.archives-o
uvertes.fr/hal-02509522.

Patan, M. (2012). Distributed scheduling of sensor networks for
identification of spatio-temporal processes, International
Journal of Applied Mathematics and Computer Science
22(2): 299–311, DOI: 10.2478/v10006-012-0022-9.

Peng, T., Leckie, C. and Ramamohanarao, K. (2007). Survey
of network-based defense mechanisms countering the DoS
and DDoS problems, ACM Computing Surveys 39(1): 3,
DOI: 10.1145/1216370.1216373.

Pilipczuk, M. and Wahlström, M. (2018). Directed multicut
is W[1]-hard, even for four terminal pairs, ACM Trans-
actions on Computation Theory 10(3): 13:1–13:18, DOI:
10.1145/3201775.

Ramanathan, S., Mirkovic, J., Yu, M. and Zhang, Y. (2018).
SENSS against volumetric DDoS attacks, Proceedings of
the 34th Annual Computer Security Applications Confer-
ence, ACSAC 2018, San Juan, USA, pp. 266–277, DOI:
10.1145/3274694.3274717.

Ranjan, S., Swaminathan, R., Uysal, M., Nucci, A. and Knightly,
E. (2009). DDoS-shield: DDoS-resilient scheduling to
counter application layer attacks, IEEE/ACM Transactions
on Networking 17(1): 26–39.

Studer, A. and Perrig, A. (2009). The Coremelt attack,
in M. Backes and P. Ning (Eds), Computer Security—
ESORICS 2009: 14th European Symposium on Research
in Computer Security, Springer, Berlin, pp. 37–52, DOI:
10.1007/978-3-642-04444-1_3.

Suchanski, M., Kaniewski, P., Romanik, J., Golan, E.
and Zubel, K. (2020). Radio environment maps for
military cognitive networks: Density of small-scale sensor
network vs. map quality, EURASIP Journal on Wire-
less Communications and Networking 2020(1): 189, DOI:
10.1186/s13638-020-01803-4.

Uciński, D. (2012). Sensor network scheduling for identification
of spatially distributed processes, International Journal of
Applied Mathematics and Computer Science 22(1): 25–40,
DOI: 0.2478/v10006-012-0002-0.

Wang, K., Du, M., Maharjan, S. and Sun, Y. (2017). Strategic
honeypot game model for distributed denial of service
attacks in the smart grid, IEEE Transactions on Smart Grid
8(5): 2474–2482.

Wood, R. (1993). Deterministic network interdiction, Mathe-
matical and Computer Modelling 17(2): 1–18.

Zang, X.-D., Gong, J. and Hu, X.-Y. (2019). An adaptive
profile-based approach for detecting anomalous traffic in
backbone, IEEE Access 7: 56920–56934.

Zargar, S.T., Joshi, J. and Tipper, D. (2013). A survey of defense
mechanisms against distributed denial of service (DDoS)
flooding attacks, IEEE Communications Surveys and Tuto-
rials 15(4): 2046–2069.

Zekri, M., Kafhali, S.E., Aboutabit, N. and Saadi, Y. (2017).
Ddos attack detection using machine learning techniques
in cloud computing environments, 2017 3rd International
Conference of Cloud Computing Technologies and Appli-
cations (CloudTech), Rabat, Morocco, pp. 1–7.

Konstanty Junosza-Szaniawski received his
PhD in mathematics from the Warsaw University
of Technology (Faculty of Mathematics and In-
formation Science) in 2004. He obtained his ha-
bilitation in mathematics from the same univer-
sity in 2020. He works as an assistant professor
at the Faculty of Mathematics and Information
Science of the Warsaw University of Technology.
His research interests are related to cybersecurity,
graph theory, especially graph coloring, geomet-

rically defined graphs, networks, and graph algorithms.

https://hal.archives-ouvertes.fr/hal-02509522
https://hal.archives-ouvertes.fr/hal-02509522

Exact and approximation algorithms for sensor placement against DDoS attacks 49

Dariusz Nogalski received his MSc degree in
applied computer science from the Warsaw Uni-
versity of Technology, Faculty of Mathematics
and Information Science, Poland. He works as
a researcher at the Military Communication In-
stitute, Poland. He is currently pursuing his PhD
degree. His present research interests are in net-
works, optimization, including graph-based op-
timization, computer and network security, and
formal languages.

Paweł Rzążewski received his PhD degree in
computer science at the University of Warsaw
and is now an assistant professor at the Warsaw
University of Technology. His research interests
are related to graph theory, graph algorithms, and
parameterized complexity.

Received: 7 June 2021
Revised: 2 August 2021
Accepted: 17 September 2021

	Introduction
	Distributed denial of service
	Sensor placement
	Discussion
	Our proposal

	Problem definition
	Problem of optimal sensor placement
	Complexity of optimal sensor placement

	Description of models
	Algorithm description
	PQ iterative best sensor placement
	PC iterative best sensor placement

	Computational results
	Experiment setup
	Scenario 1: A PC problem, Net100, an increasing number of sensors
	Scenario 2: A PC problem, k = 5, an increasingsize of the grid for Net64, Net81, . . . , Net169
	Scenario 3: A PQ problem, Net196, an increasing value of the quality factor
	Scenario 4: A PQ problem, q = 0.5, an increasingsize of the grid for Net121, Net144, . . . , Net256
	Scenarios 1b–4b
	Summary of simulation results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

