
Int. J. Appl. Math. Comput. Sci., 2022, Vol. 32, No. 3, 355–369
DOI: 10.34768/amcs-2022-0026

EDGE COMPUTING IN IOT–ENABLED HONEYBEE MONITORING FOR THE
DETECTION OF VARROA DESTRUCTOR

ANNA WACHOWICZ a, JAKUB PYTLIK a, BOŻENA MAŁYSIAK-MROZEK b,
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Among many important functions, bees play a key role in food production. Unfortunately, worldwide bee populations have
been decreasing since 2007. One reason for the decrease of adult worker bees is varroosis, a parasitic disease caused by
the Varroa destructor (V. destructor) mite. Varroosis can be quickly eliminated from beehives once detected. However, this
requires them to be monitored continuously during periods of bee activity to ensure that V. destructor mites are detected
before they spread and infest the entire beehive. To this end, the use of Internet of things (IoT) devices can significantly
increase detection speed. Comprehensive solutions are required that can cover entire apiaries and prevent the disease
from spreading between hives and apiaries. In this paper, we present a solution for global monitoring of apiaries and
the detection of V. destructor mites in beehives. Our solution captures and processes video streams from camera-based
IoT devices, analyzes those streams using edge computing, and constructs a global collection of cases within the cloud.
We have designed an IoT device that monitors bees and detects V. destructor infestation via video stream analysis on a
GPU-accelerated Nvidia Jetson Nano. Experimental results show that the detection process can be run in real time while
maintaining similar efficacy to alternative approaches.

Keywords: Internet of things, IoT, Varroa destructor, precision beekeeping, machine learning, cloud, image processing,
edge devices.

1. Introduction

Bees are among the most important creatures in the
animal kingdom. They are responsible for the pollination
of approximately 85% of flowers (Zacepins et al.,
2017a) and 75% of crops, which account for more
than one third of global food production (Debauche
et al., 2018). Unfortunately, yearly counts of bee
population have inexplicably dropped since 2007 in the
United States, Canada, Europe, and Asia. The many

∗Corresponding author

possible causes of colony collapse disorder—a rapid
drop in worker bee numbers (vanEngelsdorp et al.,
2017; 2007)—include pesticides, antibiotics, starvation,
malnutrition, and pathogens (van der Sluijs et al., 2013;
Cornman et al., 2012; Barron, 2015). Guzmán-Novoa
et al. (2010) discovered that the Varroa destructor (V. de-
structor) mite is the leading cause of morbidity factors.
This finding was confirmed by Dineva and Atanasova
(2018).

V. destructor mites live on adult bees and bee brood
(larvae). The mites cause varroosis (Varroosis apium),
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the world’s most destructive honey bee disease, which
inflicts substantially greater damage and incurs higher
economic costs than all other known apicultural diseases.
V. destructor mites are a leading cause of bee mortality
throughout Europe and other continents. Varroosis has
a non-uniform disease pattern, as clinical symptoms are
determined by both the rate of infestation and secondary
infections (Boecking and Genersch, 2008).

V. destructor mites have a diameter of approximately
1.4 mm; individual mites are visible to the naked eye.
Using their chelicerea, the mites extract hemolymph
from the host bees during the larval, pupal, and adult
stages. Principally, this process has two sets of dangerous
effects on the health of the bees. Firstly, the loss of
hemolymph negatively affects the organ development of
the bee, weakening the navigational capabilities, reducing
the flying capacity, and shortening the adult life of
the bees by up to 68% (Bojanic Rasovic et al., 2018;
Schneider and Drescher, 1987). Secondly, while draining
hemolymph, the mites spread various types of viral
diseases, including Kashmir bee virus, acute bee paralysis
virus, and deformed wing virus. Such afflictions decimate
bee populations (Chen and Siede, 2007).

The development cycle of the V. destructor mite
lasts 9–10 days. During this time, each female V. de-
structor lays between three and six eggs within sealed
cells of bee brood. Of these eggs, approximately 2/3
will produce female mites and 1/3 will produce male
mites. For a V. destructor infection among an untreated
bee family, several individual mites in the spring will
give rise to several thousand mites in the autumn. As
a result, the beehive would be unlikely to survive the
winter. Bee colonies infested by V. destructor mites will
develop the parasitic mite syndrome and ultimately die
without treatment. A poorly coordinated treatment and
the lack of effective monitoring methods result in the
widespread recurrence of a bee colony collapse. Further
viral infections increase the risk of colony losses. No
effective drug exists that can reliably eliminate 100%
of mites and hence eradicate varroosis from beehives.
Thus, a selective action is required to eliminate varroosis
infections while not harming bees. The control of V. de-
structor mites is a regular task for beekeepers. Many
methods exist to combat the mites. However, regardless
of the method, early detection is a priority.

In this paper, we demonstrate that varroosis can
be detected early and monitored in real time by the
use of Internet of things (IoT) technologies combined
with artificial intelligence (AI). Our proposed solution
allows beekeepers to be notified, and provides an
automated process that will minimize human interference
in beehives. Our system is built on an Nvidia Jetson Nano
platform that can record and process video frames, and
enables the use of edge analysis with machine learning
models.

The main contributions of this paper are as follows:

1. We examine different algorithms for bee
identification in video streams (adaptive algorithms
with background subtraction and machine
learning-based one) and compare them to choose the
final one to be implemented in the edge IoT device.

2. We investigate deep learning-based image analysis
methods for bee identification and V. destruc-
tor detection and prove that they are capable of
performing their tasks with efficacy comparable to
approaches that rely on the analysis of other types of
data (e.g., gas analysis).

3. To enable real-time, on-edge detection of varroosis,
we investigate a unique combination of multiple
parameters, such as the number of skipped frames
of the video stream or various camera resolutions.
Time performance and quality measures are analyzed
to meet this requirement.

4. To support the scalability of a system, we proposed
a cloud-based architecture with edge-processing
devices that lays a solid background for further
extensions on monitoring multiple beehives
simultaneously.

5. Finally, with edge-based IoT detection, our approach
allows reducing the amount of data sent for analysis
in larger data centers.

The remainder of the paper is organized as follows.
Section 2 presents the state-of-the-art regarding recent
solutions for bee monitoring. Section 3 describes our
experimental environment. Section 4 presents the results
of the experimental validation. Finally, Section 5
discusses and compares the obtained results with those
from the literature, and Section 6 summarizes the paper.

2. Related works

Bee monitoring systems have a long history. Gates
(1914) described yearly temperature measurements.
Following this, Dunham (1931) proposed an electrical
thermocouple to monitor temperature conditions inside
hives. Thereafter, multitudinous solutions were developed
and described within the scientific literature. IoT solutions
are commonly utilized in human healthcare monitoring
and diagnosis (Domański et al., 2021; Wojnakowski et al.,
2021). Recently, we demonstrated a successful use of
wearable IoT devices for the monitoring of patients with
arthritis (Mielnik et al., 2019; 2021), the behavior of
elderly people (Mrozek et al., 2020a), and rehabilitation
progress (Rodak et al., 2022).

Systems for the monitoring of bee health, including
IoT solutions, are collectively known as precision
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beekeeping (or precision apiculture) (Zacepins et al.,
2017a; Kviesis and Zacepins, 2015; Zogovic et al.,
2017). Such systems also exist for other branches of
agriculture, such as fruit growing (Van Goethem et al.,
2019). The development of precision beekeeping systems
is motivated by the need to monitor specific groups
of parameters. Meikle and Holst (2014) review the
methods used and the parameters monitored. Bayir and
Albayrak (2016) developed a wireless sensor network
for monitoring nectar flow based on the temperature
and humidity of a bee colony, and the weight of the
beehive. As shown by Debauche et al. (2018), bee health
can also be monitored by IoT technologies and cloud
platforms. The authors presented an example architecture
for a cloud-based system, but only monitored temperature,
humidity, barometric pressure, and light.

Several commercial or scientific solutions—such as
ULmonitor (Krzyśka, 2022), wireless apiary monitoring,
or beehive monitoring—allow multiple parameters to
be measured, including temperature and humidity
(Gil-Lebrero et al., 2017; Rustia et al., 2016), beehive
weight (Dasig and Mendez, 2020; Ochoa et al., 2019;
Zabasta et al., 2019; Fitzgerald et al., 2015; Zacepins
et al., 2017b; Braga et al., 2019), carbon dioxide
levels within the hive (Edwards-Murphy et al., 2016),
air pressure (Machhamer et al., 2020), the frequency
of the sound generated by the bees (Chen et al.,
2020; Zgank, 2021; Balta et al., 2017; Bencsik et al.,
2011; Zgank, 2020), and forager traffic (Machhamer
et al., 2020). Moreover, certain systems allow video
monitoring (Meitalovs et al., 2009), including bee
counting (Campbell et al., 2008; Chen et al., 2012). Some
systems combine multiple functions. For example, the
solution proposed by Babic et al. (2016) simultaneously
detects and counts honey-carrying bees. Qandour et al.
(2014) develop a system to analyze bee noises and hence
distinguish the behavior of queens, scouts, foragers,
and the entire bee family. Beyond monitoring, some
systems allow beekeepers to adjust conditions within a
beehive when some measured parameters are not within
an acceptable range (Kontogiannis, 2019).

Despite the large variety of monitoring solutions,
very few focus on the detection of varroosis. Marstaller
et al. (2019) and König (2019) present complex,
energy-efficient systems that use image-based algorithms
for bee detection and classification, or bee counting. Both
groups of authors intend to extend their solutions with
V. destructor detection modules; however, the modules
are not yet implemented. Chen et al. (2020) analyze
thermal images to track various viral infections, including
V. destructor mites, but as of yet have presented no
results. Bjerge et al. (2019) analyze recorded video
sequences to monitor V. destructor infestation levels.
Schurischuster et al. (2016) tested different camera setups
for visual detection of infested bees, but do not propose

an algorithm for the detection of mites, focusing only
on high quality video capture. Schurischuster et al.
(2018) extract individual bee images, and classify them
as mite-infested or not mite-infested using image analysis
and machine learning techniques. Elizondo et al. (2013)
propose a system that can detect V. destructor mites
within honeybee cells. However, the system is incomplete
and cannot collect image data. Further solutions detect
varroosis without using IoT methods (Szczurek et al.,
2020; 2019). These systems perform a chemical analysis
of the air within the beehive, based on the assumption
that the presence of V. destructor mites influences gas
composition.

The above works demonstrate that machine learning
methods can be used for the detection of varroosis within
beehives. However, to apply such processes on a large
scale requires the use of IoT technologies—including
AI, cloud computing, and big data (Stefanowski et al.,
2017)—and the development of dedicated methods to
combine such approaches. This paper works towards the
creation of such a system, and extends existing solutions
by providing the following:

(i) a comprehensive IoT solution for monitoring bees
that uses edge-based monitoring and detection, and
is capable of acquiring and analyzing a video stream,
communicating the results with a cloud-based data
center, and notifying beekeepers;

(ii) efficient real-time detection of V. destructor mites
in apiaries using the Nvidia Jetson Nano hardware
accelerator with satisfactory hardware performance,
allowing appropriate bee classification algorithms to
be selected and embedded within edge IoT devices;

(iii) experimental results validating the efficacy and speed
of bee identification using various algorithms, and
the detection of V. destructor mites using different
camera resolutions.

Our prior work with edge-implemented AI systems
shows that the embedding of classification models
into IoT devices significantly reduces the volume of
data transferred to the cloud and the frequency of
device-to-cloud communication (Gołosz and Mrozek,
2019; Mrozek et al., 2020b). Such an approach may
also reduce the energy consumption of the IoT device,
which is essential to prolonging operating time (Grzesik
and Mrozek, 2021).

3. Edge and cloud computing in bee
monitoring

Remote bee monitoring can free beekeepers from frequent
beehive inspections. Such monitoring can be possible
through the use of edge IoT devices deployed within
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Fig. 1. Architecture of the cloud-based experimental environment for the monitoring of bees and detection of virosis.

an appropriate environment. Edge computing allows
storing and processing the data gathered by the monitoring
devices closer to where it is produced. As shown in Fig. 1,
our environment consists of a monitoring data center and a
set of IoT field monitoring devices located near beehives.
The IoT edge monitoring devices process video streams,
identify bees, and detect V. destructor mites using AI
methods. The IoT devices deliver data, particularly in
the case of varroosis detection, to the cloud data center.
The architecture of the data center is shown in Fig. 1, and
described in detail in Section 3.1. Section 3.2 discusses
the construction of the IoT monitoring devices, while
Section 3.3 deals with the video processing and analysis
algorithms.

3.1. Cloud environment architecture for large-
scale global monitoring. Monitoring multiple beehives
within a single apiary may produce useful data that can
be employed to build effective AI-based modules for
varroosis detection. However, such monitoring can only
gather data at a single location. Monitoring on a larger
scale, across multiple apiaries, regions, or countries,
would both enable early detection of V. destructor
infestations and allow the spread of varroosis to be tracked
regions or across the entire globe. The implementation
of such large-scale monitoring requires a highly scalable
data center that can permit connections with many
IoT monitoring devices and adjust appropriately to the
growing numbers. Cloud computing is a natural choice.
For our solution we chose to use Amazon Web Services
(AWS), a cloud platform that provides relevant services

including the ability to connect IoT devices, receive IoT
events, store gathered data, and notify users (beekeepers).
The AWS cloud platform was used as part of the AWS
research grants we obtained from Amazon.

Figure 1 shows the system architecture, including
the IoT monitoring devices and the AWS cloud data
center. The IoT devices monitor beehives constantly from
morning until late evening. The devices can segment
the captured video to identify bees, and analyze the
segmented images to detect the presence of V. destruc-
tor mites on the bees. Upon detection of a mite, the
corresponding IoT device sends an IoT event to the AWS
cloud data center. The IoT event contains important data,
including the apiary identifier, the IoT device identifier
(associated with a particular beehive), the timestamp, and
an image of the afflicted bee. Transmission of the event
uses the message queuing telemetry transport (MQTT)
protocol, a standard for IoT telemetry.

Introduced in 1999, MQTT remains a popular
machine-to-machine communication scheme for IoT
networks. Mishra and Kertesz (2020) show the consistent
popularity of the protocol when compared to competitors.
Released in 2019, the newest version of the protocol
(version 5) supports large-scale systems and improves
performance in constrained IoT node devices (Banks
et al., 07 March 2019). The MQTT protocol is
supported by all leading cloud vendors, including AWS,
Google Cloud Platform, and Microsoft Azure (Pierleoni
et al., 2020). Transmitted IoT events pass through the
AWS IoT module, a gateway or access point for IoT
devices accessing the cloud. The AWS IoT module
relays the events received from each IoT device to the
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AWS DynamoDB database and notifies the appropriate
beekeeper. AWS DynamoDB is a NoSQL document
database which stores the IoT events that contain images
of bees afflicted by V. destructor mites. Amazon
Simple Notification Service (AWS SNS) is used to notify
beekeepers by sending text and e-mail messages to
predefined recipients. This service is triggered by the
AWS IoT component when an infected bee is detected.

Data can be collected more easily from multiple
hives at a single location. This enables the construction
of superior detection models, which can then be retrained
and periodically propagated to the IoT monitoring
devices. Given that the analysis of the captured video
is performed at the edge, within the IoT monitoring
devices, the device-to-cloud data transmission is limited
to only those cases when the detection process indicates
the presence of a V. destructor mite within the beehive.
In this way, we can significantly limit the amount of
transmitted data. Within the transmitted IoT events, the
bee images are of much larger size than the text and
numerical data. Consequently, we reduce network access
costs, the consumption of power by the IoT devices, and
the space occupied in the DynamoDB database.

3.2. IoT monitoring device with the Jetson Nano ac-
celerator. IoT systems lie at the forefront of electronics
and information technology development. Thus,
new hardware platforms and solutions are frequently
produced. At the time of writing, the popular Raspberry
PI single-board computer platform is facing strong
competition from Odroid, Nvidia Jetson, and Asus Tinker
Board, among other solutions. A comparison of Odroid
C2 and Raspberry PI 3 presented by Nazir et al. (2018)
shows similar performance for both platforms. From the
benchmark reported by Süzen et al. (2020), Nvidia Jetson
Nano, equipped with 128 CUDA cores, outperforms
Raspberry PI 4 in image classification applications while
having comparable power requirements. Such a result
is not unexpected, given the experience of Nvidia in
developing solutions for computer image generation and
processing.

As shown in Fig. 2, our IoT monitoring device
consists of a central computing unit, in addition
to peripheral devices for information collection,
communication, and power maintenance. To enable
real-time monitoring of the beehive, the central computing
unit is based on the Nvidia Jetson Nano computing board
module, equipped with a 1.43 GHz ARM Cortex A57
quad-core processor, an Nvidia Maxwell graphics
processor with 128 CUDA cores, and 2 GB of RAM.
Nvidia Jetson Nano can run multiple neural networks in
parallel to provide image classification, object detection,
and segmentation applications. These operations require
a power consumption of just 5 W (Nvidia, 32.7.1
Release). By default, Jetson Nano allows peripherals to

Fig. 2. IoT monitoring device used for bee observation and var-
roosis detection.

be connected via a USB interface. Thus, communication
can be established across multiple Internet interfaces and
communication devices. We used the TP-LINK WN722N
network card, which enables two-way communication.
However, the device still requires an external wireless
access point to communicate with the cloud data center
via the Internet.

Monitoring the beehive entrance requires the use of
a video camera. We employed the Sony IMX219-77
camera module due its hardware compatibility with the
Nvidia Jetson Nano module. Moreover, the 8 Mpx
matrix of the camera module is sufficient to capture the
beehive environment. The camera module is connected to
the central computing unit via a camera serial interface.
To provide uninterrupted operation of the device for a
minimum of 12 hours per day, we used a battery with a
capacity of 20,000 mAh.

3.3. Video processing algorithm. The IoT monitoring
device operates according to the general workflow shown
in Algorithm 1. The algorithm continuously captures the
video stream V from the connected camera c (line 4),
and processes the video stream using the Nvidia Jetson
Nano accelerator (line 5). The algorithm then monitors
the cloud buffer and sends an IoT event to the cloud
for each bee image b classified as infected (lines 6–8).
The IoT event consists of the image b supplemented by
the exposition parameters for the image e(b) and the
IoT device information di retrieved at the outset of the
main procedure (line 2). The operations in lines 4–7 are
performed in parallel.

The video stream processing algorithm, invoked in
line 5 of Algorithm 1 and presented in Algorithm 2, loads
the cloud buffer on the IoT device with the images of any
afflicted bees that are detected. The algorithm accepts
the video stream V as input. It also acquires a handle
to the global memory area of the Nvidia Jetson Nano
accelerator. The procedure extracts specific frames f
from the video stream (line 2) and passes them to the



360 A. Wachowicz et al.

Algorithm 1. General workflow of the main processing
algorithm of the IoT monitoring device.
Require: c {camera}, CB {cloud buffer}

1: CB := ∅
2: di := GetDeviceInfo() {incl. device id}
3: while true do
4: V := CaptureVideoStream(c)
5: CB := ProcessVideoStream(V ) {Algorithm 2}
6: for each b ∈ CB do
7: SendToCloud(b, e(b), di)
8: end for
9: end while

Algorithm 2. General workflow of the video stream
processing algorithm executed on the IoT device using the
Nvidia Jetson Nano accelerator.
Require: V {video stream}, G {global memory of the

GPU accelerator}
1: B := ∅
2: for each f ∈ V do
3: G := SaveToMemory (f)
4: B := IdentifyBees(f) {Algorithm 3 or 5}
5: for each b ∈ B do
6: if DetectVarroa(b) = true then
7: CB := CB ∪ b
8: end if
9: end for

10: end for

global memory G of the accelerator (line 3). It then
executes the bee identification function that returns a set
B of bee images detected in frame f (line 4). Next, for
each bee image b segmented from the video frame, the
algorithm determines the presence of V. destructor mites.
If infection is found, the image is placed within the cloud
buffer CB (lines 5–9).

Identification of bees with varroosis consists of two
phases. During Phase I, the bee identification phase,
the bee images are segmented using two algorithms: an
adaptive algorithm with background subtraction, and a
deep learning algorithm. The former consists of two
steps: a preliminary identification process, shown in
Algorithm 3, and an exact identification process, shown
in Algorithm 4. The identification process begins by
subtracting the background of input frame f to create
mask m (line 3). We used two adaptive algorithms
for background subtraction: k-nearest neighbors (KNN)
(Zivkovic and van der Heijden, 2006) and mixture of
Gaussian 2 (MOG2) (Zivkovic, 2004). KNN uses
recurrence relations for the continuous revision of
Gaussians mixtures model parameters, while MOG2 is
based on the probability density of Gaussian mixtures.
Both frames and generated masks are required to identify

Algorithm 3. Preliminary bee identification.
Require: f {frame}

1: O := ∅
2: B := ∅;
3: m := BackgrndSub(f)
4: O := CreateMapOfObjects(m, f)
5: for each o ∈ O do
6: b := ExtractBeeObjects(o) {Algorithm 4}
7: B := B ∪ b
8: end for
9: return B {Extracted outlines of bees/objects}

Algorithm 4. Extraction of bee outlines.
Require: o {image/object}

1: o′ := ConvertToGrayScale(o)
2: o′ := EliminateNoise(o′)
3: o′ := FindBeeOutline(o′)
4: b := ExtractBeeOutline(o, o′)
5: return b {an extracted bee image}

Algorithm 5. Convolutional neural network bee identi-
fication algorithm.
Require: f {a frame separated from video stream}

1: L := CreateCoordinatesWithNN (f)
2: for each l ∈ L do
3: b := ExtractBeeObject(l)
4: end for
5: return b {an extracted bee image}

bee objects within the frame. During the preliminary
identification process, groups of pixels are extracted based
on previously generated masks. This step consists of
calling CreateMapOfObject(m, f) (Algorithm 3, line 4).
Next, each object o within the map of objects O is
processed by the ExtractBeeObjects function (line 6),
which finds and selects group of pixels that potentially
represent a single bee object. The extraction of
appropriate pixels to find bee outlines is performed by
Algorithm 4.

The deep learning identification algorithm uses
convolutional neural networks (CNNs) and operates as
shown in Algorithm 5. By calling the CreateCoordi-
natesWithNN function (line 1), the Nvidia Jetson Nano
accelerator finds a list L of bee object regions of interest
in the processed frame f . This step uses a CNN provided
by Nvidia for the Jetson Nano module. The CNN is
a DetectNet model with a sub-layer structure similar to
that of the 22-layer GoogLeNet. However, DetectNet
differs from GoogLeNet in terms of input, reduce, and
output layers. The use of DetectNet enables reduced
learning time and better detection results by working with
a pre-trained GoogLeNet model. For each region of
interest l, Algorithm 5 extracts the bee object by invoking
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the ExtractBeeObject function (lines 2–4).
Once the set of extracted bee objects is created,

Phase II of the identification of bees with varroosis begins.
During this phase, the video stream processing algorithm
(Algorithm 2, line 6) detects the presence of V. destructor
mites on the extracted bee objects by using a GoogLeNet
model trained on images of healthy and infected bees.

4. Experimental results

We verified the ability of our IoT bee monitoring device
to detect varroosis in real time. For this purpose, we
validated the following components:

• the efficacy of the implemented algorithms in
identifying bees within frames of the captured video,

• the time performance of video processing while
identifying bees,

• the efficacy of the algorithms used for detecting V.
destructor mites in extracted bee images,

• the overall time performance of V. destructor
detection.

Our IoT monitoring device can work continuously
for 12 hours on battery power. During this period,
it can perform bee monitoring, video processing, bee
segmentation (identification), and V. destructor detection,
while periodically transmitting data to the cloud data
center. However, to establish a ground truth for validation
of the bee identification and V. destructor detection
functionality, we used shorter, 29 s video streams. For
each frame of the video streams, we manually counted
bees, marked regions of interest, and determined the
presence of V. destructor mites on the extracted bee
images.

The efficacy of the algorithms was expressed using
several metrics, including the following:

• precision, or positive predicted value (PPV), given by

PPV =
TP

TP + FP
; (1)

• recall (sensitivity), or true positive rate (TPR), given
by

TPR =
TP
P

=
TP

TP + FN
; (2)

• specificity, or true negative rate (TNR), given by

TNR =
TN
N

=
TN

TN + FP
; (3)

and

• F1-score, given by

F1 =
2TP

2TP + FP + FN
. (4)

These metrics use the true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) rates
achieved in particular phases of the data analysis. Time
performance was measured while running particular
algorithms for the same video streams, or while
processing extracted bee images.

4.1. Phase I: Bee identification. In the first
series of experiments, we evaluated the efficacy and
time performance of bee identification when using the
adaptive algorithm with background subtraction and the
machine learning algorithm with a pre-trained CNN. Both
algorithms are used to identify bee objects in individual
video frames.

4.1.1. Bee identification efficacy. An effective bee
identification process is critical for further analysis and
detection of V. destructor mites. We tested two adaptive
background subtraction algorithms—KNN (Zivkovic and
van der Heijden, 2006) and MOG2 (Zivkovic, 2004)—in
addition to the DetectNet CNN. The bee identification
images were acquired from video streams captured in
two resolutions: 960 × 540 px (medium) and 480 ×
270 px (low). We tested each algorithm using both
medium and low resolutions. For each algorithm and
resolution combination, we analyzed 26 selected frames
by extracting every 34th frame from the video stream
having 890 frames (29 s, 30 fps). The skipping of
33 frames was dictated by performance considerations
presented in Section 4.1.2. To prepare the ground truth
and calculate the efficacy metrics (precision, sensitivity,
and F1 score), we manually counted bee objects within
each of the processed frames. For presentation purposes,
we renumbered the frames. Frame number 1, as shown in
our results, corresponds to an actual frame number of 34;
frame number 2, as shown in our results, corresponds to
an actual frame number of 64, and so forth.

Figure 3 shows the precision obtained by both
adaptive algorithms for both analyzed video streams.
The precision fluctuates across different frames, but the
curves are similar for both algorithms. High precision
is maintained consistently for the low resolution video.
For the medium resolution video, the precision fluctuates
more strongly, with the KNN algorithm displaying
slightly superior performance.

The medium resolution video features a higher level
of noise. The background subtraction algorithms are
sensitive to noise, and this is reflected in the generated
masks. The obtained sensitivity curves are presented
in Fig. 4. The video resolution noticeably affects the
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Fig. 3. Bee identification precision when using the KNN and
MOG2 algorithms at medium (960 × 540 px) and low
(480 × 270 px) video resolutions.
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Fig. 4. Bee identification sensitivity when using the KNN (a)
and MOG2 (b) algorithms at medium (960 × 540 px)
and low (480× 270 px) video resolutions.
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Fig. 5. Bee identification F1 scores when using the KNN and
MOG2 algorithms at medium (960 × 540 px) and low
(480 × 270 px) video resolutions.

sensitivity, with a higher sensitivity of 80% and above
obtained for the medium resolution video. However,
the sensitivity remains acceptable for the low resolution
video, and only infrequently drops to 70%. For both
of the algorithms the sensitivity rates are identical when
comparing the same video resolution.

Figure 5 presents the bee identification F1 scores for
both algorithms. Superior results were produced for the
lower resolution video, which featured less noise in the
analyzed frames.

We further evaluated bee identification using the
DectectNet CNN, provided by Nvidia for the Jetson Nano
module. We employed two different video resolutions:
960× 540 px (medium) and 1980× 1080 px (high). The
video streams were captured by monitoring two different
beehives. For the medium resolution video, the distance
between the camera and the beehive entrance was larger
than for the high resolution video. Moreover, the beehives
differed in color: the first was predominantly orange and
brown while the second was predominantly blue. The
DetectNet CNN model was additionally re-trained with
516 frames randomly chosen from the medium resolution
video stream. We used the remainder of the video for
testing.

Precision, sensitivity, and F1 score results are shown
in Figs. 6, 7, and 8, respectively. As shown, superior
precision was obtained for the medium resolution video.
The sensitivity, critical for bee identification, was similar
for both resolutions. The value of each metric was
dependent upon the analyzed frame and resolution.

The F1 scores (Fig. 8) reveal that the CNN algorithm
is resistant to bias. The scores are similar for both video
resolutions. The obtained values are dependent upon both
the analyzed frame and the video resolution, but never
drop below 80%. Hence, in the majority of cases, the
V. destructor detection model used in Phase II will be
provided with accurately detected bee images.

4.1.2. Bee identification time performance. We
verified the overall time performance of the two
approaches to bee identification (the KNN adaptive
algorithm and the DetectNet CNN). To ensure
repeatability of the results, we analyzed a 29 s video
stream recorded with a sampling rate of 30 frames per
second, for a total of 890 frames. The video stream was
prepared in four different resolutions: 1980 × 1080 px
(high resolution), 960 × 540 px (medium resolution),
480 × 270 px (low resolution), and 240 × 135 px (very
low resolution).

For the KNN adaptive algorithm, the first 20 frames
were used to pre-tune the background subtraction, which
was necessary to obtain functionally acceptable masks.
Following this, the next frame was selected and processed,
20 further frames were skipped, and then the process
was repeated. Video frame processing consisted of three
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Fig. 6. Bee identification precision when using the DetectNet
CNN machine learning algorithm at medium (960×540
px) and high (1980× 1080 px) video resolutions.
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Fig. 7. Bee identification sensitivity when using the DetectNet
CNN machine learning algorithm at medium (960×540
px) and high (1980× 1080 px) video resolutions.
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Fig. 8. Bee identification F1 scores when using the DetectNet
CNN machine learning algorithm at medium (960×540
px) and high (1980× 1080 px) video resolutions.

steps: frame extraction, preliminary identification, and
exact identification. These steps were pipelined within
our implementation; the steps overlap during execution
but operate on consecutive frames. Time performance was
measured from the outset of video processing until the end
of the video.

The results are presented in Fig. 9. They show that,
for 20 skipped frames, real-time bee identification is only
possible when using a very low resolution (240×135 px).
We investigated that further by verifying the processing
time required for different numbers of skipped frames
when using a medium resolution (960 × 540 px). The
results are shown in Fig. 10. They show that, when using
a medium resolution, the video stream can be processed in

real time when at least 33 frames are skipped.The highest
resolution (1980 × 1080 px) would not enable real-time
processing for the adaptive algorithm with a reasonable
number of skipped frames, so we did not perform any
analysis for it.

We further evaluated the time performance of the
DetectNet CNN algorithm for bee identification, at a
higher resolution than for the adaptive algorithm. We
used videos streams of two different resolutions: 960 ×
540 px (medium) and 1980 × 1080 px (high). Both
videos had a sampling rate of 30 frames per second.
We investigated the processing time required for different
numbers of skipped frames. The results are presented in
Fig. 11. They show that the DetectNet CNN algorithm
can process the medium resolution video stream in real
time when skipping 12 frames. When skipping 10 frames,
the processing time marginally exceeds the duration of
the video. Although the DetectNet CNN algorithm is
faster than the adaptive one, it does not allow real-time
video processing at high resolution, even when skipping
33 frames.

4.2. Phase II: Varroosis detection. In the second
series of experiments we evaluated the efficacy and time
performance of varroosis detection. The V. destructor
detection model uses the re-trained GoogLeNet CNN. We
employed the Caffe deep learning environment to simplify
switching between CPU and GPU processing on Nvidia
Jetson Nano. Moreover, we optimized the image analysis
process via neural network conversion and calibrated
the detection model for higher accuracy using TensorRT.
Given that only a small number of images showed
bees afflicted by V. destructor, we used augmentation
techniques to increase the number of images of infected
bees. In this manner, we obtained 4,800 images, half of
which showed healthy bees, and half–infected bees. From
this data set we assigned 50 images—25 class N (negative)
images of healthy bees and 25 class P (positive) images of
infected bees—to the testing set. The remainder of the
images formed the training set. The training process took
place over 13 epochs.

4.2.1. Varroosis detection efficacy. We used
precision, sensitivity, accuracy, and specificity to analyze
the varroosis detection efficacy. The confusion matrix
for varroosis detection is presented in Table 1. The
matrix shows that 40 out of 50 bee objects were correctly
classified. Table 2 shows the precision, sensitivity,
accuracy, and specificity rates calculated based on the
confusion matrix.

The sensitivity value (68%) indicates that the
classifier tends to classify some of the infected bees as
healthy. Conversely, the precision (89%) and specificity
(92%) values indicate that healthy bees are usually
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Fig. 9. Bee identification execution time when using the KNN
adaptive algorithm at very low (240 × 135 px), low
(480 × 270 px), and medium (960 × 540 px) video res-
olutions.
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Fig. 10. Bee identification execution time when using the KNN
adaptive algorithm with different numbers of skipped
frames at medium (960× 540 px) video resolution.
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Fig. 11. Bee identification execution time when using the De-
tectNet CNN algorithm with different numbers of
skipped frames at medium (960 × 540 px) and high
(1980× 1080 px) video resolution.

classified correctly. These results are imperfect but
satisfactory. We are primarily concerned with the FN
rate: accurate detection of a single case of varroosis is
sufficient; FP rates are of less concern.

4.2.2. Varroosis detection time performance. We
analyzed time performance of the varroosis detection
process in isolation from the bee identification process.
We processed a total of 907 images of different
resolutions. For each image, we noted only the time
required for classification by the CNN. We did not
measure the time required to load each image into
memory, given that during real operation the bee images
passed to the classifier by the identification model would
already exist in common memory. The most important
performance parameter is response time—this determines
whether the device can process the video stream in
real time. The total detection time for the 907 images
exceeded 16 s. The collected results show an average
processing time of 18 ms with a standard deviation of 3
ms, independent of image size. When running both bee
identification and V. destructor detection synchronously,
the image processing will take place in real time only
if the sum of the processing time of both phases is less
than or equal to the duration of the video stream. Given
that the bee identification run time exceeds 30 s, for a
medium resolution video with 10 frames skipped, and the
V. destructor detection exceeds 16 s, we pipelined both
processes. Such an approach allowed us to maximize the
usage of computing units, and ensured that both phases
could be completed in real time.

The combination of V. destructor detection and bee
identification resulted in a slightly increased processing
time, when compared with bee identification alone. When
skipping 11 video frames, the difference in processing
time was the largest, at over 5 s. When skipping 28
frames, the difference was slightly more than 1 s. This
is to be expected, given that the number of identified
bees increases with the number of processed video frames.
Figure 12 shows the dependence of total video processing
time on the number of skipped frames.

5. Discussion

The solution presented in this paper can help beekeepers
to track V. destructor mites within apiaries. Although this
is not the first approach to precision beekeeping, existing
works lack the comprehensive solution that we present:
with IoT monitoring devices, edge-based V. destructor
detection, and data transmission to a cloud data center
for exhaustive monitoring and notification. As such, our
approach represents a novel solution.

Marstaller et al. (2019) and König (2019) focus
on analyzing bee images. Both groups of authors
entertain the possibility of varroosis detection but do not
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Fig. 12. Dependence between the total video processing time
(both bee identification and V. destructor detection) and
the number of skipped frames.

provide an appropriate IoT implementation. The solution
proposed by Elizondo et al. (2013) detects invasive
mites, but focuses only on algorithmic implementations
at the expense of video capture. Although the authors
demonstrate improved accuracy (approximately 90%)
when using a background subtraction algorithm, they only
detect V. destructor mites within honeybee cells, not on
the bodies of bees. Our proposal was designed and tested
on real bees in their natural environment. Moreover,
we implemented a complex system that includes image
acquisition, bee identification, and machine learning bee
health analysis, all performed on-edge. Our solution is
effective, low-power, and non-invasive.

Furthermore, our solution produces satisfactory
results when compared with alternate IoT solutions for
the detection of V. destructor mites which do not focus
on image analysis. Szczurek et al. (2020) applied
an SVM classifier to detect V. destructor mites based
on beehive air analysis. The authors demonstrated a
sensitivity of 0.67–0.75, depending on the category of V.
destructor infestation level (low, medium, or high), while
our solution reached 0.68. Both solutions demonstrate
comparable specificities of more than 0.90. Both also
exhibit comparable detection efficacy, although they
analyze different data types. However, with use of
Nvidia Jetson Nano, our solution implements edge-based
processing and analysis, thereby limiting the number of
required data transmissions to the data center.

A comparison of the adaptive algorithms and the
machine learning approach led to two conclusions.
First, CNNs provide superior bee detection to adaptive
algorithms, reflected in higher values of the classification
metrics and correct detection of bee objects within
video frames. Second, the CNN approach requires less
processing time, leading to improved performance and

Table 1. Confusion matrix for V. destructor detection.
Actual class
P N

Predicted
class

P 17 2
N 8 23

Table 2. Efficacy metrics for V. destructor detection.
Metric Value

Precision 0.89
Sensitivity 0.68
Accuracy 0.80
Specificity 0.92

the ability to analyze more video frames within a given
time period. This increases the detection speed of V. de-
structor mites, as the bee can be inspected from multiple
angles. Finally, we achieved satisfactory results regarding
the quality of bee identification and V. destructor detection
when using a video stream with medium resolution.
Consequently, the video processing time is reduced, and
our system can be used for real-time beehive monitoring.

6. Conclusion

Early detection of V. destructor mites within beehives
plays a crucial role in beekeeping and, consequently,
in food production. This paper demonstrated that such
detection can be accomplished by visual inspection of
bees entering a beehive, followed by image processing
and analysis. We also showed that these processes could
be performed in their entirety on IoT monitoring devices.
Our solution used the Nvidia Jetson Nano accelerator.
This enabled us to perform edge based machine learning
data analysis, without the need to transmit video streams
to a data analysis center, thereby improving device
operating time. Although we used a high-resolution Sony
IMX219-77 camera to capture video, we demonstrated
experimentally that V. destructor mites can be detected
at lower resolutions. We used a cloud data center to
enable the connection of many devices, and therefore
the monitoring of many beehives and apiaries. Such
large-scale monitoring will hopefully provide a broader
picture of V. destructor infestations globally.
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