
Int. J. Appl. Math. Comput. Sci., 2022, Vol. 32, No. 4, 701–719
DOI: 10.34768/amcs-2022-0048

REDUNDANCY–BASED INTRUSION TOLERANCE APPROACHES MOVING
FROM CLASSICAL FAULT TOLERANCE METHODS

FELICITA DI GIANDOMENICO a, GIULIO MASETTI a,*, SILVANO CHIARADONNA a

aInstitute of Information Science and Technologies
National Research Council

Via G. Moruzzi 1, 56124 Pisa, Italy
e-mail: {felicita.digiandomenico,giulio.masetti,silvano.chiaradonna}@isti.cnr.it

Borrowing from well known fault tolerant approaches based on redundancy to mask the effect of faults, redundancy-
based intrusion tolerance schemes are proposed in this paper, where redundancy of ICT components is exploited as a
first defense line against a subset of compromised components within the redundant set, due to cyberattacks. Features to
enhance defense and tolerance capabilities are first discussed, covering diversity-based redundancy, confusion techniques,
protection mechanisms, locality policies and rejuvenation phases. Then, a set of intrusion tolerance variations of classical
fault tolerant schemes (including N Version Programming and Recovery Block, as well as a few hybrid approaches) is
proposed, by enriching each original scheme with one or more of the previously introduced defense mechanisms. As a
practical support to the system designer in making an appropriate choice among the available solutions, for each developed
scheme a schematic summary is provided, in terms of resources and defense facilities needed to tolerate f value failures and
k omission failures, as well as observations regarding time requirements. To provide an example of more detailed analysis,
useful to set up an appropriate intrusion tolerance configuration, a trade-off study between cost and additional redundancy
employed for confusion purposes is also carried out.

Keywords: intrusion tolerance, cyberattack, diversity-based redundancy, protection mechanisms.

1. Introduction

Cybersecurity is increasingly considered a fundamental
requirement to IT assets protection, with particular
emphasis on assets that cover essential roles from both
social and economic perspectives (generically indicated
as critical infrastructures). Therefore, in parallel
with research in more traditional fault tolerant systems
(including the works of Mejdi et al. (2020), Puig et al.
(2018) or Majdzik (2022), among recent publications on
fault tolerant control), the research community has also
proposed a plethora of studies and solutions regarding
intrusion tolerance, ranging from attack prevention
techniques to countermeasures applied in response to
identified compromised components (e.g, Ylmaz and
Gänen, 2018; Zhou et al., 2018; Alladi et al., 2020; Zhang
et al., 2019; Khraisat et al., 2019).

Among them, intrusion tolerance was proposed
already a couple of decades ago. Borrowing from the

*Corresponding author

well known fault tolerance principles, intrusion tolerance
aims to guarantee that a system works correctly even when
some of its parts are compromised.

This paper focuses on redundancy-based intrusion
tolerance, where redundancy of components is exploited
as a first defense line against a subset of compromised
components within the redundant set. In this perspective,
the offered original contribution consists in revisiting
classical redundancy-based fault tolerant approaches from
the security perspective. Specifically, first a set of features
is proposed to help improving the tolerance to the effect of
intrusions, namely diversity-based redundancy, confusion
techniques, protection mechanisms, locality policies and
rejuvenation phases. Then, the exploitation of such
features to originate intrusion tolerant alternatives from
classical fault tolerance schemes is explored. Practical
advice to guide system designers in the choice and
configuration of the appropriate architecture is also
developed.

In particular, focusing on a single system component

© 2022 F. Di Giandomenico et al.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

mailto:{felicita.digiandomenico,giulio.masetti,silvano.chiaradonna}@isti.cnr.it

702 F. Di Giandomenico et al.

that requires tolerance to the effects of intrusions
generated by attacks, five fault tolerant redundancy
schemes are considered: the two well-known and
widely adopted N Version Programming (Avizienis, 1985)
and Recovery-Block (Randell, 1975), and, in addition,
N Self-checking Programming (Laprie et al., 1990),
Consensus Recovery Block (Randell and Xu, 1994) and
Self-Configuring Optimistic Programming (Bondavalli
et al., 1993). We believe this constitutes a basic, but
versatile set of solutions, which covers the extremes of the
spectrum and representative intermediate schemes, from
which additional variants can be easily derived. Indeed,
the reasoning conducted on the five addressed schemes are
sufficiently general and complete to be applicable also in
slight variants of such schemes.

The rest of the paper is organized as follows.
Section 2 provides the background on intrusion tolerance,
with specific focus on the role of diversity, and overviews
related work. Section 3 discusses the directions in which
standard fault tolerance architectures can be extended
to address intrusions and presents the attack model.
Then, Section 4 focuses on N Version Programming like
architectures, Section 5 on those similar to Recovery
Blocks and Section 6 on a few hybrid architectures.
Section 7 provides a practical summary of the proposed
redundancy-based intrusion tolerance schemes, as well as
an example of detailed analysis, focused on confusion. In
Section 8, considerations on intrusion tolerance solutions
with respect to other ICT system components that are
typically the target of cyberattacks are first presented,
followed by a brief discussion on future research lines.

2. Context and related work

To better position the offered research contribution,
background on Intrusion Tolerance and related work are
presented in this section.

2.1. Background on intrusion tolerance. Similar to
fault tolerance, intrusion tolerance (IT) is comprehensive
of several techniques aiming at counteracting an error
from turning into a failure. As for accidental faults,
intentional attacks generate erroneous behavior in the
attacked component, which can degenerate into failure
if not properly managed. Here, the specific emphasis
on intrusion instead of the generic fault refers to the
malicious characterization of an intruder launching an
attack, exploiting at best the gained knowledge to
compromise the system as much as possible, instead
of random combinations of adverse events accidentally
originated. The attack model in Section 3.4 discusses
in detail how an attacker can compromise a component.
Therefore, the developed intrusion tolerance approaches
are equipped with specific measures to contrast a skilled

�������	�

������	�

�������	�

���	���

�������
	�

�������	��

������
���	��

�������

�������������
�������	�

���������
����� ���	�

�������	�
!�������	�

�������

�������	�
"	������

���������������� ���	���

����� ���	���

Fig. 1. Representation of the attack-vulnerability-intrusion-
error-failure chain (inspired by Verı́ssimo et al. (2003))
and technique categories to cope with it.

attacker bent on compromising the system, as discussed in
the following.

In this paper, we refer the more sophisticated
chain illustrated in Fig. 1 rather than the classical
fault-error-failure of Avizienis et al. (2004). As illustrated
in the figure, an attacker exploits a system/component
vulnerability to launch an attack that, if successful, leads
to an intrusion, seen as an internal fault. This fault
may generate one or more errors that, if not properly
managed, can lead to the failure of the service provided
by the system/component. This is in line with the
attack-vulnerability-failure fault model by Verı́ssimo et al.
(2003).

To avoid/mitigate the potential failures, intrusion
prevention and tolerance are put in place to cope with
the attacks and their consequences. Prevention is the first
defense against intrusions, but since prevention cannot
be assured to be totally effective, intrusion tolerance is
also needed. In Fig. 1, small “holes” within the area
illustrating a defense technique represent weaknesses of
the technique itself in accomplishing its task. Attack
removal and vulnerability removal are radical measures
to cope with the source of the intrusion, so avoiding that
similar attacks can be perpetrated again.

IT techniques primarily include intrusion detection
(Scarfone and Mell, 2010; Khraisat et al., 2019), intrusion
removal (Sousa et al., 2008) and masking of intrusion
induced errors (Verı́ssimo et al., 2003).

In this paper, the focus is on the masking category
of IT means, seen as a first line of defense while the
other techniques collect enough knowledge to deal more
radically with the presence of the intrusion. Moreover,
here the emphasis is on a single system component that is
selected for higher protection through redundancy-based
IT. In the redundant structure that replaces the single
system component, redundant components do not interact
with each other, but only provide their output to the
unit in charge of collecting them and select the final

Redundancy-based intrusion tolerance approaches . . . 703

result. Hence, tolerance paradigms applicable in contexts
where multiple interacting components are in place, such
as solutions resilient to byzantine faults in distributed
systems (see the work of Distler (2022) for a survey) or
secure multi-party computation (Archer et al., 2018) are
out of scope.

When the redundancy is obtained employing just
replicas, i.e., identical copies, if the attacker is successful
in compromising one replica, he/she has also the
knowledge to successfully intrude into all the other
replicas, since they share the same vulnerabilities.
Therefore, to contrast intrusion propagation through
common vulnerabilities, diversity is advocated as a
basic and powerful instrument. In practice, instead of
replicas, the redundant structure adopts variants, which
are functionally equivalent components developed with
some form of diversity.

Common mode vulnerabilities in redundant software
structures can have different origins (see Fig. 2):

• functional influences, which have primarily to do
with the same design vulnerabilities present in
the redundant components, or the adoption of a
common execution environment exposing the same
vulnerabilities; a variety of means to cope with
functional influence have been proposed in the
literature (e.g., Littlewood and Strigini, 2000);

• locational influences, which expose all the redundant
components located in the same physical or
logical partition of a system to be isolated
by an attacker (e.g., through intrusion in the
communication network), without the possibility
to receive inputs and to provide outputs to
the adjudicator unit; measures to cope with
locational influence mainly consist in adopting
redundant (diverse) communication channels, and/or
distribution of the redundant components in different
physical/logical sites;

• administrative influences, potentially leading to
massive intrusions by exploiting social engineering,
when the same security policies apply to all the
redundant components; measures to cope with such
problem include the adoption of different security
management policies for the different redundant
components, and possibly different administrative
domains; then, some form of coordination among
such different policies/administration domains turns
out to be needed.

Given its central role, all the proposed intrusion
tolerance mechanisms described in the following embody
some form of diversity. However, exploration of how to
induce diversity is out of the scope of this paper. Indeed,
addressing the diversity techniques, briefly outlined in

FUNCTIONAL Influence

Design faults, resulting in
the same vulnerability

Adoption of a common
execution environment
(HW/SW), exposing a same
vulnerability

LOCATIONAL Influence

Same location, that can be
attacked and isolated

ADMINISTRATIVE Influence

Same security management
policies

Same incorrect output

Same late/unresponsive behavior

Unresponsive behavior by all
redundant components in the
attacked location

Potential massive intrusions
exploiting social engineering

Effect

Effect

Effect

Origin of
Common Vulnerabilities

exploitable by an Attacker

Fig. 2. Types of correlation and their effects on the affected sys-
tem/component.

DIVERSITY

Administrative Correlation Obtained through
Different Administrative Domains

Different Security Management

Policies

Locational Correlation
Sites connected through different

communication channels

Distribution of component replicas

on more sites

Obtained through

Functional Correlation

Different algorithms

Different compilers,

languages, etc..

Different execution

environments

Different HW supports

Obtained through

To
 c

op
e

w
ith To

 c
op

e
w

ith To
 c

op
e

w
ith

Fig. 3. Diversity approaches to cope with correlation types.

Fig. 3, at a level of detail that allows us to quantify
their effectiveness on mitigating a common-mode failure
probability is challenging and requires significant efforts
and individual studies in focused contexts. For example,
Garcia et al. (2014; 2020) address this kind of study, but
concentrated on attacks to operating systems, and propose
architectural solutions to cope with residual common
mode vulnerabilities resulting from the adoption of
different operating systems. Therefore, in the following it
is assumed that variants are already available and they are
satisfactory for the purpose of their usage in the referred
intrusion tolerance scheme. Accounting for degrees of
diversity is of course needed when dependability analysis
is targeted, a subject for future studies.

2.2. Related work. Initial intrusion tolerance
approaches are dated in the early 1990s, although they
appear as isolated works, mainly focusing on protocols
(see the work of Verı́ssimo et al. (2003) for an overview
of initial research on this subject). Many other papers
tackled this topic in more recent years. With no intention

704 F. Di Giandomenico et al.

of being exhaustive, the list mainly includes works that
addressed intrusion tolerance from specific perspectives.
In fact, some studies focused on analysis and evaluation of
security oriented strategies to manage system resources in
order to reach desired reliability/availability levels (Wang
et al., 2014; Haphuriwat and Bier, 2011; Tarraf et al.,
2017). Others, instead, concentrated on architectural
solutions for specific application domains, smart grids
(Babay et al., 2018), autonomous driving (Vöelp and
Verissimo, 2018), or web servers (Saidane et al.,
2009). Specific security architectures tailored to problems
generated by specific vulnerabilities are the subject of the
works of Gorbenko et al. (2020) and Garcia et al. (2014),
while investigations on trade-offs between competing
requirements are conducted by Gashi et al. (2016).

Differently from the above referred papers, here a
set of logical intrusion tolerant architectures, exploitable
in a variety of application contexts, is developed. With
a similar objective, in the work of Rodriguez et al.
(2015) preliminary redundant architectures for intrusion
tolerance have been proposed, obtained by adopting
minimal extensions to classical architectures, according
to a set of defined failure classes for secure services. In
particular, N-Version Programming, standby sparing with
error detection (SED) and Self-Checking Programming
are considered and extended. However, this paper targets
a more ambitious aim, by conducting a more general
and structured discussion on the definition of intrusion
tolerance schemes and specifically proposing a variety
of means to incrementally enhance intrusion tolerance
abilities.

Finally, Di Giandomenico and Masetti (2021)
present the various aspects around redundancy-based
intrusion tolerance, concerning both system and
redundancy characteristics. In particular, four dimensions
have been identified and discussed as major drivers to
the design of intrusion tolerant solutions, tailored to
the specific system at hand. They are: (i) the attack
model, characterizing the cyberattacks considered; (ii)
the categories of ICT system components targeted by
attacks; (iii) the system model and failure assumptions,
namely whether the system at hand is a single system
component, or a structured, distributed system; (iv) the
characterization of the type of redundancy that can be
put in place. This framework paves the way for the
development of the articulated approaches carried out in
the following as an original new contribution.

3. Revisiting fault-tolerance architectures
to address intrusion tolerance

In this section, the design and enrichment aspects around
intrusion tolerance are addressed, moving from fault
tolerance.

The attack model underlying the developed

redundancy-based intrusion tolerance schemes is also
included.

3.1. Design issues. Slightly extending the taxonomy
from the works of Nascimento et al. (2013) and
Pullum (2001) presented in the fault tolerance context,
a diversity-based intrusion tolerance scheme to mask
the presence of intrusion induced errors is characterized
by four major design issues: (i) the decision on the
measures to adopt for enforcing diversity in the redundant
structure under development; (ii) selection of the variants
to employ in the redundant configuration (e.g., how
many variants to employ, each developed according to
which diverse methodology, thus showing a required
reliability level); (iii) the decision on the execution
pattern of the selected versions; (iv) the decision on the
adjudicator function to adopt for selecting the only output
from the set provided by the employed variants. The
designer mainly addresses these issues based on specific
needs of the application under development (including
dependability requirements, as well as other requirements
in the time domain and operational context), available
development environment facilities, and reference fault
tolerance architectures.

The distinctive role played by diversity in
redundancy-based IT schemes and related means to
promote it have been already addressed in Section 2.1.

Regarding the execution model for the variants, both
sequential and parallel execution are implemented in the
reference schemes. When adopting sequential execution,
as typically done in the Recovery Block approach, a
reliable checkpointing mechanism is needed, to save the
state of the system before any variant starts executing
and from which an alternate variant starts its execution,
should the previous variant fail. Parallel execution implies
concurrent execution of the variants, thus requiring
adequate computer resources and the use of mechanisms
to assure that the same input is provided to all the variants.

The adjudicator component plays a very critical role
in the overall redundant organization, being the entity that
takes the final decision on the outcome of the redundant
computation. A variety of adjudication functions have
been proposed in the literature. They belong to two
major categories: Voters and Acceptance Tests. Voters
make a judgement on the set of variants results and are
typically employed when the variants follow the parallel
execution pattern. Several kinds of voters have been
proposed, such as majority voter, consensus voter, median
voters (Pullum, 2001; Nascimento et al., 2013). Note
that the presence of diversity requires more sophisticated
voting solutions than simple bitwise comparison (correct
variant results are expected to be not perfectly coincident).
Acceptance tests make an absolute judgement on each
single variant result. This kind of adjudicator is typically
used when the execution of variants is sequential. Popular

Redundancy-based intrusion tolerance approaches . . . 705

acceptance tests are based on satisfaction of requirements
or reasonableness test (see the work of Pullum (2001)
for more examples). Similarly to the voter, resorting to
diverse techniques to generate variants may in general
require a specific acceptance test for each variant. Hybrid
adjudicator forms that employ combinations of voter and
acceptance test have been also explored (Randell and
Xu, 1994).

To help addressing omission failures experienced by
variants, the adjudicator component is typically equipped
with a timeout mechanism that terminates the waiting on a
variant’s result, after a predefined time interval determined
on the basis of maximum execution time for the variant
under consideration. In the following, it is assumed
that each addressed intrusion tolerance scheme adopts a
timeout for this purpose.

3.2. Enhancing intrusion tolerance abilities. To
further enhance efficacy of the offered IT solutions, a
few other features that have been proposed to support
fault tolerance and/or security properties in general are
exploited. Among them, the concepts of rejuvenation, lo-
cality, access control and confusion have been selected
as promising candidates. A brief recall of each of them,
with considerations on their employment in the proposed
IT schemes, is in the following.

As discussed by Di Giandomenico and Masetti
(2021), attack consequences are classified into three
categories: Functionality Change, Performance Degrada-
tion and Information Leakage, and the security attributes
that are primarily impacted, are integrity, availability and
confidentiality, respectively. In the work of Rodriguez
et al. (2015), all the three attributes are considered;
in particular, confidentiality is explicitly addressed by
deploying an Information Leak Detector close to each
variant. Although this same solution would be applicable
also for the configurations developed in this work, it is
not adopted since it targets detection instead of tolerance.
Therefore, confidentiality is not directly addressed here,
since the interest is in tolerance capabilities, intended
as the ability to continue providing correct operation
exploiting redundancy, without further intervention.
Specific mechanisms devoted to confidentiality protection
are expected to be easily added to the proposed
architectural approaches. However, it needs to be
recognized that the presence of redundant components
exposes confidentiality to higher risk because the
attack surface increases, thus requiring in general more
sophisticated and costly solutions than just addressing
confidentiality as a primary objective, without caring
about availability and integrity. Although unpleasant, this
is not surprising as this kind of situation typically occurs
when contrasting properties need to be accounted for, for
which optimization of one degrades the performance of
the others.

3.2.1. Locality. Location diversity, consisting in
placing several physical components of a system at
different sites, is recognized since long time as a good
practice to cope with physical threats, like natural
disasters (e.g., floods or fires) or basic service outages
(e.g., electrical outage). When deliberate attacks are
considered, as in intrusion tolerance, this measure
becomes even more relevant. Interestingly, location
diversity can be easily joined with diverse administration
domains characterizing the different sites, so further
improving the defense against attackers (Obelheiro et al.,
2006). In the following it is assumed that the defender has
s sites at disposal and can distribute the variants among
the sites. Utility functions (e.g., input scatter, output
gather, adjudicator, etc), deployed on a special site, are
not counted.

Notice, though, that scattering data and code among
on-premises and/or commercial data centers may degrade
confidentiality, depending on the accessibility conditions
to the chosen diverse sites (see the works of Gashi et al.
(2016) or Khan and Babay (2021) for specific examples).
Thus, side effects of location diversity have to be carefully
analyzed and managed. However, since such analysis is
application specific, it is not addressed here.

3.2.2. Rejuvenation. For long-living systems,
rejuvenation (Dohi et al., 2020) enhances fault tolerance:
once in a while, each replica is subject to some form of
clearance/rejuvenation in order to reduce its failure rate
or the frequency of intermittent faults. While relevant to
contrast any kind of malfunctions producing erroneous
behaviours of a system/component that tend to increase
along time, the benefit of rejuvenation is essential in the
context of intrusion tolerance. In fact, if clearance actions
are effective enough, rejuvenation reduces the time
window for an attack to be successful to be just the time
between two consecutive clearances. To this purpose,
rejuvenation should: (i) take place with high frequency,
(ii) be coupled with diversity, i.e., each rejuvenation
introduces as much changes as possible for reducing the
correlations between pre- and postclearance.

Rejuvenation can be either scheduled at predefined
time intervals, or activated when some critical event is
perceived (e.g., the variant itself could apply internal
checks to detect suspicious behavior). It is in general
a costly operation since, to be effective, the rejuvenated
variant should be significantly diverse from the original
one. Acting on the functional level is expected to assure
a higher degree of diversity, although simpler automatic
diversity (like a change in the name or the position of
files in the file system) or obfuscation techniques (e.g.,
adopt sophisticated compilation features that make reverse
engineering difficult) can be considered as well.

Considering the general case of an interruptible
system, variants under rejuvenation have to be added on

706 F. Di Giandomenico et al.

top of those needed by the scheme to assure the required
tolerance level. In fact, the rejuvenation procedure
requires an interval of time to be completed; therefore,
when under rejuvenation, a variant skips one or more
executions performed by the redundancy scheme it is
involved in, until the rejuvenation phase completes.

Of course, since rejuvenation does not guarantee full
independence between pre- and postversions of the variant
from the attacker perspective, it cannot be the only defense
mechanism in place.

3.2.3. Access control policies. In computer security,
access control has been widely investigated (e.g., by Qiu
et al. (2020) with reference to Internet of Things (IoT)
technology). Through authentication and authorization,
access control policies make sure users are who they say
they are and that they have appropriate access to the
intended resource.

The redundancy-based solutions for Intrusion
Tolerance that will be detailed in the following include
components of different criticality: the functionally
equivalent variants show lower criticality than adjudicator
components responsible for selecting the outcome from
the variants outputs. It derives that the adjudicator
component needs a higher protection level than individual
variants, in terms of reducing the ability to an intruder
to access it as a resource to compromise. So, the need
of adequate protection mechanisms and access control
techniques is even more exacerbated in the intrusion
tolerance context, to avoid defeating the effort of costly
redundancy.

For embedded or IoT systems, it is common to
exploit a Root-Of-Trust to enhance security, and also
IT architectures can be complemented with such a
mechanism (Rodriguez et al., 2015). Other solutions,
such as resorting to a distributed adjudicator component
to avoid the single point of intrusion are possible.

In this paper, two layers of protection will be
considered, indicated as L0, L1, where L0 is the most
stringent one, as also done in other studies (e.g.,
Rodriguez et al., 2015; Gashi et al., 2016; Hardekopf
et al., 2001). Of course, a higher number of protection
levels could be needed, to properly address requirements
of specific contexts/application domains.

Deciding which part of the intrusion tolerant
architecture has to be assigned a given layer is in general
the result of several considerations, and there is no
solution that is always preferable to the others. For
instance, having most of the architecture in L0 and only
the communication channels in L1 can appear on one hand
too expensive, and on the other hand insecure because
for an attacker it is easier to address the communications
than the logic because this way almost no domain specific
knowledge is required. However, this may not be the case
because in some contexts (e.g., cyber-physical systems)

both variants’ and adjudicators’ logic can be simple
enough to be implemented in microcontrollers that are
relatively cheap and easy to protect, or heavy and complex
but implemented in containers that run on machines
physically located in secure places, and communication
channels can in turn be made intrusion-tolerant to reduce
exposition to attacks.

3.2.4. Confusion. An accidental fault just happens.
Conversely, an intentional fault (an attack) is the result
of rational choices made by one or more adversaries, and
usually strikes the variants that the attackers suppose to be
the weakest ones. Thus, in intrusion tolerant systems it is
common to find confusion strategies aimed at decreasing
the confidence the attackers have in their decisions or
increase the attack cost. Available strategies have been
developed for different mitigation purposes and so show
different degrees of effectiveness. For instance, replacing
some variants with camouflage ones, i.e., components
that perform no operations but mimic the interactions
that operating variants have with the environment (Wang
et al., 2014), can add a sufficient level of confusion only if
the attackers have limited resources, in particular limited
time. For a cyber-physical infrastructure, such as a Smart
Grid, where the attackers can study the system and plan
the intrusions for years, and where it is expected that
foreign adversaries are willing to invest huge resources
in the attack, camouflages are less effective. In the
referred context, camouflages are of great help to set up
honey pots aimed at gaining information about the attacks
or to do detection, but to tolerate intrusions the most
effective choice is to use extra but working variants and
configure the tolerance scheme such that the adjudicator
component decides (probabilistically or deterministically)
which results to consider among the set of received ones.

To promote higher efficacy (although at higher cost),
in the proposed IT schemes, confusion is applied adopting
fully operative variants, similarly to solutions by Babay
et al. (2018) or Khan and Babay (2021).

3.3. Organized summary. The above presented
mechanisms to enhance intrusion protection and tolerance
are exploited in the several redundancy-based intrusion
tolerance schemes described in Sections 4–6, all following
the general scheme depicted in Fig. 4. In the figure and
in the rest of the paper, h indicates the minimum number
of variants needed to tolerate the failures as indicated by
the attack model (see Section 3.4), in accordance with
the adopted redundancy-based scheme; s indicates the
number of sites where the components of the adopted
redundancy-based scheme are deployed; c indicates the
number of additional variants employed for confusion
purposes; r indicates the the maximum number of variants
per site that can be under rejuvenation at each instant of

Redundancy-based intrusion tolerance approaches . . . 707

Intrusion Tolerance Architecture

Adjudicator

Acceptance Test Voter

h variants

s-1 additional sites

r variants under rejuvenation

c variants for confusion

Protections L0, L1

Protections L2, L3, ...

Fig. 4. Classification of involved mechanisms in the discussed
intrusion tolerant architectures as mandatory, optional or
alternatives.

time; Li indicates the i-th protection layer applied to the
components of the adopted redundancy-based scheme (in
this paper, only two protection layers, L0 and L1, are
assumed, but more than two can be in general employed).
Then, Fig. 4 graphically summarizes which mechanisms
are mandatory and which ones are optional when
configuring an intrusion tolerant architecture among those
proposed in this paper. In particular, one adjudicator,
h variants, protection layers L0 and L1 are mandatory;
s − 1 additional sites, r variants under rejuvenation, c
variants for confusion and additional protection layers are
optional.

It is clarified that the proposed schemes are not meant
to be an exhaustive intrusion tolerance set; rather, they
are examples of how the features discussed in this section
can be exploited to adapt the traditional fault tolerance
organization to cope with intentional attacks. So, there
is room for other interesting alternatives.

3.4. Attack model. The assumptions on the attack
model are detailed in the following. The first statement is
that only cyberattacks are considered. Therefore, an ICT
component, even when composed of a physical device and
software managing/controlling its operational life, can be
compromised only through the software part. Adopting
strategies that exploit the execution context of a software
component, an attacker has the ability to perform the
following:

• Intrude the variants only when they are running and

– alter their result (value failure). The best
strategy for the attacker is to try to compromise
as much variants as possible, making them
deliver the same (wrong) result, thus inducing
a common-mode failure. f indicates the
number of value failures (possibly of kind
common-mode) generated during an execution
of an intrusion tolerant scheme;

– make their result unavailable, that is the
compromised variants experience an omission
failure. k indicates number of omission failures
generated during an execution of an intrusion
tolerant scheme.

• Isolate a site among the s where the variants are
deployed. The effect is that the results of all the
variants located on that site became unavailable,
and the adjudication function perceives an omission
failure from these variants. The assumption of
no more than site under potential isolation by an
attacker is in line with the works of Babay et al.
(2018) or Khan and Babay (2021), and is made
here for the sake of simplifying the presentation,
but can be relaxed without invalidating the following
developments.

The intrusion tolerant architectures considered can
tolerate f arbitrary value failures (common-mode value
failures, in the worst case) and k omission failures
(comprehensive of both those intentionally caused by the
attacker and those due to accidental causes).

The protection layer L0 is assumed to be
unattackable, so those functionalities put under
this protection layer do not experience successful
cyberattacks. The adjudication functions and possibly
some of the variants are assigned the protection layer L0,
in addition to the input and output mechanisms. However,
variants subject to higher protection from cyberattacks
can be still affected by accidental faults. Instead, for what
concerns the adjudication functions, given their higher
simplicity and expected high reliability, no measures
are included in the proposed schemes to tolerate their
potential failures (both in selecting a wrong result and
in not recognizing the exiting of a correct result). Of
course, their reliability needs to be taken into account
when assessing dependability properties of the scheme
employing such adjudication components.

4. Family of NVP-like architectural
proposals

This section is dedicated to the family of redundancy
architectures that follow the N-Version Programming
(NVP) organization. After a brief description of
the classical NVP fault tolerant architecture (Avizienis,
1985), a few solutions obtained from its adaptation in the
context of intrusion tolerance are discussed.

4.1. Reference N Version Programming. The N
Version Programming (NVP) comprises an adjudicator
that collects the results provided by the n variants
(within a maximum specified time interval) and checks
if there is a result that satisfies the adjudication. If

708 F. Di Giandomenico et al.

such a result is found, it is the output of the redundant
structure. Otherwise, depending on the failure model,
the component can switch to a benign failure state (e.g.,
in the context of Safety) or send in output a default
value or choose one of the results exploiting other kinds
of information, such as past knowledge about recurring
errors (e.g., in the context of Reliability).

In the original formulation by Avizienis (1985),
the adjudicator is a simple voter, but other kinds of
adjudicator, such as variants of the simple majority
(as presented by Pullum (2001)), or sophisticated
mechanisms exploiting more complex syndromes, such
as additional information of the reliability of the
variants (like for the optimal adjudicator in the work of
Di Giandomenico and Strigini (1990)) have been adopted.
The variants are usually executed in parallel, although
sequential execution has been investigated in contexts
where computational resources are limited.

Many specific NVP-like redundant schemes have
been proposed in the literature, as those reported by
Nascimento et al. (2013), which focuses on fault tolerant
Service-Oriented Architectures. Efficient organizations
have been also pursued, for instance start performing
result comparisons as soon as they arrive so to wait only
m to agree, thus improving on time performance, relevant
in particular in real-time systems. Of course, this scheme
is fully recursive, meaning that a variant can in turn be
implemented following the NVP schema.

4.2. Intrusion NVP counterparts. Starting from the
classic NVP fault tolerant organization just recalled, a few
adaptations to the fault intrusion context are proposed in
the following, exploiting the defense features discussed
in Section 3. Specifically, the usage of protection
mechanisms at level of communication channels (mainly
to detect side-channel information leak) and encapsulating
the adjudicator component within a secure module
(root-of-trust), are the minimum additions to build a basic
intrusion tolerant NVP-like scheme, here called iNVP, as
proposed by Rodriguez et al. (2015).

Adding extra variants to the h variants strictly needed
introduces a form of confusion to weaken the attacker’s
strategy. Then, depending on how the adjudicator selects
the h results to consider, out of the n provided by
the variants, slightly different solutions are originated.
Specifically, the adjudicator may choose the h results
either uniformly at random (originating the the iNVP-R
scheme), or deterministically (originating the iNVP-D
scheme). In iNVP-R, the variants have no feedback about
whether their result has been selected or not. Notice
that there are

(
n
h

)
possible ways to select h results

among the n available. The idea at the heart of iNVP-R
is to make impossible for the attacker to know if the
resources invested in compromising a specific variant
are wasted and then, to maintain the same probability

L0

Input ADJIUDICATOR Output

C
h

o
o

s
e

 u
n

ifo
rm

ly
 a

t ra
n

d
o

m
/d

e
te

rm
in

is
tic

a
lly

 h
 re

s
u

lts
 o

v
e

r (h
+

c
) a

v
a

ila
b

le
 o

n
e

s

Variant Rr

Variant R1

Variant Cc

Variant C1

Variant Hh

Variant H1

Set of h variants whose

results are adjudged

Set of c extra variants

for confusion

Set of r extra variants

under rejuvenation

L0

L1

Fig. 5. Logical structure of the intrusion tolerant NVP-based
schemes (iNVP, iNVP-R and iNVP-D). For graphical
convenience, the variants within the same set (indicated
with different shades of grey) are depicted sequentially,
but in real deployments their order is mixed. As exe-
cutions progress, each variant can move from one set to
another.

of overall attack success, the attacker has to invest—in
the mean—more resources. The iNVP-D alternative,
where the choice of those variants not considered by the
adjudicator is made deterministically, is competitive when
the rejuvenation mechanism is also put in place. In fact,
in such an organization, the potential higher knowledge
from the attacker perspective (identity of those variants
not considered by the adjudicator) is counteracted by the
defender’s power to accomplish rejuvenation of variants,
so that those selected by the adjudicator include the more
recently rejuvenated ones.

Of course, rejuvenation can be profitably applied to
variants also in the previous iNVP-R strategy. However,
since the choice of the variant results to adjudge is
random, rejuvenation cannot be fully controlled to bring
the highest benefit, as in iNVP-D.

The architecture depicted in Fig. 5 is representative
of the NVP-based intrusion tolerance schemes discussed
above. It includes protection layers (L0 for the
adjudicator, and L1 for the variants and communication
channels), the set of h variants whose results are
considered by the adjudicator (randomly by the voter
in iNVP-R, or pre-selected in iNVP-D), the set of c
extra variants to generate confusion, and the set of
extra r variants under rejuvenation at each execution.The
basic iNVP is simply obtained by removing the variants
impacted by rejuvenation and confusion.

Of course, the enhancements against attackers

Redundancy-based intrusion tolerance approaches . . . 709

brought by implementing the principles of confusion
and rejuvenation are payed by the additional c plus r
needed variants, respectively. The choice of suitable
values for c and r need to be supported by a quantitative
analysis devoted to assess a good tradeoff among
contrasting aspects (dependability assurance and implied
cost, depending on the criticality of the application).

A final consideration is about the adjudicator
component. Depending on its complexity, resorting
to a full L0 protection level (as in Fig. 5) could be
not possible/convenient. Therefore, an alternative is to
distribute its logic in such a way that only a small kernel
of the adjudication algorithm needs to be protected in L0

and the rest can stay in L1. For the simple voter, in the
work of Hardekopf et al. (2001) a distributed algorithm is
presented, where only an interface is in L0 and the rest of
the logic is distributed among the variants, that are in L1.

The interface is designed to be sufficiently small
and simple to be, on one hand, formally verifiable for
correctness and, on the other hand, be easily hosted within
a Root-of-Trust.

However, despite the availability of advanced
solutions and practice provided by the distributed systems
community over decades, resorting to a distributed but
less protected adjudication logic needs to be cautiously
considered, since the higher exposure to the risk of
attack could be not affordable for the application under
development (e.g., is not recommended for a safety
critical component).

5. Family of RB-like architectural proposals
This section is dedicated to the family of redundancy
architectures that follow the Recovery Blocks (RB)
organization. After a brief description of the classical
RB fault tolerant architecture (Randell and Xu, 1994), a
solution obtained from its adaptation in the context of
intrusion tolerance is discussed.

5.1. Reference recovery block with n variants. The
original formulation of the Recovery Block (RB) scheme
(Randell and Xu, 1994) consists of n variants (also called
alternates) that are executed sequentially, according to a
predefined order, and the adjudicator that takes the form
of an acceptance test (AT), applied to each individual
result provided by the variants. On entry to a recovery
block, the state is saved to permit backward error recovery
(i.e., to establish a checkpoint). The execution starts
with the first variant and then its AT checks the produced
result. If the check is successful, the RB terminates
its execution by releasing this (assumed to be) correct
outcome and the taken checkpoint is deleted. Otherwise,
the next variant is executed after restoring the state to the
taken checkpoint, repeating the AT on the obtained result,
and so on, until a successful check is encountered (RB

terminates with a judged-to-be-correct outcome) or all the
variants have completed their computation (RB terminates
with a default outcome, or just a notification that no
correct outcome was found). Of course this scheme is
fully recursive, meaning that a variant can in turn be
implemented following the recovery block structure.

As for the NVP adjudicator, here the acceptance test
is a crucial component. On one hand, the acceptance test
must be simple enough to assure higher correctness than
the variant it checks, but on the other hand not so trivial
to ignore variants’ specificities and guarantee significance
of the performed check. Coverage of an acceptance test,
such that reliance can be put on the result of its check,
depends on the application domain it is called to operate.
Therefore, resorting to an RB structure strongly depends
on the availability of acceptance tests characterized by
enough coverage. Notice that employing diverse ATs for
the variants, as typically required to cope for variants
diversity, promotes intrusion tolerance of ATs themselves.

With respect to NVP, RB saves in computing
resources, since in most cases only the primary is
executed, while NVP exercises all the variants. However,
this advantage poses also an additional implementation
problem: how to synchronize the internal states of
alternates that performed executions with those that did
not. In fact, while the sequential execution paradigm
of the RB variants (possibly involving a subset of the
variants only) is fully adequate in the case of stateless
components, a problem arises when the variants exploit
their internal state in the computations they perform along
time. In this latter case, synchronization at the state level
is needed, to assure consistency of the computations. A
Parallel Recovery Block, where the primary and all the
alternates are executed although only a subset of them
would be strictly needed to assure termination of the RB
execution, is a simple although costly solution to cope
with consistency of alternates internal state.

5.2. Intrusion Recovery-Block. The RB for intrusion
tolerance purposes (iRB) requires high protection of
crucial elements, so a basic solution consists in enclosing
the checkpoint update/restore mechanism, the acceptance
test and the switch that selects in turn the alternates
under the protection level L0, and the variants in L1, as
depicted in Fig. 6 (similarly to what has been proposed by
Rodriguez et al. (2015)).

Many alternative organizations can be built, such
as placing also the first alternate in L0. This is more
expensive, but guarantees that the most crucial variant
from the attack perspective is adequately protected.

Being the acceptance test not perfect in detecting
erroneous results (especially, intentionally counterfeited
ones), confusion is relevant also for iRB. To contrast
the potential ability of an attacker to monitor the
communications between the variants and the switch

710 F. Di Giandomenico et al.

to identify the alternate whose result is sent to the
acceptance test in the current phase (reading the content
is unnecessary, only knowing the sender and the receiver
is enough), the parallel execution of a subset of the
alternates, or even executing additional variants, appears
another suitable solution. In fact, it increases the
attacker’s confusion and also saves in overall execution
time in case the variant fails the acceptance test, but
requires more execution resources than the pure sequential
execution. Notice, though, that executing other variants in
parallel to the one whose result is considered in a given
phase exposes them to attacks too. Therefore, to avoid
depleting the tolerance ability of the scheme configuration
too quickly, it is advisable to employ additional variants.

Mechanisms similar to those already discussed for
the NVP scheme to enhance protection against attacks are
applicable also to the RB scheme. They primarily include:
(i) the random selection of the alternate(s) to execute
at each phase (instead of a pre-defined deterministic
choice); (ii) rejuvenation phases to enhance the health
of the alternates, so as to nullify the effort previously
made by the attacker to compromise the rejuvenated
variant, coupled with having the most recently rejuvenated
alternates to act as the first alternates to execute at the next
scheme execution.

As for the previous family of NVP-like techniques, a
variety of other intrusion tolerant RB-like schemes can be
built, in addition to the examples just shown, by exploiting
redundancy-by-diversity and the features presented in
Section 3.

6. Family of hybrid architectural proposals
NVP and RB are recognized as the two extremes of
redundancy-based fault tolerance techniques: exploitation
of maximum execution resources to achieve minimum
execution time (NVP) and minimum execution resources
to be potentially payed by maximum execution time (RB).
In between, hybrid solutions that try to combine the best
aspects of each of the two have been proposed in the
literature. Three of them have been selected, briefly
recalled in the following (SCP (Laprie et al., 1990),
CRB (Randell and Xu, 1994) and SCOP (Bondavalli
et al., 1993)), and for each of them an alternative suitable
to address intrusion tolerance is presented.

6.1. N Self-Checking Programming. The N
Self-Checking Programming (SCP) architecture
consists in the parallel execution of nSC self-checking
components, ordered according to some criteria (typically,
based on performance and accuracy considerations). The
outcome of the NSCP structure is the result provided by
the first self-checking component, starting from the first
one in the ordered list. A self-checking program results
from the addition of redundancy into a program to check

Input

Output

R1
Acceptance

Test 1

R2
Acceptance

Test 2

Rn
Acceptance

Test n

R1 is not acceptable

Checkpoint

Recovery

R(n-1) is not acceptable
Recovery

Rn is not acceptable Failure

L0L1

Variant 1

Variant n

Variant 2

L0L0

Fig. 6. Basic iRB configuration, employing n variants and 2
protection layers.

Input Output

if C
1

2
 th

e
n

 R
1
 e

ls
e

if ... e
ls

e
if C

(n
-1

)n
 th

e
n
 R

n
-1

 e
ls

e
 E

R
R

O
R

C12

Compare

variants 1 and

2

R1

C(n-1)n

R3

L0
L1

L0

L1

L0

Variant 1

Variant 2

Variant n

Variant (n-1)

Compare

variants (n-1)

and n

L0

Fig. 7. Logical organization of the iSCP scheme with 2 protec-
tion layers and n variants grouped in n/2 self-checking
components.

its own dynamic behavior during execution (Lyu, 1995).
As reported in (Laprie et al., 1990), a self-checking
component consists of either a variant and an acceptance
test or two variants and a comparison algorithm, such
that an output is produced only if either the acceptance or
the comparison between the results of the two variants is
successful, respectively

6.2. Intrusion Self-Checking Programming.
Borrowing ideas from intrusion tolerant NVP and RB, a
basic architecture for the intrusion tolerance counterpart
of SCP, called iSCP, consists in exploiting different
protection layers to enhance defense against attacks. The
configuration proposed in Fig. 7 employs self-checking
components consisting of two variants and a comparator.
Note that the common mode failure between the two
coupled variants could be a rare event when accidental
faults are assumed, but intentional attacks are expected to
be smart, thus making the becoming a phenomenon that
needs to be mitigated from the security perspective (as
also pointed out in (Rodriguez et al., 2015)). Therefore, in
the proposed iSCP configuration one variant is assigned
the highest protection level L0, as for the comparator
component. Actually, within the scheme in Fig. 7, since

Redundancy-based intrusion tolerance approaches . . . 711

variants in L0 are protected against attacks, but can still
suffer from an accidental fault, it is relevant to distinguish
a value failures due to accidental causes from i value
failures due to intentional attacks, so that f = a + i,
where 0 ≤ a < n and 0 ≤ i < nSC. Moreover, it is
needed to assume that the wrong results produced by
accidental causes are different from the ones produced
by intrusions; however, this is a reasonable assumption,
since otherwise the attacker needs to read the accidentally
wrong value.

In case the self-checking component results from a
couple variant and acceptance test, for the same reason
discussed above it is appropriate that the acceptance test
receives a higher protection (L0).

The execution pattern of SCP with respect to
selecting the final outcome is sequential, similarly
to that of the RB scheme. Therefore, the same
considerations already made for iRB also apply to iSCP
for what concerns both the addition of confusion (through
additional self-checking components and the random
order in checking the self-checking components’ result)
and in scheduling variants rejuvenation. Note that, since
a self-checking component based on a couple of variants
requires both variants to be actively working, it appears
advantageous that both variants undergo rejuvenation
at the same time, and then having the most recently
rejuvenated self-checking component to act as the first
component at each execution.

Confusion can be exploited in different forms. One
can be to randomly build the order of the self-checking
components, so that from one execution to another the
final outcome is provided by a different one. However,
this is feasible only if the variants have similar quality of
service characteristics. Another can be add c variants all
under L1. If the attackers cannot identify the protection
layer a variant belongs to, this makes also possible to hide
the number of participating variants; otherwise, this adds
confusion only to the nSC variants that are already under
L1, allowing the attackers to focus on those. Finally,
additional variants can be deployed in couples, one in L0

and the other in L1, as the participating ones.

6.3. Consensus Recovery Block. As reported by
Randell and Xu (1994), the Consensus Recovery Block
(CRB), attempts to combine aspects of the RB and NVP
schemes, by reducing on one side the importance of
the acceptance test used in RB and handling the case
where NVP does not employ a sophisticated voter able
to recognize multiple correct outputs. In CRB the variants
are ranked and, on invocation, all variants are executed in
parallel and their results submitted to a voter. The original
formulation of the scheme (Scott et al., 1985) is based on
the assumption that there is no common mode failure, so
erroneous results do not coincide. Therefore, agreement
between the outcomes of two variants is sufficient to

Input Majority

N
o

 m
a

jo
rity

Majority

Voter

Output

RH1AT H1

RHhAT Hh

RC1AT C1

Failure

RCcAT Cc

RR1AT R1

L0L1

Variant H1

Variant R1

Variant Hh

Variant Cc

Variant Rr

Variant C1

T
o

 c
h

o
o

s
e

 u
n

ifo
rm

ly
 a

t ra
n

d
o

m
 th

e
 h

 re
s
u

lts
 fo

r m
a

jo
rity

 v
o

tin
g

AT Rr RRr

Variants whose results are voted Variants added for confusion Variants under rejuvenation

L0

Fig. 8. Logical organization of the iCRB scheme, including two
protection layers, and n variants in the roles of: h vari-
ants contributing results to the adjudicator, additional c
variants to produce confusion and additional r variants
to allow rejuvenation phases. As executions progress,
each variant typically changes role from one to another.

deliver this value as the final result. However, in a
more general formulation, which is comprehensive of
less restrictive failure model assumptions, the voter can
be based on a simple majority of m variants or another
plurality criterion to consider an outcome to be successful.
If there is no majority, then the result of the variant with
the highest ranking is submitted to the corresponding
acceptance test. If this fails then the next variant in the
order is selected. This continues until all variants are
exhausted or one passes the acceptance test.

Notice that this schema is, from one hand, a parallel
recovery block with a pre-test about consensus, and from
the other hand an NVP with an adjudicator that is more
sophisticated than the simple voter.

6.4. Intrusion Consensus Recovery Block. As for
the other proposed intrusion tolerant alternatives to basic
fault tolerance strategies, also for an intrusion version of
CRB (iCRB) a first measure to adopt is higher protection
of the most critical components of the scheme, i.e.,

712 F. Di Giandomenico et al.

the implementation of the two-step logic (voter and
acceptance test, which are assigned protection level L0)
with respect to variants (which are assigned protection
level L1).

Since CRB is an hybrid between NVP and RB,
protection techniques already discussed when presenting
intrusion tolerance alternatives of NVP and RB could
be considered for iCRB proposals. In particular, the
architecture depicted in Fig. 8 is suggested, where
confusion aspects obtained through addition of extra
variants whose outputs are not considered by the voter
component are exploited. In the most favourable
case where variants of the same quality of service are
employed, the outputs considered by the voter can be
randomly chosen at each execution, to enhance the
attacker’s confusion level. Then, in case the voting phase
is not successful and acceptance tests are activated, the
output of previously non participating variants can be
checked by the respective acceptance test (provided they
are available) or not, depending on the degree of reliance
that can be put on them.

If affordable from the overall budget perspective,
the presence of extra redundancy favours the usage of
rejuvenation actions, as a further protection measure, with
expected benefits as already previously discussed. In
addition, changing the logic of the overall adjudication
function to have the acceptance test applied to the result
selected by the voter, in case this happens, strengthen
the scheme to a greater extent. In fact, taking advantage
of the availability of both the voter and the acceptance
test, making such double check enhances the chance to
counteract potential intrusions.

6.5. Self-Configuring Optimistic Programming.
The Self-Configuring Optimistic Programming (SCOP),
proposed by Bondavalli et al. (1993), maintains the logic
of NVP unaltered but schedules the execution of the
variants in phases, instead of the parallel execution of all
the variants, to promote efficiency. SCOP starts executing
the minimum number of variants that, if all correct, satisfy
the adjudicator criterion and the scheme terminates, based
on an optimistic vision that high quality versions are
typically employed to build redundant organization for
critical domains. If this is not the case, a new execution is
started, involving the minimum number of variants among
the still to execute ones, such that, if successful, will
contribute together with the variants already executed in
the previous phases to satisfy the adjudicator criterion and
terminate the overall execution. This pattern is repeated
until a successful result is found, or all the variants are
exhausted. To make clearer how SCOP works, consider a
configuration using 5 variants to tolerate 2 errors, with a
majority voter as adjudicator. In the first phase, 3 variants
are executed (minimum number sufficient to satisfy the
majority criterion over 5 variants). If the phase ends with

Input

Adjudged result

Output

Failure

L0L1

V1
1

Vm1
1

Vck
1

Variants whose results are voted Variants added for confusion

Vc1
1

V1
2

Vm2
2

Vcj
2

Vc1
2

V1
z

Vmz
z

Vci
z

Vc1
z

T
o

 c
h

o
o

s
e

 u
n

ifo
rm

ly
 a

t ra
n

d
o

m
 th

e

m
in

 n
u

m
b

e
r m
1
 o

f re
s
u
lts

 to
 s

a
tis

fy

th
e

 a
d

ju
d

ic
a

tio
n

 fu
n

c
tio

n

T
o

 c
h

o
o

s
e

 u
n

ifo
rm

ly
 a

t ra
n

d
o

m
 th

e

m
in

 n
u

m
 m
2
 o

f a
d
d
itio

n
a
l re

s
u
lts

 to

s
a

tis
fy

 th
e

 a
d

ju
d

ic
a

tio
n

 fu
n

c
tio

n

Adjudicator

T
o

 c
h

o
o

s
e

 u
n

ifo
rm

ly
 a

t ra
n

d
o

m
 th

e

m
in

 n
u

m
 m
z
 o

f a
d
d
itio

n
a
l re

s
u
lts

 to

s
a

tis
fy

 th
e

 a
d

ju
d

ic
a

tio
n

 fu
n

c
tio

n

N
o

 re
s
u

lt (z
-1

)

N
o

 a
d

ju
d

g
e

d
 re

s
u

lt (z
)

L1

L1

N
o
 re

su
lt (1

)

L0

L0

L0

Fig. 9. Logical organization of iSCOP with execution in more
phases, two protection layers (L0 and L1) and extra vari-
ants for confusion. V j

i indicates variants executed at
phase j, mj is the (variable) minimum number of vari-
ants that need to be executed at phase j to attempt satis-
fying the adjudication criterion, given the pattern of re-
sults obtained in the previous phases.

3 consistent results, such result is the final output and the
scheme ends. Instead, if only 2 results are consistent, a
second phase is started, where one of the two remaining
variants is executed and its result voted with those of
the first phase. Then, upon 3 consistent results out of
the 4 obtained so far, the scheme ends, otherwise a final
phase employing the last remaining variant is performed.
Depending on the last obtained result, the scheme can end
with a majority result, or with a failure notification (or
default value). Instead, in case the first phase ends with 3
different results, in the second phase both the 2 remaining
variants are executed, at the end of which the 5 results are
voted and the scheme ends, again either with a majority
result, or with a failure notification (or default value).
When the majority voter is used, the number of executed
phases ranges between one (as it would be expected in
most of the cases) and �(n+ 1)/2� (the worst case, when
each execution after the first phase always involves just
one variant).

6.6. Intrusion SCOP. To cope with intrusions, iSCOP
maintains the same logical organization as SCOP, but
adopts both high protection layer and additional variants
for confusion. Figure 9 illustrates the scheme.

iSCOP execution consists of a variable number

Redundancy-based intrusion tolerance approaches . . . 713

of phases, where the variants to execute at each
phase are optimistically chosen on the basis of the
adjudication function and the observed syndrome of
results accumulated along the executions.

Similarly to iNVP, additional variants for confusion
may be employed at each phase, so a mechanism is needed
to uniformly select at random the results needed at each
phase for adjudication purposes.

The introduction of protection levels follows the
same rationale as for the previous schemes: the variants
are assigned protection level L1, while the selector
of variant results to be adjudged, the adjudicator and
the communication channels are assigned the higher
protection level L0.

For the sake of simplicity, in Fig. 9, the rejuvenation
mechanism has not been included. Of course, for this
scheme it is appropriate to treat variants with periodic
rejuvenation phases. Then, the same considerations
already provided when discussing the iNVP scheme
regarding the opportunity to exploit the most rejuvenated
variants in execution phases instead of random selection
apply also to iSCOP.

7. Practical advice
To better support the understanding and selection of
the appropriate intrusion tolerance scheme to adopt for
specific purposes, practical advice is provided in this
section, including a study with focus on confusion.

7.1. Selection of schemes’ parameters. To help
configuring the appropriate scheme, in the following
the solutions introduced in the previous sections are
formulated in terms of their parameters. In particular,
indications about redundancy levels, degrees of variants
under rejuvenation, as well as relation with available sites
are provided.

First, Table 1 reports the number of variants that
are needed by each of the five fault tolerance schemes
considered in this study, to tolerate f (in the worst case
common-mode) value failures and k omission failures,
occurring simultaneously. Of course, f or k can be 0,
in case only omission failures or only value failures are
assumed, respectively. Also, indication about the kind
of decision function adopted by the scheme is included.
For NVP, the simple majority voting is assumed, and for
SCP the self checking component is obtained through
comparison of two variants outcomes. Observe that,
when only omission failures are considered, the decision
function based on voting is simplified to be just the
selection of the received variant’s value (in accordance
with the omission failure assumption, if a variant output is
issued, it is correct). Moreover, similar formulations can
be easily derived for determining the number of required
variants for NVP and SCP if a different voting function or

Table 1. Comparison of classical architectures: n = h is the
number of variants, f is the number of value faults, k
is the number of omitted results.

Scheme n = h Decision mechanism
NVP 2f + k + 1 Relative, simple majority

RB f + k + 1 Absolute, based on ATs

SCP 2(f+k+1)
with f ≤ 1

Relative, compare two results

CRB 2f + k + 1 First relative and then absolute

SCOP 2f + k + 1 Relative, simple majority

realization of a self-checking component with respect to
the one in Table 1 are adopted.

Notice that, for NVP, CRB and SCOP, the majority
is m = �(n + 1)/2�. Thus, if k = 0 then n is odd, so
setting f = m − 1 = (n − 1)/2, means that the scheme
can tolerate f value faults. If k > 0 then n can be either
odd or even. The k additional variants indeed promote
not only omission failures tolerance, but also contribute to
strengthen the scheme when there are only value failures.
In general, if n is even then the scheme can tolerate up
to f = n − m, whereas f = n/2 still guarantees fault
detection (or, in the safety context, the scheme results in a
benign failure). As an example consider the case n = 8,
and then m = 5, with no omissions: if 4 variants agree
on the result and other 4 agree on a different one then
NVP cannot decide which one deliver in output (but can
do detection); otherwise, if 5 variants agree on the result
(and f = 3 agree on a different one) then the scheme
can select the correct result. The new proposed intrusion
tolerant alternatives to the schemes in Table 1, as recalled
in Table 2, are formulated in terms of their parameters
in Table 3. These schemes take advantage of additional
features to better cope with intentional attacks, as deeply
discussed in Section 3. Specifically, they consist in: (i)
additional redundancy used as a stratagem to confuse the
attacker; (ii) distribution of the variants on more sites;
and (iii) periodic rejuvenation of variants, to contrast
potential partial compromise of a variant already in place,
or anyway to nullify potential gathered knowledge by
an attacker about a variant. As previously introduced,
c indicates the number of additional redundancy for
confusion (and therefore h variants vote in the NVP-like
schemes, or are considered in RB-like ones), s indicates
the number of available sites, and r indicates the number
of variants under rejuvenation. The formulas in Table 3 for
the number of variants required by each scheme include
these parameters c, s, r, in addition to f, a, i, k connected
with the failure types. In particular, k ≥ ⌈

n/s
⌉

assures

714 F. Di Giandomenico et al.

Table 2. Intrusion tolerant schemes.

Acronym Full name Section Figure
iNVP intrusion N Version Programming Section 4.2 Fig. 5

iNVP-R iNVP with Random Participation Section 4.2 Fig. 5
iNVP-D iNVP with Deterministic Participation Section 4.2 Fig. 5

iRB intrusion Recovery Block Section 5.2 Fig. 6
iSCP intrusion Self-Checking Programming Section 6.2 Fig. 7
iCRB intrusion Consensus Recovery Block Section 6.4 Fig. 8

iSCOP intrusion Self-Configuring Optimistic Programming Section 6.6 Fig. 9

Table 3. Number of variants n = h+ r+ c employed in intrusion tolerant schemes, to tolerate k omission failures and f value failures
(among which a are accidental and i intentional, i.e., f = a+ i), accounting for rejuvenation (r), more location sites (s) and
additional variants for confusion (c).

Scheme h

iNVP{-R,-D},
iSCOP and iCRB

2f +max
{
k,
⌈
2f+1
s−1

⌉}
+ 1, where s > 1

iRB f + k + 1, where n > s

iSCP 2
(
f +max

{
k,
⌈
2f+2
s−2

⌉}
+ 1

)
, where s > 2 and a ≤ 1

that the architectures continue to behave as expected if
1 site is disconnected, and then n is derived exploiting
standard properties of the ceil function.

There is no exact indication on the amount of extra
redundancy for confusion (i.e., c), since this choice is
left to the system designer. What is expected is that at
higher number of extra redundancy for confusion should
correspond higher defense ability (and therefore higher
dependability); however, this needs to be confirmed by
quantitative analysis, that is planned as a future research
study. Also the population of variants under rejuvenation
is chosen by the system designer, trading between cost
of rejuvenation and benefits in prolonging the life of
correctly operating variants; so only its number r is
accounted for in the formulas.

Starting from the observation that NVP with simple
majority voting requires n = 2f + k + 1 as reported
in Table 1, it is possible to gradually introduce sites,
rejuvenation and confusion in iNVP. If the defender has
s sites, the best strategy is to distribute as much uniformly
as possible the variants among the sites. Thus, there are
�n/s� variants on the largest site, and then k ≥ �n/s�,
otherwise the isolation of the largest site produces more
omissions than the tolerated ones. Applying standard
properties of ceil function it is possible to relate n directly
to f and k (datum), and s and r (designer choice), as
in Table 3. However, the uniform distribution is not a
compelling requirement, so other deployment policies can
be adopted. As a general rule, the necessary condition to

prevent the occurrence of a system failure, following the
isolation of one site by an attacker, is that less than the
number of variants whose results are needed to satisfy the
adjudication function are allocated to any single site (a
majority of variants, in case a majority voting is employed
in the scheme, as for the case presented).

When confusion is adopted, n becomes the one
reported in Table 3 for both deterministic and random
strategies, and the same reasoning on how to distribute
variants across sites applies to additional redundancy.

iRB requires a smaller number of variants, n ≥ f +
k + 1, with respect to iNVP, and n does not change when
the isolation of a site is considered as long as n > s, that is
usually the case, when both the n−c participating variants
and the c additional ones are distributed among the sites
according to round robin policy. In fact, for n ≤ s the
isolation of one site reduces the number of participating
variants, and then the scheme is no more able to tolerate
the required number of failures.

For degradable systems, i.e., where the variants
produce result of different accuracy, and then are ordered
accordingly, the best strategy to distribute the variants
among sites is to deploy the primary on one site, the
second alternate on another site, and so on till the first
s variants are assigned; the remaining n − s are then
distributed round robin among the sites.

In iRB, even though only the result of a variant is
selected and submitted to the corresponding acceptance
test, other variants (chosen among those already available

Redundancy-based intrusion tolerance approaches . . . 715

Table 4. Comparison of the architectures with respect to time
constraints (hard vs soft).

Scheme Hard Soft
iNVP{-R,-D} OK (parallel exec.) OK

iRB KO (sequential exec.) OK
iSC OK (parallel exec.) OK

iCRB OK (parallel exec.) OK
iSCOP KO (sequential exec.) OK

for tolerance or among additional ones) can be executed
in parallel just to increase attackers’ confusion. Thus, the
number of variants in the iRB is f + k + 1 + c, and the c
additional variants have to be deployed on different sites.

For iSCP, with s = 1 site, when f = 0, to tolerate k
omission failures (that in the worst case are distributed one
per couple in nSC−1 self-checking components) 2(k+1)
variants are required. If in addition there is f = 1 value
failure then the required number of variants becomes n =
2(k + 1). To tolerate a ≤ 1 accidental and i intentional
failures, iSCP requiresn = 2(k+1+a+i), with a+i = 1.
For s > 2 the number of variants is reported in Table 3.

For iCRB, only the first phase, where iCRB behaves
as iNVP, is relevant to determine the number of variants
to employ. Thus, n = 2f+k+1+c. When considering s
sites, the number of required variants is reported in Table
3. Regarding confusion in iCRB, even though the results
of those variants that do not participate to the vote are
considered in subsequent phases, being n = 2f + k +
1 + c ≥ f + k + 1 + c, employment of further variants
does not appear useful.

Finally, considerations about performance are
summarized in Table 4. Without going in the detail of
a huge variety of system organizations and application
domains, the time requirements are abstracted at the level
of hard time constraints and soft time constraints. The
former indicates that violation of the time requirement has
potentially heavy consequences for the system where the
scheme is embedded, while the latter indicates a lower
criticality of the time requirement.

Similarly to what can be observed for the original
fault tolerant schemes that inspired the definition of the
proposed intrusion tolerant alternatives, it can be roughly
suggested that schemes based on parallel execution
are adequate for hard time constraints, while schemes
structured in sequential phases are risky from the hard
time perspective. However, this is an indication, but not a
definitive discrimination among the schemes considered.
Indeed, while parallel execution allows to predetermine
the worst case execution time of the slowest variant
and so be sure of the maximum time required by an
execution of the scheme, mechanisms structured in phases
have variable execution time depending on the failures

really experienced during the execution (they afford
longer execution time in unfavourable scenarios, but save
in executed variants in the more frequent favourable
scenarios where no failures occur). However, also
for these sequentially based solutions, the worst case
execution time can be computed and, if adequate for the
hard time constraint imposed by the application at hand,
there is no objection on adopting one of them.

Of course, when soft time constraints are in place,
any of the presented schemes can be applicable, and the
choice will be in general operated in accordance to some
other criterion.

7.2. Focus on confusion. Confusion increases at
increasing of c, but scheme parameters impact on
confusion is a complex subject. In order to isolate as
much as possible the analysis of confusion from the
other aspects addressed in the paper, and then promote
the identification of simple trade-offs between cost and
confusion, the following assumptions (corresponding to
the worst case scenario) are made:

• an attacked variant is considered compromised;

• the attackers know all the scheme details, including
parameters value;

• the evaluation does not explicitly consider accidental
value failures nor omission ones, but only intentional
value failures;

• the variants to be compromised are selected
uniformly at random;

• no variant can undergo rejuvenation, i.e., r = 0.

Recall that for iNVP-R with simple voting the
majority is m = �(h + 1)/2�, and i indicates the number
of compromised variants (that, under the assumptions
considered, coincides with the attacked variants). Let t
be the number of variants among the attacked ones that
were actually participating to the voting, with 0 ≤ t ≤ i,
and recall that iNVP-R fails if t ≥ m. For given n, c and
i, and recalling that r = 0 (in this case n = h + c), the
probability of successful intrusion tolerance is then

Pi{iNVP-R OK} = 1−
min{h,i}∑

t=max{m,h+i−n}

(
h
t

) · (n−h
i−t

)

(
n
i

) ,

where the addends are determined exploiting the
hypergeometric distribution.

For instance, Table 5 compares Pi{iNVP-R OK}
where n = 8 and for h = 5, . . . , 8 at increasing of i.

Clearly, for n = 8 it makes no sense for the attacker
to intrude more than 7 variants, and obviously for h = 8,
i.e., iNVP without confusion, i = 5 is enough to defeat

716 F. Di Giandomenico et al.

the defender. Notice that, for n = 8, it is often reasonable
to choose h equals to 4 or 5, even though the choice
is strictly context dependent. For h = 5 the scheme
can certainly tolerate i = 2, as the corresponding iNVP
without confusion (n = h = 5), but in addition it can also
tolerate i = 3 with reasonably high probability.

iSCOP is almost identical to iNVP-R, except for the
fact that, being the number of executed variants dependent
on the number of phases, the attacker has slightly less
information than in iNVP-R. This difference, though, is
negligible for the kind of analysis reported in this section,
then Pi{iSCOP OK} = Pi{iNVP-R OK}.

Instead, applying confusion on iRB leads
Pi{iRB OK} ≈ 1 − i · P{AT1 fails}/(c + 1), where
only the primary is considered and P{AT1 fails} is the
probability of its acceptance test failure. This is an
approximation of the exact expression, that neglects the
sum of products of alternates acceptance tests’ failure, so
applicable when P{ATj fails} is sufficiently small as we
assume.

Similarly, Pi{iSCP OK} ≈ 1−2·P{AT1 fails}/(n+
c) because in iSCP all the n−c self-checking components
run in parallel.

For iCRB, Pi{iCRB OK} ≈ Pi{iNVP-R OK} since
the first phase is identical to iNVP-R, and subsequent
phases add negligible contribution under the assumption
that P{ATj fails} is sufficiently small, as done for iRB.

Finally, it is possible to characterize each scheme
through averaging their probabilities of successful
intrusion tolerance:

P{iSCHEME OK} =

n∑

i=0

Pi{iSCHEME OK}
n+ 1

,

and then compare the impact of confusion on the schemes.
Consider, for instance, Fig. 10, where the bars are grouped
by n, each bar corresponds to a scheme and reports
min and max values of P{iSCHEME OK} when c lies
between 0 and 2 for n = 3, and between 0 and 6
for n = 8. Here P{AT1 fails} = 0.1, i.e., the
primary acceptance test coverage has been set to 0.9.
Notice that P{iRB OK} and P{iSCP OK} increase at
increasing of c, whereas P{iNVP-R OK}, P{iCRB OK}
and P{iSCOP OK} oscillate. Given the assumptions
and setting of the analyzed scenario, iRB and iSCP are
more intrusion tolerant than iNVP-R, iCRB and iSCOP,
and confusion does not change much their tolerance.
Instead, iNVP-R, iCRB and iSCOP are more sensitive to
an increase of c, in particular for small value of n (that are
more commonly employed).

Of course, relaxing the worst case assumption that
an attacked variant is always compromised versus a more
realistic situation where the attacker has a probability
to succeed lower than 1 (as expected due to the
positive impact of the employed diversity techniques), the

Table 5. Pi{iNVP-R OK} for n = 8 and h = 3, . . . , 8.
h

i 3 4 5 6 7 8
0 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 1.00 1.00 1.00 1.00 1.00
2 0.89 1.00 1.00 1.00 1.00 1.00
3 0.71 0.93 0.82 1.00 1.00 1.00
4 0.50 0.76 0.50 0.79 0.50 1.00
5 0.29 0.50 0.18 0.36 0.00 0.00
6 0.11 0.21 0.00 0.00 0.00 0.00

3 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iNVP

iRB iSCP iSCPiRB

iNVP
c=1

c=0

c=0
c=0

c=0

c=0
c=2 c=2

c=0

c=5

c=6 c=6

Fig. 10. Minimum and maximum value of P{iSCHEME OK}
for n = 3 (0 ≤ c ≤ 2) and n = 8 (0 ≤ c ≤ 6), with a
representative value of c.

probability of successful intrusion tolerance improves for
each scheme. For example, when i = 6, the values
of Pi{iNVP-R OK} are those corresponding to i = 5
in Table 5 if the attacker’s probability to compromise a
variant is 83%, and values corresponding to i = 4 if such
probability lowers to 67%.

The above analysis has shown a direction to assess
the impact of confusion on the intrusion tolerance abilities
of the proposed schemes. Of course, more scenarios need
to be considered in future studies to draw more solid
conclusions.

Although the number of variants called in place
in this study appears rather high, obtaining n = 8
diverse system components is not difficult in principle,
considering that systems are typically structured in
hierarchical layers, from the application down to the
middleware, operating system and hardware support.
Therefore, adopting two diverse elements in three
of the mentioned four layers (e.g., employing 2
operating systems, 2 middlewares or libraries and 2
implementations of the same application) results in n=8
different combinations, which are the needed variants.

Redundancy-based intrusion tolerance approaches . . . 717

8. Final discussion and future work
Enlarging the view from a computing element to other
ICT components targeted by cyberattacks, considerations
about the applicability of the proposed redundancy-based
intrusion tolerance schemes are discussed, before
concluding with future research directions.

8.1. Redundancy-based intrusion tolerance from
the different system components’ perspective. In
the following, the redundancy-based intrusion tolerance
solutions, developed in Sections 4–6 and schematized in
Section 7.1, are briefly considered from the perspective of
the different components of an ICT system, to which such
schemes are intended to be applied.

Recalling from (Di Giandomenico and Masetti,
2021), the ICT components that can be the target of a
cyberattack are grouped in the following three categories:

• Computing element, i.e., a component that is devoted
to perform some kind of functionality, to provide a
service to the requesting entity (a user or another
component). Operating systems primitives, software
applications and enterprise software are typical
examples of this category.

• Communication element, i.e., the means through
which information is delivered to/from computing
elements, users and storage. The internet and the
several wireless networks technologies are typical
examples of this category.

• Data storage element, which includes different
storage technologies used to retain digital data
within a computer system architecture. The term
storage may refer both to a user’s data generally
and, more specifically, to the integrated hardware
and software systems used to capture, manage and
prioritize the data. This includes information in
applications, databases, data warehouses, archiving,
backup appliances and cloud storage.

These three component categories are characterized
by hardware/physical supports and software programs,
either devoted to perform specific functionalities
(computing element category) or to manage/control
the operation of the hardware/physical support
(communication and data storage categories).

It is underlined that the interest in this work is on
cyberattacks, so the impact of an attack on a physical
component can only occur through the software facilities
that control/act on it. Direct physical attack to corrupt a
portion of a physical medium (as it could be a memory
cell or sector) is considered out of scope.

Following this observation, in principle any of the
proposed redundancy-based intrusion tolerance schemes
would be adequate for enhancing resilience of ICT

components belonging to the three categories, taking
into account the aspects discussed in Section 3 to
support the most suitable selection among the several
alternatives. However, while functional components
employed at application level are typically developed
as ad-hoc components to accomplish the activity the
application is called to perform, the software supporting
the operation of physical devices, as well as operating
systems, libraries and the execution environment are
typically off-the-shelf components. This implies that, to
obtain the diversity advocated to be a fundamental aspect
characterizing redundancy-based intrusion tolerance, full
control by system developer is possible for in-house
developments, while for the other software components
the only option is to rely on what is available on the
market.

Luckily, there is a wide range of options made
available by ICT companies, each one embedding some
peculiar aspects that make their products equivalent from
the service point of view, but with differences in terms of
how such service is provided. Open source repositories
also help significantly, especially for what concerns
libraries and execution environments. Therefore, the
diversity principle the intrusion tolerance schemes are
based on can be easily satisfied. Moreover, resorting to
employ a variety of couples physical device, managing
software, as it would be for communication networks and
data storage components, enhances system resilience also
against faults affecting the hardware part.

Coming to a conclusion from this discussion, it
can be inferred that the presented redundancy-based
intrusion tolerance schemes can be profitably exploited
to protect ICT components. The highlights elaborated
in Sections 7.1 and 7.2 help a system designer in
selecting a suitable solution for the faced requirements
and constraints.

8.2. Future work. This work focused on
redundancy-based approaches to tolerate intrusions
in ICT system components. The developed solutions
are obtained by revisiting classical techniques proposed
for fault tolerance purposes, with specific emphasis on
additional features to contrast the effect of intrusions.
Namely, NVP, RB, SCP, CRB and SCOP schemes have
been considered and advanced with intrusion tolerance
features consisting in: (i) additional redundancy used
as a stratagem to confuse the attacker; (ii) adoption of
protection layers; (iii) distribution of the variants on more
sites; and (iv) periodic rejuvenation of variants, to contrast
potential partial compromise of a variant already in place,
or anyway to nullify potential gathered knowledge by an
attacker about a variant. Quantitative formulations of the
developed intrusion tolerance schemes in terms of their
characterizing parameters have been also elaborated, with
a special focus on confusion aspects, as practical support

718 F. Di Giandomenico et al.

for system designers in understanding and selecting an
appropriate alternative among the several offered ones.

Future extensions of this study include: a)
proposal of additional schemes, obtained through
further combinations of the intrusion tolerance features
recalled above; b) identification of interesting application
scenarios, to adopt for concrete demonstration of the
utility of the proposed intrusion tolerance solutions; c)
extension of the architectural definition of the schemes
with quantitative analysis to assess the capacity of each
scheme in addressing dependability properties, as well as
to determine dependability level of employed components
(variants and adjudicators) needed to satisfy required
system dependability indicators.

Acknowledgment
This work was partially supported by the project BIECO
(www.bieco.org), which received funding from the
European Union’s Horizon 2020 research and innovation
programme under the grant agreement no. 952702.

References
Alladi, T., Chamola, V. and Zeadally, S. (2020). Industrial

control systems: Cyberattack trends and countermeasures,
Computer Communications 155: 1–8.

Archer, D.W., Bogdanov, D., Lindell, Y., Kamm, L., Nielsen,
K., Pagter, J.I., Smart, N.P. and Wright, R.N. (2018).
From keys to databases—Real-world applications of
secure multi-party computation, The Computer Journal
61(12): 1749–1771.

Avizienis, A. (1985). The N-version approach to fault-tolerant
software, IEEE Transactions on Software Engineering SE-
11(12): 1491–1501.

Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable and
secure computing, IEEE Transactions on Dependable and
Secure Computing 1(1): 11–33.

Babay, A., Tantillo, T., Aron, T., Platania, M. and Amir,
Y. (2018). Network-attack-resilient intrusion-tolerant
SCADA for the power grid, 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN), Luxemburg, Luxemburg, pp. 255–266.

Bondavalli, A., Di Giandomenico, F. and Xu, J. (1993).
A cost-effective and flexible scheme for software fault
tolerance, Computer Systems: Science & Engineering 8(4):
234–244.

Di Giandomenico, F. and Masetti, G. (2021). Basic aspects
in redundancy-based intrusion tolerance, 14th Interna-
tional Conference on Computational Intelligence in Secu-
rity for Information Systems/12th International Conference
on European Transnational Educational, Bilbao, Spain,
pp. 192–202.

Di Giandomenico, F. and Strigini, L. (1990). Adjudicators
for diverse-redundant components, Proceedings of the 9th

Symposium on Reliable Distributed Systems, Huntsville,
USA, pp. 114–123.

Distler, T. (2022). Byzantine fault-tolerant state-machine
replication from a system’s perspective, ACM Computing
Surveys 54(1): 1–38.

Dohi, T., Trivedi, K. S. and Avritzer, A. (2020). Hand-
book of Software Aging and Rejuvenation: Fundamentals,
Methods, Applications, and Future Directions, WSPC,
Singapore.

Garcia, M., Bessani, A., Gashi, I., Neves, N. and Obelheiro,
R. (2014). Analysis of operating system diversity
for intrusion tolerance, Software—Practice & Experience
44(6): 735–770.

Gashi, I., Povyakalo, A. and Strigini, L. (2016). Diversity, safety
and security in embedded systems: Modelling adversary
effort and supply chain risks, 12th European Depend-
able Computing Conference (EDCC), Gothenburg, Swe-
den, pp. 13–24.

Gorbenko, A., Romanovsky, A., Tarasyuk, O. and
Biloborodov, O. (2020). From analyzing operating
system vulnerabilities to designing multiversion
intrusion-tolerant architectures, IEEE Transactions
on Reliability 69(1): 22–39.

Haphuriwat, N. and Bier, V.M. (2011). Trade-offs between target
hardening and overarching protection, European Journal
of Operational Research 213(1): 320–328.

Hardekopf, B., Kwiat, K. and Upadhyaya, S. (2001). Secure
and fault-tolerant voting in distributed systems, IEEE
Aerospace Conference Proceedings, Gothenburg, Sweden,
pp. 1117–1126.

Khan, M. and Babay, A. (2021). Toward intrusion tolerance
as a service: Confidentiality in partially cloud-based BFT
systems, 51st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN21), Taipei,
Taiwan, pp. 14–25.

Khraisat, A., Gondal, I., Vamplew, P. and Kamruzzaman, J.
(2019). Survey of intrusion detection systems: Techniques,
datasets and challenges, Cybersecurity 2(1): 1–20.

Laprie, J.-C., Arlat, J., Beounes, C. and Kanoun, K.
(1990). Definition and analysis of hardware-
and software-fault-tolerant architectures, Computer
23(7): 39–51.

Littlewood, B. and Strigini, L. (2000). A discussion of practices
for enhancing diversity in software designs, Technical
Report DISPO LS DI TR-04 V1 1d, Centre for Software
Reliability, City University, London, https://openac
cess.city.ac.uk/id/eprint/275/.

Lyu, M.R. (1995). Software Fault Tolerance, John Wiley & Sons
Ltd, Hoboken.

Majdzik, P. (2022). A feasible schedule for parallel assembly
tasks in flexible manufacturing systems, International
Journal of Applied Mathematics and Computer Science
32(1): 51–63, DOI: 10.34768/amcs-2022-0005.

Mejdi, S., Messaoud, A. and Ben Abdennour, R. (2020). Fault
tolerant multicontrollers for nonlinear systems: A real

www.bieco.org
https://openaccess.city.ac.uk/id/eprint/275/
https://openaccess.city.ac.uk/id/eprint/275/

Redundancy-based intrusion tolerance approaches . . . 719

validation on a chemical process, International Journal of
Applied Mathematics and Computer Science 30(1): 61–74,
DOI: 10.34768/amcs-2020-0005.

Nascimento, A.S., Rubira, C.M.F., Burrows, R. and Castor, F.
(2013). A systematic review of design diversity-based
solutions for fault-tolerant SOAs, Proceedings of the 17th
International Conference on Evaluation and Assessment
in Software Engineering, EASE’13, Porto de Galinhas,
Brazil, pp. 107–118.

Obelheiro, R., Bessani, A., Lung, L. and Correia, M. (2006).
How practical are intrusion-tolerant distributed systems?,
Technical Report DI-FCUL TR 06–15, Department of
Informatics, University of Lisbon, Lisbon, https://r
epositorio.ul.pt/handle/10451/14093.

Puig, V., Sauter, D., Aubrun, C. and Schulte, H. (Eds) (2018).
Advanced Diagnosis and Fault-Tolerant Control Methods
(special section), International Journal of Applied Mathe-
matics and Computer Science 28(2): 233–333.

Pullum, L.L. (2001). Software Fault Tolerance Techniques and
Implementation, Artech House, Inc., Canton St. Norwood.

Qiu, J., Tian, Z., Du, C., Zuo, Q., Su, S. and Fang, B. (2020). A
survey on access control in the age of Internet of Things,
IEEE Internet of Things Journal 7(6): 4682–4696.

Randell, B. (1975). System structure for software fault
tolerance, IEEE Transactions on Software Engineering
SE-1(2): 220–232.

Randell, B. and Xu, J. (1994). The evolution of the recovery
block concept, in M. Lyu (Ed), Software Fault Tolerance,
Vol. 3, Wiley, Chichester, pp. 1–22.

Rodriguez, M., Kwiat, K.A. and Kamhoua, C.A. (2015).
Modeling fault tolerant architectures with design diversity
for secure systems, IEEE Military Communications Con-
ference (MILCOM), Tampa, USA, pp. 1254–1263.

Saidane, A., Nicomette, V. and Deswarte, Y. (2009). The design
of a generic intrusion-tolerant architecture for web servers,
IEEE Transactions on Dependable and Secure Computing
6(1): 45–58.

Scarfone, K. and Mell, P. (2010). Intrusion detection and
prevention systems, in P. Stavroulakis and M. Stamp (Eds),
Handbook of Information and Communication Security,
Springer, Berlin/Heidelberg, pp. 177–192.

Scott, R., Gault, J. and McAllister, D. (1985). The consensus
recovery block, Total System Reliability Symposium,
Gaithersburg, USA, pp. 74–85.

Sousa, P., Bessani, A. and Obelheiro, R. (2008). The forever
service for fault/intrusion removal, Proceedings of the 2nd
Workshop on Recent Advances on Intrusion-Tolerant Sys-
tems, Glasgow, UK, p. 16.

Tarraf, D.C., Kamhoua, C.A., Kwiat, K.A. and Njilla, L.
(2017). Majority is not always supreme: Less can be more
when voting with compromised nodes, IEEE 18th Interna-
tional Symposium on High Assurance Systems Engineering
(HASE), Singapore, Singapore, pp. 9–12.

Verı́ssimo, P.E., Neves, N.F. and Correia, M.P. (2003).
Intrusion-tolerant architectures: Concepts and design, in
R. Lemos et al. (Eds), Architecting Dependable Systems,
Springer, Berlin, pp. 3–36.

Vöelp, M. and Verissimo, P. (2018). Intrusion-tolerant
autonomous driving, IEEE 21st International Symposium
on Real-Time Distributed Computing (ISORC), Singapore,
Singapore, pp. 130–133.

Wang, L., Ren, S., Korel, B., Kwiat, K.A. and Salerno, E. (2014).
Improving system reliability against rational attacks under
given resources, IEEE Transactions on Systems, Man, and
Cybernetics: Systems 44(4): 446–456.

Ylmaz, E.N. and Gänen, S. (2018). Attack detection/prevention
system against cyber attack in industrial control systems,
Computers & Security 77: 94–105.

Zhang, F., Kodituwakku, H.A.D.E., Hines, J.W. and Coble,
J. (2019). Multilayer data-driven cyber-attack detection
system for industrial control systems based on network,
system, and process data, IEEE Transactions on Industrial
Informatics 15(7): 4362–4369.

Zhou, Y., Han, M., Liu, L., He, J.S. and Wang, Y. (2018). Deep
learning approach for cyberattack detection, IEEE INFO-
COM 2018—IEEE Conference on Computer Communica-
tions Workshops, Honolulu, USA, pp. 262–267.

Felicita Di Giandomenico is currently a research director at ISTI-CNR,
Pisa, Italy, where she is leading the Software Engineering and Depend-
able Computing Research Laboratory. Her research activities include
the design of dependable computing systems, software implemented
fault/intrusion tolerance, and the modeling and evaluation of depend-
ability attributes, with the focus on critical infrastructures. She was the
chair of the IEEE TC on Dependable Computing and Fault Tolerance
(from January 2017 to December 2018), and the chair of the IEEE/IFIP
DSN Steering Committee (from January 2017 to December 2018). She
is a member of the IFIP WG10.4 on dependable computing and fault tol-
erance, and a member of the Steering Committee of the IEEE/IFIP DSN
and EDCC conferences.

Giulio Masetti is currently a post-doc researcher with the Software En-
gineering and Dependable Computing Research Laboratory, ISTI-CNR,
Pisa, Italy. His research activities include modeling and evaluation of de-
pendability attributes as well as modeling and analysis of interdependen-
cies in critical infrastructures, also studying numerical analysis problems
originating from models design.

Silvano Chiaradonna received his MSc degree in computer science at
the University of Pisa, Italy, in 1992. Since 1992, he has been working on
dependable computing, and modeling and evaluation of dependable sys-
tems. He is also been teaching modeling and evaluation of dependable
systems, both at the University of Pisa and the University of Florence.
Since 1999, he has been a researcher with ISTI, Pisa, Italy. During these
years, he has been involved in European and national projects. He had
been a fellow student with IEI-CNR, now merged into ISTI. His research
interests include design of dependable computing systems, software and
system fault tolerance, stochastic methods and techniques for quantita-
tive analysis of dependability, modeling and evaluation of dependabil-
ity attributes such as reliability, availability and performability, interde-
pendence modeling, and analysis in critical infrastructures (in particular,
smart grids).

Received: 30 December 2021
Revised: 9 May 2022
Accepted: 30 June 2022

https://repositorio.ul.pt/handle/10451/14093
https://repositorio.ul.pt/handle/10451/14093

	Introduction
	Context and related work
	Background on intrusion tolerance
	Related work

	Revisiting fault-tolerance architectures to address intrusion tolerance
	Design issues
	Enhancing intrusion tolerance abilities
	Locality
	Rejuvenation
	Access control policies
	Confusion

	Organized summary
	Attack model

	Family of NVP-like architectural proposals
	Reference N Version Programming
	Intrusion NVP counterparts

	Family of RB-like architectural proposals
	Reference recovery block with n variants
	Intrusion Recovery-Block

	Family of hybrid architectural proposals
	N Self-Checking Programming
	Intrusion Self-Checking Programming
	Consensus Recovery Block
	Intrusion Consensus Recovery Block
	Self-Configuring Optimistic Programming
	Intrusion SCOP

	Practical advice
	Selection of schemes' parameters
	Focus on confusion

	Final discussion and future work
	Redundancy-based intrusion tolerance from the different system components' perspective
	Future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

