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aDepartment of Biomedical Engineering
Khalifa University of Science and Technology

PO Box 127788, Abu Dhabi, United Arab Emirates
e-mail: mohammad.zitouni@ku.ac.ae

bInstitute of Information Technology
Warsaw University of Life Sciences (SGGW)

ul. Nowoursynowska 166, 02-787 Warsaw, Poland
e-mail: andrzej_sluzek@sggw.edu.pl

The paper discusses a non-deterministic model for data association tasks in visual surveillance of crowds. Using detection
and tracking of crowd components (i.e., individuals and groups) as baseline tools, we propose a simple algebraic framework
for maintaining data association (continuity of labels assigned to crowd components) between subsequent video-frames in
spite of possible disruptions and inaccuracies in tracking/detection algorithms. Formally, two alternative schemes (which,
in practice, can be jointly used) are introduced, depending on whether individuals or groups can be prospectively better
tracked in the current scenario. In the first scheme, only individuals are tracked, and the continuity of group labels is inferred
without explicitly tracking the groups. In the second scheme, only group tracking is performed, and associations between
individuals are inferred from group tracking. The associations are built upon non-deterministic estimates of memberships
(individuals in groups) and estimates obtained directly from the baseline detection and tracking algorithms. The framework
can incorporate any detectors and trackers (both classical or DL-based) as long as they can provide some geometric outlines
(e.g., bounding boxes) of the crowd components. The formal analysis is supported by experiments in exemplary scenarios,
where the framework provides meaningful performance improvements in various crowd analysis tasks.
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1. Introduction

Crowd behavior understanding is one of important yet
very challenging applications of intelligent surveillance
systems. It can be critical in detecting anti-social
behaviors, providing early warnings of security breaches,
identifying patterns of group behaviors, etc. Sadly,
the recent outbreak of COVID-19 pandemic adds novel
dimensions to these applications. All these tasks
have to be performed in dynamically evolving scenes
where groups or individuals move, interact, merge, split,
disperse, etc.

Detection and tracking of crowd components
(individuals and their groups) are fundamental tools of
vision-based crowd monitoring, and a lot of work has
been done in these areas. Nevertheless, the required
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results are usually more complicated than direct outcomes
of detectors or trackers, and include issues such as
patterns of group splitting and merging, changes in group
sizes and membership, duration of group existence, etc.
Additionally, the actual performances of state-of-the-art
detectors and trackers are usually imperfect in complex
crowd scenes. Apart from natural degrading effects
(e.g., weather conditions) we can also expect deterioration
caused by crowd density, low resolution of individual
silhouettes, multiple similar targets, crowd dynamics (e.g.,
vaguely defined boundaries of groups), etc.

Data association (i.e., consistent labeling of
correspondingly the same crowd components over
sequences of video-frames) plays a vital role in the
above tasks, and it is of secondary importance if this
could be achieved explicitly by tracking, (re-)detection,
combination of both or by any alternative means.
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Since, nevertheless, detectors and trackers remain the
fundamental tools in vision-based crowd analysis, we
argue that a model is needed to integrate them into
a uniform framework optimizing the reliability of data
association. The model should be applicable to any typical
detectors and trackers of individuals and groups. To the
best of our knowledge, no such model seems to exist
even though complementary use of detection and tracking
is reported in numerous works on machine vision (e.g.,
Park and Brilakis, 2016; Bochinski et al., 2018; Kasprzak
et al., 2012).

Thus, as the main contribution of the paper, we
propose a formal framework for integrating crowd
detection and tracking results into a uniform data
association model. The model is non-deterministic,
i.e., it takes into account limited performances of
detecting/tracking results which are often expressed
probabilistically. The model consists of two alternative
schemes exemplifying the opposite scenarios (in
practice, both schemes can be applied simultaneously or
supplementally) as follows:

1. In the first scheme, we assume that only individuals
can be effectively tracked, i.e., groups are too
vaguely defined or too sparse for tracking, and can
be only detected (not necessarily reliably). Thus,
group data associations (including splitting, merging,
disappearance, etc.) should be derived from tracking
individuals.

2. In the second scheme, tracking groups is considered
practical, while individuals cannot be tracked (even
though some of them can be detected, not always
reliably) because of crowd density, poor resolution of
images, etc. Then, data associations for individuals
are derived from group tracking results.

The proposed framework can improve performances
of crowd monitoring systems, particularly in scenarios
where detection or tracking can be temporarily corrupted
or disrupted (e.g., due to visual conditions). By using
the proposed data association schemes, the disruptions
and gaps in the crowd structure description can be easier
rectified, and crowds can be monitored more smoothly.

To the best of our knowledge, the framework is the
first attempt to convert results of detection and tracking
(for groups and individuals) into a non-deterministic
data association method for crowd components over
sequences of video-frames. The proposed model can be
combined with almost any detection/tracking algorithms
(both traditional and DL-based). In the presented
implementation, we employ just exemplary detectors and
trackers.

In Section 2, we briefly overview selected
background works related to the proposed framework,
mainly works on tracking (and detecting) individuals

and groups. It is shown that some of these methods
actually use data association as supplementary tools,
which in our opinion further justifies significance of
the proposed model. Section 3 contains the formal
mathematical specification of the framework. Some
details of the low-level tools (detectors and trackers) used
in the exemplary implementations are also provided there.
Finally, Section 4 presents a number of experimental
studies performed on publicly available benchmark
datasets. The experiments focus on scenarios, where the
proposed model can improve performances of various
crowd analysis tasks. Section 5 concludes the paper.

2. Related background works

Vision-based crowd analysis has been developing at least
fifteen years, and most of the proposed methods focus
on detection and tracking individuals, either explicitly
in the context of crowd motion analysis (Jacques et al.,
2007; Garcia-Martin et al., 2017; Wang et al., 2020a) or
as a multi-target tracking task (see a recent survey by
Ciaparrone et al. (2020)). Nevertheless, the alternative
methods aim to detect and track groups of people, since
the members of each group usually exhibit the same
motion pattern and in certain scenarios (e.g., high-density
crowds) tracking individuals might not be feasible.

2.1. Tracking and detecting individuals. Rodriguez
et al. (2011) proposed an algorithm in which crowd
motion patterns are learned as priors from a large database
of crowd videos collected from internet. The purpose
is to enhance tracking individuals by using these motion
patterns.

Tang et al. (2013) argue that the best performance
can be achieved by training people detectors on failure
cases. A joint people detector is proposed that is
based on detection of both single persons and pairs of
people, exploiting common patterns of occlusions that are
considered the failure cases.

Heili and Odobez (2013) introduced a
detection-based multi-target tracking method, where the
tracking task is formulated as a statistical labeling process.
The problem is solved using the conditional random field
model, which depends on detection pairs to model
pairwise features and color similarities/dissimilarities.

Wen et al. (2016) proposed a tracking algorithm
that utilizes dense structures on affinity hypergraphs.
Affinity was measured using appearance, motion
and trajectory smoothness cues. Data association
was improved by considering temporal similarities of
tracklets. Unfortunately, the applicability of such methods
is usually limited because of high complexity.

The majority of multi-object tracking approaches
focus on improving performances of detectors or
developing better data association schemes. A
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coarse-to-fine multi-object tracking algorithm was
used by Gong et al. (2016). A faster R-CNN network
was applied for detection, the Kalman filter was used for
coarse tracking, and a local sparse optical flow model was
exploited for fine tracking.

Another detection-based tracking method was
proposed by Zhang et al. (2015), where detections are
linked into tracklets, and separate tracklets are further
linked to form longer trajectories. The trajectory models
are re-learned automatically using a unified algorithm.

Yang and Nevatia (2014) presented an approach
for multi-target tracking where detections are grouped
into tracklets to form the resulting tracks. An online
learned conditional random field model (solved by energy
minimization) was used for tracking. To discriminate
between targets, motion and appearance models as well as
a set of pairwise functions were included into the energy
function.

Hofmann et al. (2013) presented a unified
hierarchical multi-object tracking approach that is
formulated as a three-stage maximum a posteriori
problem with different parameters at each stage.

Ren et al. (2018) proposed a tracking method
that fused density maps with visual object trackers.
In this method, a sparse kernelized correlation filter
was introduced to suppress target variations caused by
occlusions, illumination changes, and spurious responses.
Then, the people tracker fuses the filter response map
with a crowd density map using a convolutional neural
network.

2.2. Tracking and detecting groups. Edman et al.
(2013) presented a method where groups are detected
using integral channel features, and tracked using a
Gaussian mixture of probabilistic density filters. The
results are transformed from image coordinates into the
ground-plane coordinates so that groups can be defined in
terms of distances and speed differences.

A combination of low-level keypoint tracking,
mid-level patch tracking, and high-level group evolution
was proposed by Zhu et al. (2014; 2018). Keypoint
tracking was used to obtain local motions at the low
level, while mid-level patches were used to represent the
crowd and then tracked through appearance variations.
In this approach, a KLT tracker was used, and then
the KNN-based clustering algorithm was utilized. The
patches were organized into a hierarchical structure
representing evolution of groups.

Ge et al. (2012) introduced a method for detecting
and tracking small groups of people. A full-body HOG
detector together with a correlation tracker were used for
individuals. To discover groups, the Hausdorff distance
was defined on pairwise proximities and velocities. A
similar approach was presented by Raj and Poovendran
(2014). Here, reversible jump Markov chain Monte

Carlo was used to obtain overlapping rectangles that best
cover the foreground pixels. However, such methods
would probably fail in dense crowds with a high level of
occlusions.

For detecting and tracking interacting groups in
crowds, a framework based on the social force model
was proposed by Mazzon et al. (2013). A buffered
graph-based tracker was used to track the detected
groups by linking the interaction centers of these groups.
Interactions were predicted by an iterative minimization
of the error between measurements and predictions.

Shao et al. (2014) introduced group profiling to
understand the group-level dynamics and properties. A
set of tracklets detected by KLT feature tracker was used
to form a group. Visual descriptors were provided to
quantify inter- and intra-group properties, which were
used for crowd classification and analysis.

Based on the notion that groups move in the same
direction, while avoiding people moving in the opposite
direction, Zhang et al. (2018) proposed a crowd motion
segmentation method. The method is primarily designed
for specific scenarios of behavioral analysis, which may
limit its use in other applications.

A joint individual-group tracking framework using
particle filtering was proposed by Bazzani et al. (2012) for
group tracking. In this work, the individual-group state
space is factorized into two dependent subspaces where
the joint individual-group distributions are shared between
individuals and groups. Thus, relations between models of
individuals and groups are established.

Yu et al. (2016) proposed a groupwise association
and tracking method that was based on the individual
group information and group correlations. A nonrigid 2D
Thin-Plate transform was used to model the associations
within a group, and then shrinking, growing, and merging
operations were uses to refine the composition of each
group.

To quantify and detect collective motions, Wang
et al. (2017) introduced a framework that investigates
the time-varying dynamics of individuals to find
similarities in their motions, while a more comprehensive
understanding of the crowd is obtained by a multi-stage
clustering. Then, multi-view clustering was proposed
by Wang et al. (2020a) for coherent groups detection.
In this work, individuals are represented by a structural
descriptor and clustered by a a self-weighted multi-view
clustering. Additionally, a group detector is used to count
the number of groups.

It should be noted, however, that no specific
definitions of groups are used in these works. This notion
is, in general, vague and often ill-defined, and we also use
the concept of groups in its basic, informal sense.
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Fig. 1. Block diagram of building group associations from tracking individuals (Scheme 1).

3. Proposed model

Crowd analysis, e.g., classification of typical crowd
behaviors (Zitouni et al., 2019b), usually requires data
related to both individuals and groups. Although
individuals and groups can be separately detected and
tracked, simultaneous analysis better reflects interactions
between crowd components and facilitates further
analysis.

However, to the best of our knowledge, no general
models unifying data association of individuals and
groups in crowd analysis seem to exist, especially for
data acquired with a high level of uncertainty (limited
performances of detectors and trackers). Therefore, we
propose two non-deterministic schemes representing two
opposite scenarios of data association in crowd analysis.
In practice, the schemes can be adaptively combined,
depending on the actual characteristics of processed
video-sequences.

Both schemes use detectors of individuals and
groups, but trackers are applied selectively. The first
scheme is based on tracking individuals. Then, the
individual tracks (in conjunction with data on membership
of individuals in groups) are employed to perform group
data association (labeling groups for monitoring their
evolution). In the second scheme, the approach is
reversed, i.e., only groups are tracked and group tracking
results are used to perform data association for individuals
(based on their group memberships).

In both schemes, the ultimate results specify changes
within the crowd, including (dis)appearance of individuals
and groups, evolution of groups (e.g., splitting, merging)
and relations between groups and individuals (joining or
leaving). Figure 1 shows a block diagram illustrating the
first scheme, while Fig. 2 depicts a block diagram for the
second scheme.

To emphasize independence of the schemes from the
raw-data tools (detectors and trackers), exemplary tools
used in the performed experiments are discussed at the
end of this section.

3.1. Notation and definitions. In both schemes,
we use the specific notation to represent detection and
tracking results (for individuals and groups) in the current
video-frame t and, if applicable, in previous frames
{t− 1, t− 2, . . . , t−K, . . . }. Thus

I(t) = [i1(t), i2(t), . . . , iNt(t)] (1)

is the vector representing Nt people identified in the
current frame t by detector(s) of individuals. Similarly

G(t) = [g1(t), g2(t), . . . , gMt(t)] (2)

is the vector representing Mt groups extracted in the
current frame t by detector(s) of groups.

To indicate relations between groups and individuals,
we introduce the notation

̂gim,n(t) ≡ est[in(t) ∈ gm(t)] (3)

to numerically estimate (from interval [0, 1], e.g., using
probabilities) the confidence level that in frame t the
individual in(t) is a member of group gm(t).

Correspondingly,

̂gim,n(t−K, t) ≡ est[in(t) ∈ gm(t−K)] (4)

numerically estimates the confidence level that individual
in(t) from frame t was a member of group gm(t −K) in
frame t−K . In the same manner,

̂iim,n(t−K, t) ≡ est[in(t) = im(t−K)] (5)

is the numerical estimate that the individual in(t) from
frame t is the same as individual im(t − K) from frame
t−K .

Finally,

ĝgm,n(t−K, t) ≡ est[gn(t) = gm(t−K)] (6)

is the numerical estimate that group gn(t) in frame t is the
same as group gm(t−K) from frame t−K .
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Based on Eqns. (1)–(3), we estimate in frame t the
levels of individual memberships in groups by an Mt×Nt

matrix

̂GI(t) =

⎡

⎢

⎢

⎣

̂gi1,1(t) . . . ̂gi1,Nt
(t)

̂gi2,1(t) . . . ̂gi2,Nt
(t)

. . . . . . . . . . . . . . . . . . . . . . . . . .
̂giMt,1(t) . . . ̂giMt,Nt

(t)

⎤

⎥

⎥

⎦

. (7)

Zero columns of ̂GI(t) indicate individuals not belonging
to any detected group, while zero rows represent groups
with no members. Usually, such cases represent
false-positive detections which should be removed, i.e.,
the numbers Nt or Mt are appropriately reduced.

It should be highlighted that, in general, the values
of ̂gim,n(t) are not equivalent to probabilities. Usually,
they do not sum up to 1 along columns. Each number is
estimated separately and often not related to other values
in the same column. In particular, it is possible to have
multiple ones in a column, if a group is a sub-group
of another group, or if the same group is independently
identified by a different detector. More details on typical
methods used to obtain values ̂gim,n(t) from actual visual
data are given in the following subsection.

3.1.1. Estimating ̂gim,n. In the simplest scenario, the

values of ̂gim,n(t) can be estimated by the ratio

̂gim,n(t) =
area(BBin ∩BBgm)

area(BBin)
, (8)

where BBin is the bounding box of the n-th person and
BBgm is the outline of the m-th group.

Alternatively, objects (including individuals and
groups) can be represented by density functions (e.g., Li
et al., 2018) or by heat maps (e.g., Zhou et al., 2019)
where object outlines are defined by (near-)zero values of
these functions. Then Eqn. (8) can be generalized to

̂gim,n(t) =

∫

fin(x, y)fgm(x, y) dxdy
∫

fin(x, y) dxdy
(9)

where fin and fgm are, respectively, the density functions
(or heat maps) of the n-th person and of them-th the group
in an image with X × Y coordinates.

Actually, one of the exemplary group detectors
presented in Section 3.4 applies the probability density
approach.

Remarkably, computational costs of estimates ̂gim,n

are very low. It can be noted that both Eqns. (8) and (9)
require just a single scan of a frame after it is processed by
the detectors of individuals and groups. Thus, real-time
performances are easily obtainable, provided that both
detectors perform in real time.

3.2. Group associations from tracking individuals.
In this scheme (referred to as Scheme 1) associations
between groups of the current frame t and a past frame
t−K are inferred from tracking individuals. Usually, we
consider the neighboring frames t and t− 1 but, as shown
below, any past frames can be alternatively used.

In both frames, groups and individuals are detected
so that the matrices ̂GI(t) and ̂GI(t−K) (cf. Eqn. (7)) are
available. We assume that Nt−K individuals and Mt−K

groups occur in frame t −K , and Nt individuals and Mt

groups exist in frame t.
First, from tracking individuals we build an Nt−K ×

Nt matrix ̂II(t−K, t) containing estimates (see Eqn. (5))
that individual im(t −K) from frame t −K is the same
as individual in(t) in the current frame t:

̂II(t−K, t) =

⎡

⎢

⎢

⎢

⎣

̂ii1,1(t−K, t) . . .
̂ii2,1(t− 1, t) . . .

...
...

̂iiNt−K ,1(t−K, t) . . .

̂ii1,Nt(t−K, t)
̂ii1,Nt(t−K, t)

...
̂iiNt−K ,Nt(t−K, t)

⎤

⎥

⎥

⎥

⎦

.

(10)

In general, matrices ̂II(t − K, t) should satisfy
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a straightforward requirement that sums along its rows
(columns) must not exceed one since an individual in
the current (past) frame cannot physically correspond to
more than one person from the past (current) frame. In
particular, zero-valued columns (or rows) are possible;
they represent newly appearing crowd members (or
disappearing crowd members).

Afterwards, we can estimate memberships of the
current-frame individuals in the past-frame groups. Let
̂GI(t−K, t) be the matrix of estimates (e.g., probabilities)
that individuals from frame t were members of groups in
frame t−K:

̂GI(t−K, t) =

⎡

⎢

⎢

⎢

⎢

⎣

̂gi1,1(t−K, t) . . .
̂gi2,1(t−K, t) . . .

...
...

̂giMt−K ,1(t) . . .

̂gi1,Nt
(t−K, t)

̂gi2,Nt
(t−K, t)

...
̂giMt−K ,Nt

(t−K, t)

⎤

⎥

⎥

⎥

⎥

⎦

.

(11)

This matrix can be estimated as

̂GI(t−K, t) = ̂GI(t−K, t−K)×̂II(t−K, t) (12)

and its size is Mt−K ×Nt.
Given such a history of the individual memberships

(which can span, through more matrix multiplications,
over any number or frames) we are able to trace
correspondences between groups, i.e., data associations
between groups in the current frame t and groups in a
past frame t − K can be established. This is modeled
by ̂GG(t−K, t) matrix of size Mt−K ×Mt obtained as

̂GG(t−K, t) = ̂GI(t−K, t)× ̂GI(t, t)T . (13)

The elements ĝgm,n(t−K, t) of this matrix are, formally,
non-deterministic estimates of the numbers of individuals
shared by group gm(t−K) from frame t−K and group
gn(t) from frame t.

Consequently, groups can be deterministically
associated (based on the maximum estimated number of
shared members) at any time instances when such an
association is needed.

The label of a past-frame group gm(t − K) is
(forward) linked to the label of a current-frame group
gn(t) corresponding to the maximum value of in the m-th
column of matrix ̂GG(t − K, t). Similarly, the label of
a current-frame group gn(t) is (backward) linked to the
label of a past-frame group gm(t − K) corresponding to
the maximum value of in n-th row of the matrix ̂GG(t −
K, t).

Because links are created bidirectionally, multiple
label associations are possible. For example, the same
current group can be backward linked to several past
groups (which indicates group merging) or the same past
group can be forward linked to multiple current groups
(which represents group splitting). In this way, labels
flexibly propagate through time and informative details on
the crowd evolution in the monitored scene are provided.

It should be noted that all-zero columns of matrix
̂GG(t − K, t) represent groups that disappear and their
labels should be terminated. Correspondingly, all-zero
rows of ̂GG(t − K, t) indicate newly appearing groups
which should be assigned new labels.

3.3. Individual associations from tracking groups.
In this scheme (referred to as Scheme 2), individual
associations between the current frame t and a past frame
t−K are inferred from tracking groups (to which people
belong), i.e., only the group tracker is used. Again,
detectors of groups and individuals are applied so that the
matrices ̂GI(t) and ̂GI(t−K) (cf. Eqn. (7)) are available,
where Nt−K , Nt, Mt−K and Mt indicate, respectively,
the numbers of detected individuals and groups in both
frames.

The associations between groups in the current frame
t and the past frame t − K are obtained from tracking
results. Formally, these associations are represented by a
Mt−K × Mt matrix ̂GG(t − K, t) containing estimates
(cf. Eqn. (6)) that group gm(t − K) from the past frame
t−K is the same as group gn(t) in the current frame t):

̂GG(t−K, t) =

⎡

⎢

⎢

⎢

⎣

ĝg1,1(t−K, t) . . .
ĝg2,1(t−K, t) . . .

...
...

ĝgMt−K ,1(t−K, t) . . .

ĝg1,Mt
(t−K, t)

ĝg2,Mt
(t−K, t)
...

ĝgMt−K ,Mt
(t− 1, t)

⎤

⎥

⎥

⎥

⎦

,

(14)

where the estimates ĝgm,n(t − K, t) are provided by the
group tracker. In our experiments, a group tracker derived
from the Kalman filter (see Section 3.4) is applied as the
main baseline tracker, but any alternative tracker can be
used instead.

Now, the objective is to identify the most credible
associations between individuals from frames t − K and
t, without explicitly tracking them.

We estimate associations between the i-th individual
from frame t − K and the j-th individual from frame
t (they are identified by subscripts (i, j)) using the
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following matrix:

̂II(i,j)(t−K, t) =

⎡

⎢

⎣

̂ii(i,j)1,1(t−K, t) . . .
...

...
̂ii(i,j)Mt−K ,1(t−K, t) . . .

̂ii(i,j)1,Mt
(t−K, t)
...

̂ii(i,j)Mt−K ,Mt
(t−K, t)

⎤

⎥

⎦ ,

(15)

where

̂ii(i,j)m,n(t−K, t) = ̂gim,i(t−K) · ̂gin,j(t)
· ĝgm,n(t−K, t)

(16)

i.e., we combine estimates of individual memberships in
groups (obtained from detectors) with group associations
ĝgm,n(t−K, t) provided by the group tracker.

Altogether, associations between all individuals from
frames t −K and t can be represented by a 4D tensor (a
2D matrix of 2D matrices):

̂II(t−K, t) =

⎡

⎢

⎣

̂II(1,1)(t−K, t) . . .
...

...
̂II(Nt−K ,1)(t−K, t) . . .

̂II(1,Nt)(t−K, t)
...

̂II(Nt−K ,Nt)(t−K, t)

⎤

⎥

⎦ .

(17)

The above formalism of individual associations from
group tracking does not exploit the visual appearances
of crowd members. Thus, it is equally applicable
to crowds of distinctively different people and crowds
of similarly looking (e.g., uniformed) individuals. In
fact, visual appearances (if sufficiently diversified and
obtainable from acquired frames) can further improve
the credibility of the associations. In the implemented
feasibility study, we actually employed this supplemental
option in a simple, yet often effective, way.

We just consider the outline (bounding box) of a
detected individual, a key point (key region) for which any
key point descriptor can be calculated. As an example,
we use SURF descriptors (in the RGB space). In the
case of the same people (with approximately the same
sections of their bodies outlined in both frames) similar
descriptor values are expected. This can be used to
up-value associations provided by Eqn. (17).

For practical reasons, we primarily match descriptors
of individuals within groups with non-zero estimates
ĝgm,n(t−K, t). However, individuals from other groups
are also matched (but only for limited-size geometric
neighborhoods). In other words, we assume that a person

may change a group, but cannot move too far (even if
running) within a short period of time. Since the fastest
humans can only run at a speed of 10 m/s, the position
differences between subsequent frames cannot exceed 0.3
to 0.4 m (for typical fps rates) so that the suitable size of
the neighborhood can be easily estimated for a given setup
(fps rate, distance from the monitored scene, etc.) of the
surveillance camera, taking into account the most extreme
scenarios expected.

In general, tensors ̂II(t − K, t) are very sparse
with only a few non-zero elements, which simplifies
data associations between individuals. The deterministic
association (i.e., the label continuity) for the j-th
individual from frame t is defined by the maximum
element ̂ii(i,j)m,n(t − K, t) in tensor ̂II(t − K, t).
However, since multiple deterministic associations are
not possible for people, if the i1-th maximum-score
association for the j-th individual is already taken by
another person k (with a higher value of ̂ii(i1,k)m,n(t −
K, t)), the second best choice is selected, etc.

If for the j-th individual from frame t, all values
̂ii(i,j)m,n(t − K, t) are zeros (or if all non-zero values
are “taken” by other crowd members) a new label will be
assigned for that individual. If, correspondingly, the same
happens for the i-th individual from frame t−K , its label
is removed from the list of active crowd members.

Unfortunately, in real-world surveillance
misdetection of people frequently happens. Therefore,
we recommend to perform data associations between
the current-frame individuals and individuals across a
few most recent frames. Then, the values of tensor
̂II(t−K, t) should be weighed by factors wK decreasing
with the temporal distance between the frames, e.g.,
w1 = 1, w2 = 0.9, w3 = 0.8, etc. Eventually, the
individuals from the current frame t would be linked to
individuals from any of the most recent frames, based on
the highest scores.

3.4. Exemplary detectors and trackers. Our model
can use any detectors of individuals and groups (which
generate outlines, e.g., bounding boxes, of individual
silhouettes or group shapes). In exemplary feasibility
study implementations, we employed two types of people
detectors and two group detectors. In both cases,
one example is a classical detector, while the other is
CNN-based. The classical detector of individuals is
the aggregated channel features (ACF) detector (Dollár
et al., 2014), which was originally trained on an INRIA
person data set (Dalal and Triggs, 2005)).

Classical group detection is performed by
motion-based segmentation of the scene foreground.
The Gaussian mixture model of dynamic textures
(GMM-of-DT) from Zitouni et al. (2016) is used to
identify motion saliency (from a sequence of frames).
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The salient motion is modeled using a GMM framework
with K Gaussian distributions. The probability that a
certain pixel represents a group is defined in a standard
way as

p(yt) =

K
∑

i=1

wi

(

1

|2πΣk|1/2 e
−1/2(yt−µk)

TΣ−1
k (yt−µk)

)

,

(18)
where wi is the weight of the k-th Gaussian component
and μk and Σk are its mean and covariance, respectively.
A threshold value is then applied to approximate the
group regions, and morphological analysis is performed
to smooth their shapes. Note that this detector employs
data from a number of consecutive frames.

As an alternative, CNN-based detectors (originally
presented by Zitouni et al. (2019a)) have been used. In
this method, regions are proposed in crowd images and
classified into individuals, small groups and large groups.
This detector uses only data from a single frame.

Exemplary trackers of individuals and groups are as
below.

The tracker of individuals (which is used to obtain
elements of matrices ̂II(t − K, t), cf. Eqn. (10), is
based on the publicly available implementation of the
JPDA tracking method by Rezatofighi et al. (2015).
In this algorithm, the states of Nt individuals and
their Rt measurements are respectively denoted by
{x1(t), . . . , xNt(t)} and {z1(t), . . . , IRt(t)}.

The state xn(t) of an individual combines his/her
position and velocity. The detected positions (which
are usually noisy and cluttered) are incorporated into
measurements zr(t). Then, using a linear Gaussian
model, the tracking probabilities are obtained as

p(dnr (t)) ∝
{

(1− p(in))β, r = 0,

p(in) · N (zr(t), în(t),ΣS), r �= 0.

(19)
where p(in) is the detection probability of individual in(t)
estimated by the ACF detector, β is the false detection
density and în(t) is the predicted position of individual
in(t) in frame t, and ΣS is the covariance matrix of
the Kalman filter. Note that N indicates the normal
distribution.

The problem is then reformulated as an integer linear
program, and solved to achieve the maximum likelihood.
We use these results as estimates of matrices ̂II(t−K, t),
see Eqn. (10), i.e., ̂iim,n(t−K, t) = p(dnr (t−K)).

The Kalman filter is also applied as the baseline
tracker for groups, i.e., the tracking estimates ĝgm,n(t −
K, t) in Eqns. (6) and (14) are obtained as

ĝgm,n(t−K, t) = p(xt|z1:t−K), (20)

where xt is the state (predicted position) of the group
(based on the evolution of the prior state at t − K) and
z is the Kalman observation.

4. Exemplary experimental results

To evaluate the practicality and usefulness of the proposed
model, both schemes were tested on a number of videos
showing diversified crowd behaviors. Unfortunately, even
the most recent data sets on crowd structure analysis,
(e.g., Wang et al., 2020c; 2020b) focus on performance
evaluation in various factors related to detection and
tracking.

In general, we do not intend to test performances of
any particular detectors/trackers or to improve trackers.
Nevertheless, we found that our methodology can
enhance trackers by removing falsely initiated tracks and
terminating tracks incorrectly continued (belonging to
people who disappeared from the scene) as highlighted in
Section 4.2.

Because of the above assumptions, the test
video-sequences have been chosen from PETS (Ferryman
and Shahrokni, 2009), Parking Lot (Dehghan et al., 2015)
and Town Center (Benfold and Reid, 2011) collections.
These popular data sets (even if not particularly
challenging for testing trackers and/or detectors) contain
highly diversified crowd behaviors, and are sufficiently
complex for evaluating the proposed model. In some
tests, no suitable benchmarks exist and we had to identify
(sometimes subjectively) ground-truth reference results
for comparison.

We focused on six videos, four from the PETS data
set, i.e., S2 L2 14− 55, S1 L1 13− 57, S2 L1 12− 34,
and S1 L2 14− 06 sequences, one from the Parking Lot
data set and one from the Town Center data set. These
videos contain diversified crowd densities, distributions of
individuals and groups, motion patterns, occlusions and
visibility conditions. Exemplary frames from the videos
(with some detection results) are given in Fig. 3.

In all tests, detectors and trackers mentioned
in Section 3.4 are used as the baseline algorithms.
Individuals and groups are represented by labeled
bounding boxes, where the same labels indicate continuity
from the past frames. Labeling is driven either by tracking
results (if our model is not applied), or by the scores
produced by our model (as explained in Sections 3.2
and 3.3). Since individuals are assigned to groups (see
Eqn. (7)) group labels are linked to labels of group
members. Such data are essential, in particular, for the
interpretation of the crowd structure and evolution.

4.1. Evolution of crowd structure. These tests
represent the most significant intended application of
the proposed framework. First, we demonstrate how
our model helps to improve group evolution analysis
(formation and disappearance of groups, changes in group
memberships, etc.).

Such results can be subsequently used to identify
crowd behaviors present in the scene, e.g., using the
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S1 L1 13− 57 S2 L1 12− 34 S1 L2 14− 06 S2 L2 14− 55

Parking Lot Town Center

Fig. 3. Exemplary frames from tested video-sequences.

socio-cognitive categorization discussed by Zitouni et al.
(2020), where four main categories are considered.
The categories are: individualistic, group (with leader-
following as a special case) and social interaction
behaviors.

Plots in Fig. 4 visualize exemplary crowd evolutions
for various behaviors. In S1 L1 13 − 57 and Parking
Lot sequences, the crowd mainly consists of large groups
with a few smaller groups temporarily formed. This is
characteristic for group behaviors.

In S2 L1 12−34 sequence, the groups are small but
(when formed) they last for a noticeable period of time.
This indicates social interaction behavior where people
incidentally interact with each other. In S2 L2 14 − 55
sequence, there is a large number of groups, mostly
small, that quickly disappear after being formed. This
indicates randomness of individual motions and general
volatility of the crowd structure, which implies individu-
alistic behavior.

To demonstrate that Scheme 1 actually provides
improvements, its results are compared with the same
analysis performed using only the baseline group
tracking; the results are shown in Table 1. The
performance criteria include the average lifespan of group
labels, the average number of labels per frame, and the
total number of group labels in the whole sequence.

In general, it is desirable to have lower numbers
of group labels per frame. With the same detectors
and trackers, this simply means more compact (and
presumably less redundant) representation of crowds.
Thus, our model is superior in all examples.

However, the total number of group labels and
the average label lifespan should depend on the actual
crowd behavior. In group behaviors (where groups exist

for a significant period of time) longer lifespans and
lower numbers of labels better reflect the reality (e.g.,
S1 L1 13 − 57 and Parking Lot sequences). For indi-
vidualistic behaviors (e.g. S2 L2 14 − 55 sequence) the
total number of labels should be rather high with very
short lifespans (because groups actually do not exist; they
are only instantaneously formed and quickly disappear).
Again, our model provides more realistic estimates.

For social interaction behaviors, the total number
of group labels is rather unpredictable, but the groups
(usually small) should last for a while. For the
exemplary sequence S2 L1 34 − 24 the results of our
model are, therefore, comparable (if not superior) to the
tracking-only baseline.

In Fig. 5, we show selected results by Scheme 2
where group switching by crowd members is presented.
Two sequences from Fig. 4 are used and (for the sake
of figure readability) only some crowd members are
displayed. In S1 L1 13 − 57 sequence (where two
large groups dominate) the majority of individual labels
stably remain in the same group. In S2 L1 12 − 34
sequence (with many small groups occasionally merging
and splitting) more frequent group switching can be
noticed for many crowd members.

4.2. Other prospective applications. Although
analysis of crowd evolution is the main intended
application of our model, we have also identified that the
model can be used as a supporting tool to improve tracking
results for individuals. We tested this approach partly
because the corresponding benchmark references on the
PETS data set are available.

First, we compared the JPDA tracker (which is one
of our baseline trackers for individuals) with the same
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Fig. 4. Plots of the size and lifespan of groups over sequences of frames (Scheme 1 used). Groups with very short lifespans are ignored.

Table 1. Comparison between results of Scheme 1 (ours) and the tracking-only baseline (Bs) in group evolution analysis.

Sequence
Total no.

group labels
Avg. group label
lifespan (frames)

Avg. no of group
labels per frame

Behavior type

Ours Bs Ours Bs Ours Bs
S1 L1 13− 57 16 20 113.12 73.25 1.93 5.70 Group
S2 L1 12− 34 15 18 117.50 102.25 4.12 5.14 Social Interaction
S2 L2 14− 55 88 39 30.21 52.76 5.56 16.28 Individualistic
Parking Lot 16 17 64.4 44.1 2.08 4.65 Group

tracker supported by our model. For a fair comparison,
we used the original script and ground-truth provided by
Rezatofighi et al. (2015) and the benchmark results were
taken from the literature.

JPDA tracking data are applied to create group
associations by Scheme 1, and the associations are
subsequently used to modify the tracker parameters.

Table 2 compares our results with the original
JPDA tracker using various measures, i.e., precision,
recall, F-measure and multiple object tracking accuracy
(MOTA). The proposed approach outperforms the JPDA
tracker in terms of recall and F-measure for all test
sequences, while providing better or comparable results
in other metrics. We expect similar improvements for any
other baseline tracker of individuals.

Finally, we attempted to replace actual trackers of
individuals by Scheme 2, where only group tracking
is available (see Section 3.3) and no actual tracking is
performed on individuals (which makes this test very
challenging). Nevertheless, the results in Table 3 show

that on exemplary (and, actually, on many more) PETS
sequences Scheme 2 is comparable (and sometimes
superior) to popular trackers of pedestrians in terms of
precision, recall and F-measure.

5. Conclusions

The paper presents a framework of two alternative
schemes (including their non-deterministic definitions,
exemplary embodiments and experimental feasibility
studies) for data association in visual surveillance of
crowd behavior. By using inter-dependencies between
the results of the baseline detectors and trackers of
individuals and groups, we provide a mathematical
model for maintaining data association continuity in
scenarios where results of tracking/detection algorithms
are temporarily corrupted or disrupted (due to visual
conditions, occlusions, bad weather, etc.).

The schemes can be integrated with any combination
of detection and tracking techniques, including
CNN-based detectors/trackers, as long as they provide
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Fig. 5. Plots of group switching patterns by selected crowd members, based on results with Scheme 2. The lines terminate when the
labels are discarded.

Table 2. Performances of tracking individuals. In the proposed method, Scheme 1 is incorporated into the JPDA tracker.
Sequence Method Precision Recall F-measure MOTA
S1 L1 13 − 57 Proposed 91.2 69.6 78.9 61.4

Rezatofighi et al. (2015) 86.2 58.3 69.6 48.2
S2 L1 12 − 34 Proposed 80.6 98.8 88.8 73.4

Rezatofighi et al. (2015) 83.9 92.9 88.2 74.9
S1 L2 14 − 06 Proposed 84.1 55.5 66.9 42.7

Rezatofighi et al. (2015) 86.8 40.3 55.0 32.8
S2 L2 14 − 55 Proposed 88.7 75.1 81.3 52.4

Rezatofighi et al. (2015) 85.6 75.1 80.0 60.9

outlines (e.g., bounding boxes) of the detected/tracked
groups and individuals. Exemplary combinations of the
selected state-of-the-art detection/tracking algorithms are
used in the presented feasibility-study implementations.

The feasibility tests were performed on exemplary
video-sequences (from the PETS data set and two other
publicly available data sets) and the proposed schemes
have shown their advantages. In particular, the produced
data associations (which usually, but not exclusively,
represent fluctuations in group numbers, sizes, and
individual memberships in groups), provide important
clues for the subsequent analysis of the crowd evolution,
including socio-cognitive categorization of the crowd
behavior, in the monitored environments.

Because no benchmark results are available for the
tests targeting the main area of intended applications,
we have built our own references (based on results
provided by the baseline trackers) in these major tests.
Supplementary tests were performed in pure tracking
tasks (for which the proposed schemes are not intended)
because the availability of the state-of-the-art benchmark
results. In general, it was found that by using the proposed
model:

• The evolution of crowd structure can be monitored
more reliably then by using only detectors and
trackers of groups and individuals.

• Even in standard tasks of tracking people, the model
(though not intended for such applications) provides

results superior/comparable to the benchmarks from
publicly available trackers of individuals.

Computationally, the model is based primarily on
matrix operations (where the sizes of matrices correspond
to the numbers of detected individuals and groups), i.e., it
can be applied in real-time problems, including scenarios
with large crowds of complex structures.

Two schemes proposed in the model are not exclusive
(since both use the same baseline detectors of groups and
individuals). Actually, it is recommended to use them
in parallel to further improve performances in various
problems of crowd analysis. Additionally, the parallel
involvement of multiple detectors and/or trackers is also
suggested in the model.

In the future works, we intend to adapt the proposed
model to multi-camera setups (including mobile cameras)
where the additional factor of spatial data associations
(switching between cameras) should be combined with
the temporal data associations.
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