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The paper proposes an original, comprehensive, and methodically consistent graph theory-based approach to the description
of the diagnosed process and the diagnosing system. The main baseline of the presented approach is in the dichotomous
approach to diagnosing. It involves a separate description of both the process and the diagnostic system. This approach
reflects the practice of designing implementable diagnostic systems. Thus, it can be seen as a proposal of a new, alternative,
and, at the same time, flexible design procedure with great potential for applications. The primary motivation behind it
was an attempt to circumvent the numerous limitations of well-known and well-established diagnosis approaches proposed
by the communities working on fault detection and isolation (FDI) and artificial intelligence theories for diagnosis (DX).
Accordingly, the paper identifies and provides an extensive discussion and a critical analysis of the existing limitations.
Numerous examples and references to practical applications of the approach are indicated.
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1. Introduction

The role of diagnostics of dynamic systems is constantly
increasing. It is expected that model-based diagnostic
systems may soon replace commonly used but imperfect
alarm systems. Diagnostics is extensively used in
fault-tolerant control systems (Blanke et al., 2015; Mejdi
et al., 2020; Hamdi et al., 2021). Moreover, the advanced
diagnostics is an essential tool for the development of
efficient and rational maintenance strategies.

Over the past forty years, many approaches, methods
and frameworks have been developed to detect, isolate,
and identify faults of dynamic systems. They are derived
from automatic control, modeling and identification
theories, and computational intelligence techniques.
Descriptions of these can be found primarily in the
monographs by Gertler (1998), Chen and Patton (2012),
Blanke et al. (2015), Ding (2008), Isermann (2006),
Witczak (2007), Korbicz and Kościelny (2010) or Bartyś
(2014).
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The practical utility of diagnostic methods is often
limited to a specific class of objects or systems. Each
diagnosing method makes use of a model which, in fact,
is a specific description of the diagnosed system. Such
a model defines, collects, and expresses the knowledge
necessary to make a diagnosis. Clearly, the design
perspectives, limitations, and performance indices are
strictly associated with the class of model chosen for
diagnosing purposes. The potential applications are
determined by the form and degree of knowledge about
the diagnosed system, and in fact, are specific for the
chosen diagnostic method.

Most diagnostic methods proposed within the FDI
and DX communities have rather limited applicability,
particularly when considered for the use for diagnosing
complex dynamic processes. The limitations of the known
methods will be discussed in more detail in Section 2. One
might even to say that there is no diagnostic method that
is free from at least one limitations listed below:

• the requirement of using only a specific type of
models (usually analytical),
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• the use of only binary evaluated residuals,

• neglecting the knowledge about sequences of
symptoms,

• the requirement of models reflecting impacts of
faults,

• the requirement of data representing states with
faults,

• a limited set of faults considered,

• a limited multiplicity of faults considered.

In order to eliminate the aforementioned limitations, a
holistic graph-based approach has been proposed to the
description of the diagnosed process and the diagnosing
system referred to as FDPS (fault diagnostics of processes
and systems). A model FDPS represents the portion of
knowledge used for diagnosing, rather than specification
of the diagnostic algorithms. The FDPS consists, first of
all, of a graph model of the diagnosed process, GP, and
a graph model of the diagnostic system, GDS. Clearly,
various diagnostic algorithms can be derived from the
FDPS.

This paper is aimed to present the essential elements
of the FDPS approach and to demonstrate its application
properties with respect to the diagnosis of complex
dynamic systems.

The FDPS can be seen as an extension of the family
of FDI methods. Its elements and subsequent extensions
have been the subject of many publications. However,
holistically it has never been presented before. Also, the
comparison with other methods has not been the subject
of any publication yet.

The goal of the ongoing research works, the results
of which are summarized in this paper, was to seek an
approach that:

• enables the use of various models for fault detection
(depending on the knowledge possessed about the
diagnosed system and the availability of inputs),

• makes use of models representing the fault-free state
of a system being diagnosed,

• does not require measurement data representing the
states of the diagnosed system affected by faults,

• enables the use of trinary diagnostic signals,

• enables diagnostic inference which also makes use of
the knowledge of sequences of symptoms,

• enables inference about single and multiple faults,

• makes it possible to obtain high distinguishability of
faults,

• makes it possible to ensure immunity to the
diagnoses which are inconsistent with the physical
state of a diagnosed system.

Summing up, the paper contributes to the field
of fault detection and isolation by presentation of an
original and comprehensive graph-based approach to
the formalized description of the diagnosed process
and diagnostic system, together with a review of their
applications.

The rest of the paper is structured as follows.
Section 2 presents the analysis of the most significant
limitations of the known approaches. The conducted
analysis is the starting point for the proposal of
the FDPS graph approach which is presented in
Section 3. This Section presents a graph description
of the diagnosed process and the diagnostic system.
Applications based on the introduced description are
presented in Section 4. The following are presented:
selection of model structures for fault detection,
determination of fault–symptom relationships, analysis
of fault detectability and distinguishability, selection of
sensors, methods of system decomposition, principles of
derivation of inference rules, real-time decomposition,
and principles of managing structural changes in the
diagnosed system. Section 5 presents the basic properties
of the proposed approach. Section 6 is devoted to a
comparative analysis of the proposed solution with other
known methods. The summary in Section 7 highlights the
most important key-points of the paper.

2. Limitations of known diagnostic methods

2.1. Limitations in the usage of some models.
The formal model of the system in the FDI (fault
detection and isolation) approach (Cordier et al., 2004;
Travé-Massuyés, 2014b) has been defined as a pair
〈Z,X〉, in which Z is the set of input and output
process variables, and X is the set of its internal
states. The equation associating the residuals with the
values of the measured or control variables is referred
to as the residuum generator (Travé-Massuyés, 2014a) or
analytical redundancy relations (ARRs) (Cordier et al.,
2004). The following techniques are used for fault
detection:

• state estimation methods (Frank, 1987; Xu et al.,
2017; Rotondo et al., 2021),

• parity space methods (Chow and Willsky, 1984;
Gertler, 1998; Patton and Chen, 1991; Odendaal and
Jones, 2014; Cho and Jiang, 2019; Song et al., 2020),

• parameter estimation methods (Isermann, 1984; Zhai
et al., 2015).
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In practice, linear models are mainly used. The reason is
in the serious difficulties of obtaining nonlinear analytical
models.

The formal description of the system in the artificial
intelligence theories for diagnosis, abbreviated as DX
(Reiter, 1987; de Kleer and Williams, 1987; de Kleer and
Kurien, 2003; de Kleer, 2011; Rodler, 2020), includes a
set of system components, a description of their operation
(the system description), and a collection of observations
OBS. The system description takes the form of a
set of sentences of the first-order predicate logic. The
DX approach assumes the use of analytical models, and
excludes the use of data-driven ones.

There are also known diagnostic methods based on
data-driven models. They use statistical models (PCA,
PLS) (Qin, 2012; Ding, 2014; Jung, 2020; Jakobsson
et al., 2020), additive models (Łabęda-Grudziak and
Lipiński, 2021) or artificial intelligence models: neural,
fuzzy, their combinations, etc. (Patan, 2008; Mrugalski,
2014; Witczak, 2014; Simani et al., 2018; Pulido et al.,
2019; Mur et al., 2022; Romero et al., 2022). Such
models require training data from the fault-free state of
the diagnosed system. They reflect the operation of the
system in a range of input variability which was used for
training.

The need to use various process modelling
techniques for the purpose of fault detection was a
requirement imposed on the FDPS approach.

2.2. Use of binary diagnostic signals. Most
model-based diagnostic methods use binary evaluation of
residuals. As a result, the so-called binary diagnostic
signals are then used for inference of faults both in the
FDI and DX diagnosing approaches. The relationship
between the faults and binary diagnostic signals is defined
as the fault signature matrix (Cordier et al., 2004;
Travé-Massuyés, 2014b; Jung et al., 2018).

In the structural analysis (SA) (Blanke et al.,
2015; Krysander, 2006; Frisk and Krysander, 2007;
Travé-Massuyés et al., 2006; Chanthery et al., 2020; Jung,
2020) the system is modelled as a set of components.

The SA is used, among others, for solving the sensor
placement problem, as well as for seeking the structures
of models for fault detection and isolation tasks. Each
component is described by a set of equations representing
its state in normal operation conditions. Faults are
understood as disturbances of specific equations, but
indeed they are not directly represented in the model.
The derived residual equations are interpreted as residual
generators. The residuals are usually evaluated in a
bi-valued manner. A structure corresponding to the
signature matrix is used for fault isolation. Such a
structure is referred to as the effect of the faults on the
residuals (Blanke et al., 2015).

The binary representation is also present in the DX
approaches. The concept of a conflict set was introduced
by Reiter (1987), de Kleer and Williams (1987), de Kleer
and Kurien (2003), Travé-Massuyés (2014b) and Rodler
(2020). It is interpreted as a subset of system components;
at least one of which must be faulty, in order to keep a
consistency with observations.

An alternative solution is the tri- or multivalued
residual evaluation (Vanden-Daele et al., 1997; Kościelny,
1999; Bregón et al., 2014; Daigle et al., 2009; Kościelny
et al., 2021c; Kościelny and Bartyś, 2021). In this case,
the relationship between faults and diagnostic signals
takes the form of a fault isolation system (FIS). The FIS
was intensively exploited by Kościelny et al. (2016) as
well as Kościelny and Bartyś (2021).

The use of three-valued estimation of residuals, in
contrast to the bi-valued one allows us to achieve better
fault distinguishability (Bregón et al., 2013; Kościelny
and Bartyś, 2021; Kościelny et al., 2021b). Moreover,
application of binary evaluation of residuals may lead to
generation of diagnoses that are if fact unrealistic. In
other words, it can also generate incorrect diagnoses of
physically impossible states. This was demonstrated by
Kościelny and Bartyś (2021). Thus, in order to obtain high
distinguishability of faults and robustness of inference of
faults, it was assumed that the FDPS should enable the use
of multivalued diagnostic signals.

2.3. Neglecting information of symptoms sequences.
The vast majority of diagnostic inference methods,
including those developed in the FDI and DX, make
only use of the current values of process variables and
the knowledge of the relationship between faults and
diagnostic signal values. However, as shown by Kościelny
et al. (2021c), it is advisable to take also into account
the knowledge about the timed order (sequence) of
symptoms. This knowledge can be used for increasing
fault distinguishability. The FDPS approach assumes the
possibility of using such knowledge as far as it is possible
to be acquired.

2.4. Requirement of models reflecting the impacts
of faults. Many mathematical descriptions of processes
affected by faults are provided in the literature (Frank,
1990; Chen and Patton, 2012; Witczak, 2007; Pazera
et al., 2020; Witczak et al., 2020). Usually, simplified
linear residual equations are used for diagnosing. The
computational form of these equations is used for fault
detection purposes. It determines the relationship between
the residuals and the known inputs and outputs of the
model. In turn, the internal form reflects the relationship
between residuals and faults. Various forms of notation of
this relation are used, such as structural and directional
residuals (Gertler, 1998; Chen and Patton, 2012) or
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sequential residuals (Kościelny et al., 2016). Approaches
based on unknown input observers are also widespread
(Chen and Patton, 2012). All of these methods allow for
the design of secondary residuals based on primary ones,
in such a way as to shape the sensitivities of the residuals
to different subsets of faults.

However, the applicability of these approaches is
limited, as the modelling of the process affected by faults
is very difficult and expensive even for simple systems.
For complex industrial systems it is almost impossible.
The nature of some phenomena occurring in industrial
processes is not fully known. For example, there are not
known models of such phenomena as emissions of toxins
in conventional power plants or biomass combustion.
Attempts to build such complex models can only be
economically justified in the case of critical installations.

Therefore, in the FDTS it was assumed that only
those model based fault detection methods will be
used which represent fault-free states of the diagnosed
processes.

2.5. Assumption of the availability of data represent-
ing faults. In industrial processes, measurement data
representing states with faults are practically unavailable.
The number of possible faults is excessively large and,
moreover, the abnormal and emergency states are rare.
Big sets of process data are available in the databases of
contemporary control and process monitoring automation
systems. But most archive data are related to the states
of normal process operation and few are registered for
abnormal and emergency states. On the other hand,
diagnostic systems require recognizing faults that occur
for the first time. This limits the use of many known
diagnostic methods that assume the availability of data
from the abnormal (faulty) system states. For example,
the classification methods that require training data for
particular states of the process become useless.

The fault isolation in the FDPS approach is carried
out based on automatic inference approaches. Therefore,
the knowledge about the relationship between a fault and
its symptoms is designed based on expert knowledge,
rather than on process data.

2.6. Limitation of the set of faults. In all FDI
methods, three main types of faults are considered: the
process component faults FC , the actuator faults FU ,
and the instrument faults FY . However, many known
diagnostic methods assume only one type of faults,
presuming that the others do not occur. Known examples
of diagnostic schemes are: instrument fault detection
(IFD), actuator fault detection (AFD), and component
fault detection (CFD). Also, a limited set of faults is
considered in many publications. For example, in the
work of Taheri et al. (2020) sensor and actuators faults,

as well as cyber attacks, are analyzed, but the occurrence
of component faults is ignored.

In each of such cases, the question arises on how the
diagnostic system will react when the faults omitted at the
design stage appear in reality. Such approaches seem to
be significant simplifications and therefore their practical
usefulness is very limited.

In the FDPS, the possibility of any kind of faults is
assumed and not excluded.

2.7. Limitation of the multiplicity of faults. The
FDI approaches initially considered only single faults. In
contrast, the formal description of the system in the DX
approach is faultless. Faults are principally identified with
elements in the COMP set. Although, there are known
modifications of this approach, which consist in modelling
faults through various modes of operation of a given
component (Jung et al., 2015). The assumption about
single faults is not applied. The diagnoses are generated
as minimal hitting sets (HSs) of all observed minimal
conflict sets and indicate not only single but also multiple
faults. The HS tree algorithm is used for fault isolation
(Reiter, 1987; Greiner et al., 1989; de Kleer, 2011).

Limiting the inference to consideration of only single
faults is unacceptable in the case of complex systems.
Therefore, in the FDTS, both single and multiple faults
are being analyzed.

3. FDPS approach

3.1. GP graph as a qualitative model of the process.
The directed process graph GP is a qualitative model
describing the cause–effect relationships between process
variables including effects of faults. An application of
the GP to design model structures was given by Sztyber
et al. (2015). The directed GP graph is an extension of the
well-known signed directed graph (SDG), which is used to
represent causal relationships between process variables
or alarms (Iri et al., 1979; Yang et al., 2010). The GP
extension is in including faults into graph.

The vertices of the GP graph represent the variables.
The arcs reflect the impact of the variables on one another.
The set of all variables characterizing the system will be
denoted by X . In this set the following subsets can be
distinguished:

X = XU ∪XD ∪XX ∪XY , (1)

whereXU is the set of control variables,XD stands for the
set of the inputs of unknown values (disturbances), XX

means the set of internal variables (not measured), XY

signifies the set of output variables (measured).
The control system generates signals u ∈ U ; in the

case of the fault-free communication channel (Fig. 1(a))
they are equal to the actual control signals x ∈ XU .
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All variables in XY are measured. The set of measured
signals Y is therefore as large as the set XY , and
the values of the corresponding elements in these sets
are consistent (taking into account the uncertainty of
measurements) in the case of fault-free measurement
paths (Fig. 1(b)).

The set of faults F includes control path faults FU ,
component faults FC and instrument faults FY ,

F = FU ∪ FC ∪ FY . (2)

In addition, we will assume, that the process is affected
by disturbances D whose values are unknown. The set of
values V describing the diagnosed system can therefore
be represented by the union of the disjoint subsets,

V = U ∪ Y ∪X ∪ F ∪D. (3)

From a formal point of view, a GP graph is a
weighted version of Berge’s directed unigraph without
loops. It can be written as follows:

GP = 〈V,A, φ〉 , (4)

A ⊂ 〈V × V 〉 , |V | = n, |A| = m, (5)

where V is the set of vertices, A is a bipartite relation
defined on the set of vertices being a set of ordered
pairs 〈vi, vj〉 ∈ V × V representing graph arcs, φ :
A → {+,−,±} is a function specifying the sign of the
interaction along a given arc.

In a GP, several subgraphs can be separated based on
the type of vertices. Figure 2 shows such a separation and
defines mutual relations between subgraphs.
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Fig. 1. Representation of the impact of faults in a GP graph.
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Fig. 2. GP graph structure.

A subset X of the GP graph vertices forms a
subgraph GPX representing the relationships between the
variables:

GPX = 〈X,AX〉 , AX ⊂ 〈X ×X〉 . (6)

Here, the partial process models represent the nominal
state of the part of the diagnosed system. Therefore, they
do not reflect the impacts of faults F and disturbances D.
The partial models are used for the generation of residuals
which are indicative to faults when their values deviate
from zero.

Examples of GPs were presented for a set of serially
interconnected tanks (Sztyber et al., 2015; Kościelny
and Sztyber, 2018), a distillation column (Sztyber et al.,
2015), and a setup of four serially connected pressure
vessels (Kościelny et al., 2019).

3.2. Model structures. The model structure is defined
(Sztyber et al., 2015) as the pair

M = 〈o, I〉 , o ∈ XY , I ∈ X (7)

containing one output o and a set of inputs I that satisfies
the following conditions:

• for each i ∈ I , there exists a path from input i to
output o, which does not contain any other vertex
from the set I ,

• for each vertex v ∈ GPX there exists a path from
some i ∈ I to v if there exists a path from v to o,
which does not contain vertices from the set I .

The first condition ensures that each input of the model
has an effect on the modelled variable and this effect
cannot be described by other variables in the set I . In
contrast, the second condition ensures that the modelled
variable is completely described by the set of inputs.

Each model structure corresponds to a subgraph in
GPX . A model structure is identifiable if the values of
all input and output signals are known. Thus, the inputs
i ∈ I must be known as well as control or measured
signals belonging to the set XY . Also, the variable being
modelled must be measured, so that o ∈ XY . Obviously,
the control signals u ∈ U and measured signals y ∈ Y are
taken for identification of model structures. The identified
model structures are thus subgraphs in the GP.

Further, the set of model structures which will
be chosen for implementation in diagnosing system is
determined based on the GP graph. The method of
determining all model structures is given by Sztyber et al.
(2015). For each model structure, a test algorithm is
specified. It contains two parts: the first related to the
model-based residual generation and the second related to
decisive part.
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Various types of models can be used to generate
the residuals. Also, the test algorithms can use models
based on data acquired from the normal state of the
system. However, in our opinion, these should be
nonlinear models because only such models are useful in
diagnostics of industrial process. The set of all Z variables
used for fault detection includes control signals U and
measurement signals Y ,

Z = U ∪ Y = {zi : i = 1, . . . , I} . (8)

The residual is understood as the difference between the
modelled and measured variables or as the difference
between the left and right-hand sides of the equation
describing the part of the system being tested. The latter
case applies to analytical models that include the output
signal.

The decisive part of the test algorithm includes an
algorithm for evaluating (classifying) the residual value.
Various approaches can be used for this: binary or
multivalued, crisp or fuzzy, based on the instantaneous
value of the residual or averaged over a sliding window.
All these approaches can be used to describe and
implement in the diagnostic system (DS). However, the
fuzzy trinary residual evaluation is preferred due to the
ability of reduction in the number of false diagnoses and
enhanced fault distinguishability figures. The result of
the selection of a set of model structures, in terms of the
required fault detectability, distinguishability, and model
identifiability is a set of residuals

R = {rj : j = 1, . . . , J} . (9)

Tests are performed periodically in the DS in order to
detect emerging faults.

3.3. Graph model of the diagnostic system. The
graph model of the diagnostic system GDS presented in
this section is a result of many works. However, in the
present form it has not been presented in any publication
yet.

The residual values are calculated in the course of the
operation of the DS. The j-th diagnostic test generates a
diagnostic signal sj . As a result of all tests, we obtain a
set of diagnostic signals S (crisp or fuzzy):

S = {sj : j = 1, . . . , J} . (10)

A relation RSZ can be defined on the Cartesian product of
the sets S and Z:

RSZ ⊂ S × Z. (11)

The expression 〈sj , zi〉 ∈ RSZ means that the value of the
process variable zi is used by the j-th test to generate the
diagnostic signal sj . Define a bipartite graph

GSZ ⊂ 〈
S,Z,RSZ

〉
(12)

whose set of vertices consists of diagnostic signals S and
process variables Z . The set of edges of the graph is
described by the relation RSZ .

The diagnostic system should detect and isolate the
set of faults

F = {fk : k = 1, . . . ,K} . (13)

The sensitivity of diagnostic signals to faults can be
determined by a relation defined on the Cartesian product
of the sets S and F ,

RSF ⊂ S × F. (14)

The expression 〈sj , fk〉 ∈ RSF means that the signal sj is
sensitive to the fault fk, i.e., the fault fk affects the value
of the signal sj . The ordered vector of diagnostic signal
values corresponding to a given fault forms the binary
signature of that fault. Signatures of all faults constitute
the fault signature matrix (FSM). In the case of the binary
evaluation of residuals the diagnostic signal is equal to 1
if 〈sj , fk〉 ∈ RSF , otherwise it is set as 0.

For the trinary residual evaluation, we assign the
following function to the graph arcs represented by the
relation RSF :

Θ : RSF → {1,−1,+1, c} , (15)

where Θ(sj , fk) = 1 corresponds to binary and the other
values to trivalued diagnostic signals; Θ(sj , fk) = −1
means that a fault fk results in a negative value of the
diagnostic signal sj while Θ(sj , fk) = +1 results in a
positive value; Θ(sj , fk) = c indicates the possibility of
both negative and positive values.

Thus, the function Θ assigns weights to the arcs
of the graph GSF representing the fault symptoms.
Therefore, the relationship (15) can be represented as a
directed weighted graph GSF . The set of vertices of this
graph contains sets S and F . The set of directed arcs
running from faults to diagnostic signals is determined by
the relationship between these sets. In turn, the signs of
the impacts of faults on diagnostic signals are determined
by the function Θ. We have

GSF =
〈
F, S,RSF ,Θ

〉
, (16)

Trivalued evaluation of residuals may be considered a
special case of multivalued evaluation. This corresponds
to the fault isolation system (FIS) by Kościelny et al.
(2016; 2021c). The FIS is an array structure that assigns
specific reference values of diagnostic signals to all faults
considered. Each diagnostic signal can have its own
individual set of values Vj . The k-th fault signature
corresponds to a FIS column. It is defined by the relation

V (fk) = [V1k, V2k, . . . , VJk]
T . (17)
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Thus, in the graph model, we allow each residual to
be evaluated either as binary or trinary. In the case of
binary evaluation, the set of values of the diagnostic signal
is Vj = {0, 1} , and in the case of the trinary evaluation
Vj = {0,−1,+1}. The zero value always corresponds to
the lack of the sensitivity of the diagnostic signal to the
fault i.e., the case where a residual value is close to zero.
In the graph model, there is no arc linking the fault vertex
to the diagnostic signal vertex in this case. The other
values different from zero are considered as symptoms of
faults. The union of the graphs GSZ and GSF results in a
graph whose set of vertices contains the sets Z, S, F , and
its set of arcs is defined by the relations RSZ , RSF and
the function Θ. Such a graph will be called the graph of
the diagnostic system (GDS):

GDS =
〈
Z, S, F,RSZ , RSF ,Θ

〉
. (18)

A GDS for a steam superheater and an attemperator was
presented by Kościelny and Sztyber (2018) along with the
version for the three-tank system. This paper proposes
extension of the graph description by signs of impacts of
variables and faults.

The GDS does not refer immediately to the
components of the diagnosed system. However, they can
be introduced for design purposes. The level of detail in
distinguishing between components can vary depending
on the design needs. For example, instruments can be
treated as separate components or can be parts of more
complex units. In the latter case, each element cn in the
component set C = {cn : n = 1, 2, . . . , N} is associated
with a subset of measurement devices Yn and a subset of
faults Fn. Each component is represented in the GP as its
subgraph.

3.4. Sequences of symptoms. The relationship
between faults and diagnostic signals given in the form
of an FSM or an FIS does not contain any information on
the order of symptoms related with particular faults. The
knowledge of this order is informative and can be used
to distinguish between faults. The symbol esj,p(fk) =
〈sj , sp〉 denotes the so-called elementary sequence, i.e.,
the sequence of two symptoms j and p specific for fault
fk (Kościelny et al., 2021c). The notation 〈sj , sp〉 means
that symptom sj will occur before symptom sp.

Different symptom sequences may be characteristic
for faults that are indistinguishable on the grounds of
diagnostic signals. Thus, it is sufficient for distinguishing
a pair of faults if at least any pair of symptoms for these
faults is different: esj,p(fk) = 〈sj , sp〉 , esj,p(fn) =
〈sp, sj〉.

However, it is usually not possible to unambiguously
determine the order of symptoms for all faults. Thus, the
knowledge obtained in this way is usually incomplete.
The greater the increase in fault distinguishability,

the more complete the knowledge of the relationships
between symptom delays (Kościelny et al., 2021c). The
set of known elementary sequences used for fault isolation
is

ES = {esj,p(fk) = 〈sj , sp〉} , fk ∈ F, sj , sp ∈ S.
(19)

The FDPS does not require knowledge of a mathematical
model of the diagnosed system. It is based on a
qualitative model, which can be determined based on
expert knowledge. The impact of faults, as well as causal
relationships between variables are represented in the GP,
while the GDS defines the relationships between process
variables, diagnostic signals and faults.

4. FDPS applications

A schematic use of the FDPS approach is shown in Fig. 3.
It demonstrates the use of the FDPS both in the design
phase and by the real time implementation.

It should be mentioned that a detailed discussion of
all applications of the FDPS approach is beyond the scope
of this paper. A selection of chosen applications will
be briefly characterized along with an indication of the
publications in which they were presented.

4.1. Selection of model structures. Sztyber et al.
(2015) provide a method for determining the structures
of all models that can be used for fault detection and
isolation. It includes the following steps: searching
for and connecting strongly consistent components of
the graph, topological sorting of vertices, searching for
model structures, and choosing models which contain
more than one vertex belonging to one strongly consistent
component. For each model structure, an appropriate
model, i.e., analytic, fuzzy, neural, additive or other, can
be developed and used for fault detection.
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Fig. 3. Scheme of diagnosing with the FDPS approach.
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4.2. Determination of the fault–symptom relation-
ship. Based on the GP, also the sensitivity of model
structures to faults can be determined (Sztyber et al.,
2015). A model structure is sensitive to fault affecting
the modelled variable if there is a directed path leading
from the fault to the variable. FSMs can be specified for
the structures intended to be implemented in a diagnostic
system. Trivalued signatures results from the GSF (16).
They have been used, among others, by Kościelny et al.
(2021a) or Kościelny and Bartyś (2021).

4.3. Deriving elementary sequences. The GP is
useful for supporting expert knowledge when analyzing
the sequences of fault symptoms. The sequence of
symptoms sometimes follows directly from the GP, as
shown by Kościelny et al. (2016).

4.4. Detectability analysis. Fault detectability
analysis can be performed based on both the GP and the
GDS. A fault is detectable in terms of a GP if there is at
least one diagnostic signal (one model structure) sensitive
to that fault (Sztyber et al., 2015). Detectability can
also be derived from the GDS. Sensitivity of a diagnostic
signal to a given fault means that there exists an arc
connecting the fault and diagnostic signal vertices. This
corresponds to the existence of at least one non-zero value
in the fault signature.

4.5. Distinguishability analysis. The fault
distinguishability analysis for binary diagnostic signals
is possible with the GP. Two faults f1 and f2 are
distinguishable in terms of the GP if both are detectable
and there is a model structure sensitive to f1 and
insensitive to f2 or sensitive to f2 and insensitive to f1
(Sztyber et al., 2015). However, it is more convenient to
conduct the distinguishability analysis based on the GDS.
It makes it possible to consider multivalued residuals, and
thus to identify not only subsets of distinguishable and
indistinguishable faults, but also pairs of conditionally
distinguishable faults (Kościelny et al., 2016). Taking
into account sequences of symptoms, we are able to
assess the obtainable fault distinguishability (Kościelny
et al., 2021c).

4.6. Selection of sensors. Frequently the set
of instruments installed for technological reasons is
insufficient to provide the assumed distinguishability
of faults. If it is the case, the question arises as
to which instruments should be added to improve
the distinguishability and/or whether it is possible to
distinguish all faults. These questions should be answered
during the design phase. Sztyber (2017) presents
a method for selecting a set of sensors based on a
GP that satisfy certain requirements regarding fault

detectability and distinguishability. Fault detectability and
distinguishability requirements are meant as a diagnostic
specification containing a set of faults to be detected and a
set of pairs of faults which are distinguishable from each
other. Here, only single faults are considered.

4.7. Decomposition of the process and diagnostic sys-
tem. Kościelny and Sztyber (2018) use a GP to divide
the process installation into a finite number of subsystems
(defined by the number of process variables and faults).
On the other hand, a GDS, i.e., a tripartite graph of
diagnostic system was used to assign subsets of tests,
and thus subsets of diagnostic signals, to the separated
diagnostic subsystems in such a way as to minimize
the links between them. The decomposition ensures
minimization of interdependencies between subsystems,
thereby reducing, among other things, the need for mutual
exchange of information between them.

4.8. Determination of inference rules. The FSM
or FIS used for fault isolation can be determined based
on GSF (16). Inference can be carried out using
both rules corresponding to the fault signatures and
rules representing FSM or FIS rows. In the case of
multivalued residual evaluation, the complex signature
(17) corresponds to a rule of the form:

if (s1 ∈ V1,k) ∧ · · · ∧ (sJ ∈ VJ,k) then fk. (20)

Such a rule can be decomposed into a set of simple rules.
The number of such rules is determined by the number
of possible combinations of the values of the diagnostic
signals in each test. This allows for specifying the rules
corresponding to the rows for the FSM or the FIS. In the
case of the FSM, there is a single rule. For the FIS and
trinary diagnostic signals, we obtain

if (sj = −1) then f ∈ F (sj = −1) ,
if (sj = +1) then f ∈ F (sj = +1) ,

(21)

where F (sj = −1) and F (sj = +1) are subsets of
faults for which the diagnostic signal takes the value
sj = −1 or sj = +1. Inference becomes more complex
when elementary symptom sequences (19) are added. An
inference algorithm based on trinary evaluated residuals
and the knowledge of elementary sequences is given by
Kościelny et al. (2021c).

4.9. Decentralized diagnosis. Diagnosis algorithms in
single-level and two-level decentralized structures based
on the FDPS approach and fuzzy logic are presented by
Syfert et al. (2018).

4.10. Supporting HAZOP analysis. HAZOP is a part
of risk assessment analysis focussing on how the system
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deviates from the intended operation. In this respect, in
the paper by Kościelny et al. (2017), a qualitative process
description in the form of a GP was applied. The GP
was used to find out the causes of parameters deviations.
In a classic HAZOP analysis, the connections between
nodes may not be considered, especially in the case when
there are internal process feedbacks. The use of a GP
increases the probability of considering all hazards, due
to the explicitly defined links between nodes.

4.11. Alarm-based diagnostic design. The GP is also
useful for designing alarm based fault inference rules. It
also makes it possible to reduce the number of alarms that
are signaled to process operator. However, these issues
have not yet been the subject of publications.

5. Properties of the FDPS

The FDPS approach exhibits the following properties:

• It allows the use of different types of partial
models representing the fault-free nominal state of
a diagnosed system. Among others, the analytical,
neural, fuzzy, and additive models can be used for
fault detection. In addition, it does not require any
analytical models unlike several other approaches.
These can be used of course, but this is not necessary.
The graph description proposed in the FDPS may
be based exclusively on expert knowledge, while
for fault detection data-driven models derived from
data sets acquired by the fault-free operation of the
diagnosed system can be used.

• It does not impose the need to use any particular
way of residual evaluation. It allows the use of
both binary and trinary evaluation. In addition, the
way each residual is evaluated can be different. The
evaluation can be crisp or fuzzy depending on the
adopted fault inference algorithm.

• The use of trinary residuals combined with the
knowledge gained from the analysis of symptom
sequences makes it possible to obtain better fault
distinguishability (Kościelny et al., 2021c).

• Complex and difficult to obtain models that reflect
the impacts of faults are not needed.

• Knowledge of data from faulty states of the
diagnosed system is not required.

• The FDPS approach takes into consideration
faults that can affect components, actuators, and
instruments. Furthermore, other dysfunctional
events, such as parasitic reactions in a chemical
processes, shortages of reactants entering a reactor or
a cyber attacks can also be classified as faults. The

impacts of faults are modelled in a qualitative way.
Faults are directly embedded in the graph models
of both process and diagnostic system. In contrast,
the quantitative models used for fault detection do
not refer to faults. Moreover, the proposed approach
seems to be natural and much more convenient for
inferring faults compared with methods that identify
faults with components.

• It allows us to obtain inference rules corresponding
to both FSM or FIS rows and columns. This makes
it possible to apply various algorithms for diagnostic
inference.

• The FDPS allows us for identifying single and
multiple faults (Kościelny and Bartyś, 2021). In
the case of three-valued residuals, the rules of
calculation of diagnostic signals are different than
these in the case of binary evaluation. They take into
account the possibility of an effect of compensation
of the impacts of faults on the residual value. The
applied rules are presented in Table 1.

• It allows for searching for an optimal set of sensors,
as well as a set of model structures for fault
detection with respect to fault detectability and
distinguishability, as shown by Sztyber et al. (2015).

• Based on the proposed formal description of the
FDPS, it is possible to generate diagnostic inference
rules in an automatic way. The graph description
also allows us to manage structural changes of the
diagnosed and diagnostic systems. This feature
yields high robustness of fault isolation.

• It enables the use of various approaches to handle
the uncertainty of fault symptoms. To cope
with the uncertainty of fault symptoms, a hybrid
diagnostic inference method based on the fusion
of the Bayesian approach and fuzzy inference was
proposed Kościelny et al. (2021a). On the other
hand, in the work of Sztyber and Kościelny (2016)
the uncertainties of the symptoms were accounted
by combining fuzzy logic and the Dempster–Shafer
theory.

Table 1. Principles of determining three-valued signatures of
double faults.

vj/vk 0 −1 +1 −1,+1
0 0 −1 +1 −1,+1
−1 −1 −1 −1, 0,+1 −1, 0,+1
+1 +1 −1, 0,+1 +1 −1, 0,+1

−1,+1 +1,−1 −1, 0,+1 −1, 0,+1 −1, 0,+1
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The above properties make the FDPS capable of
diagnosing complex dynamic systems including
large-scale processes.

6. Discussion

In this section we will discuss and compare the FDPS with
other known methods, mainly in terms of its usefulness for
diagnosing complex processes. Further, we will refer to
those methods that use exclusively quantitative models for
fault detection. Our discussion will be also focussed on
key solutions, primarily those for which a formal model of
the diagnostic system has been formulated and published.
These are therefore the models developed within the FDI
and DX communities. The similarities and differences
between them have been discussed by Cordier et al.
(2004) and Travé-Massuyés (2014b). We will also refer
to the structural analysis (Düstegör et al., 2006; Krysander
et al., 2007; Blanke et al., 2015). SA is frequently used for
design, among others, of model structures as well as for
solving the sensor placement problem of fault diagnosis.
It can be used in both FDI and DX approaches.

Principally, the diagnostic methods differ on how
the knowledge of the fault–symptom relationships is
acquired. This knowledge is obtained from:

(a) models that reflect the impacts of faults (internal
form of residuals),

(b) data-driven models acquired from data sets reflecting
fault-free and faulty states of the diagnosed system,

(c) experts.

In Case (a), the relationship between faults and
diagnostic signals, which is necessary for fault isolation,
is derived directly from equations accounting for the
effect of faults (Frank, 1990; Gertler, 1998; Chen and
Patton, 2012; Ding, 2008; Witczak, 2007). It can be
stated that the portion of knowledge about the impact of
faults on the model outputs and residuals, is the highest
in this case. Such rich knowledge promises achieving fast
and precise diagnoses. However, usually, this is not the
case. The reason is that the use of structural or directional
residuals for fault isolation substantially reduce the
knowledge of the dynamics of the impacts of faults on
the residual values. On other hand, only quantitative
models that account for the impacts of faults make it
possible to identify faults, i.e., determine their magnitude
and variability over time. It is worth mentioning that
the applicability of such approaches is limited since
modelling systems that take account of faults is very
difficult and expensive even for non-complex systems. In
addition, the essence of some phenomena occurring in
industrial processes is not fully recognized. Attempting to
build such complex models may be economically justified
only for critical installations.

In Case (b), classification methods are applied for
fault isolation (Chen and Patton, 2012; Witczak, 2007;
Patan, 2008). For classification purposes some reference
data are needed for the fault-free and faulty states of the
system. The different states of the system correspond to
different locations in the residual space. In the case of
industrial processes, and also in the case of other complex
systems, acquiring learning data from states with single
faults is practically impossible, and even more so for
states with multiple faults. Technological installations in
chemical industry, power industry, food industry, etc. are
usually unique or implemented in short series. Therefore,
it is not easy or possible to transfer expertise from one
to other even similar facilities. All this makes it almost
impossible to obtain learning data records representing
particular system states with faults.

The number of possible faults is typically very large,
but the abnormal behaviour and states with faults are
rare. On the other hand, the diagnostic system should be
capable of recognizing faults that occur for the first time.
This limits the applicability of the discussed approaches
for the diagnosis of complex systems.

In Case (c), knowledge about the fault–symptom
relationship is obtained from experts, and fault isolation is
carried out by automatic inference methods. This solution
is used in the classic version of FDI and DX (Cordier
et al., 2004; Travé-Massuyés, 2014b), as well as in the
FDPS. This knowledge is qualitative and takes the form
of the FSM or the FIS.

In the DX approach, according to Reiter’s theory,
faults are identified with components, similarly as in SA.
Therefore, dysfunctional states in equipment resulting
from, e.g., an incorrect process flow or the occurrence
of parasitic reactions in a chemical reactor are difficult
to capture. Introducing different modes of component
operation does not sufficiently solve the problem. In
reality, components may operate in different modes, and
several faults may be associated with each component.
The formal model of the diagnosis system adopted in the
DX approach is useful for describing electronic systems,
but inconvenient for describing complex dynamic objects.
The FDI and FDPS approaches use modelling processes,
rather than faults. In our opinion, such a solution, is
definitely better suited for applications in the case of
complex industrial processes.

The conflicts in the DX are binary. This is a
significant drawback of this approach (similarly to other
approaches using binary evaluated residuals). This
drawback consists, on the one hand, in the possibility
of generating physically impossible diagnoses, and, on
the other hand, in the low fault distinguishability in
comparison with approaches which use trinary evaluated
residuals. In the paper by Kościelny and Bartyś (2021),
it was shown that binary evaluation does not guarantee
physically true diagnoses due to the loss of information
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about the residual sign.
The possibility of generation of physically

impossible diagnoses is an inherent feature of diagnosis
using models for fault detection and inference based on
binary diagnostic signals. This is true for all model-based
approaches. In the work of Kościelny and Bartyś (2021)
it was shown that the common belief that methods based
on Reiter’s theory allow correct isolation of multiple
faults by the occurrence of fault compensation effects is
unjustified. In fact, compensation can occur only in those
cases where the impacts of the faults on the particular
residual are opposite. Otherwise, physically impossible
potential diagnoses are generated. Thus, the property
commonly attributed to this method of correct inference,
in situations where fault compensation effect occurs,
often fails in practice.

The low fault distinguishability obtained by the DX
approach results not only due to the binary evaluation
of the residuals, but also due to neglecting knowledge
about the time order in which the symptoms emerge, and
due to adoption of the symptom exoneration assumption.
This assumption makes the inference take into account
only these conflicts that really occurred, and omits the
knowledge of conflicts that did not occur. This eliminates
the effect of generating transient false diagnoses resulting
from different instants of symptom formation time, albeit
at the cost of reduced fault distinguishability. As shown
by examples (Kościelny et al., 2019), the achievable fault
distinguishability of the classic DX approach is lower
compared with signature-based inference approaches.

Structural analysis focuses on structural properties
of systems, that is, properties that do not depend on
values of model parameters. This approach is used at
the design stage. A system is modelled as a collection of
components (Blanke et al., 2015; Krysander et al., 2007;
Frisk and Krysander, 2007; Travé-Massuyés et al., 2006;
Düstegör et al., 2006). Each component is described
by an equation or a set of equations that are satisfied
under normal system operation conditions. The structural
model describes only the relationships between variables,
parameters and equations. The graph in AS illustrates the
relationships between equations and variables (known and
unknown). Equations describe physical relationships, but
also mathematical relationships (derivatives).

The mathematical description contains a set of
equations that describe the elements. To account for the
dynamic properties of the system, equations are added that
bind the variable and its derivative. This leads to a very
large number of equations for complex systems. A fault
is modeled as a perturbation in the consistency of a given
equation. It is also common to include faults as additional
variables in the equations. The causality is not specified
in the models used in AS in contrast to GP.

FDI and SA approaches differ in their generation of
residuals. In structural analysis, they can be obtained as

an equation referring exclusively to known variables, but
also as a chain of calculations, leading to the elimination
of unknown variables or the determination of the same
variable from two different equations, with possible prior
elimination of unknown variables.

In our opinion, the AS is not suitable for applications
to complex systems, i.e., those in which the number of
faults is of the order of hundreds or thousands. The AS
method assumes the use of analytical models and excludes
the use of models derived from experimental data, e.g.,
neural or fuzzy.

In Table 2, the properties of FDI and DX approaches
in their classical versions together with the FDPS
approach are presented. In terms of the design of
diagnostic systems, the applications of the GP being part
of the FDPS approach are compared with other graph
approaches by Sztyber et al. (2015).

7. Summary

This paper presents a graph-based approach to process
and diagnostic system description, referred to as the
FDPS. It was designed with the aim to apply mainly for
diagnosing of large-scale processes. The FDPS consists
of a graph model of the process being diagnosed (GP)
and a graph model of the diagnostic system (GDS). Both
are supplemented with a knowledge derived from the
sequences of symptoms ES. Generally, the FDPS could
be recognized as a form of a knowledge container useful
for real-time diagnostics. Various diagnostic algorithms
can be implemented based on this knowledge.

The FDPS was targeted to bypass the limitations
imposed by other known models of diagnostic system
description. The idea was to propose a general framework
intended for the formulation of fault detection algorithms
based on various models of the process, as well as on
various variants of fault isolation algorithms. Various
applications of the FDPS were pointed out.

The main properties of the FDPS are characterized
and compared with other solutions for which a formal
model of the diagnostic system has been formulated.
These are FDI and DX approaches, as well as structural
analysis. It is worth mentioning that structural analysis
is not a diagnostic method but an approach to design
diagnostic systems.

It was shown that the proposed approach bypasses
the specified limitations characteristic for other methods.
Moreover, it provides the ease of designing diagnostic
systems. It also makes it possible to obtain high values of
performance indices because of the possibility of making
use of trinary residuals, immunity to fault compensation
effects and robustness to diagnoses of non-physical states
of the diagnosed system. The proposed description is also
very useful for the real-time management of structural
changes in the diagnosed system, which, however, was not
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Table 2. Summary of properties of diagnostic methods.

Property/method FDI DX FDPS
Models of processes components processes

Types analytical,
of analytical analytical neural,

models fuzzy, etc.
Models of faults
in formal system yes no yes

description
Ability of accounting

for dysfunctional events yes no yes
other than faults

Diagnostic binary binary trinary
signals fuzzy
applied binary

Diagnostic columns
inference columns rows &
based on rows

Multiple faults no yes yes
Consideration

of the fault no partially yes
compensation

Uncertainty
of yes no yes

inference
Fault

distinguishability average low high
level

Making use of
sequences of no no yes

symptoms

exposed in the paper.
The performed comparison and discussion of the

features of the FDPS with other approaches shows
the advantages of the proposed one. It is much
more comprehensive than others and more useful in
applications for diagnosing of complex dynamic systems.
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Sztyber, A. and Kościelny, J. (2016). Diagnostic reasoning
framework combining fuzzy logic and Dempster–Shafer
theory, IEEE International Conference Prognostics and
Health Management (ICPHM), Ottawa, Canada, pp. 1–6.

Sztyber, A., Ostasz, A. and Kościelny, J. (2015). Graph of
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