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Data compression combined with effective encryption is a common requirement of data storage and transmission. Low cost
of these operations is often a high priority in order to increase transmission speed and reduce power usage. This requirement
is crucial for battery-powered devices with limited resources, such as autonomous remote sensors or implants. Well-known
and popular encryption techniques are frequently too expensive. This problem is on the increase as machine-to-machine
communication and the Internet of Things are becoming a reality. Therefore, there is growing demand for finding trade-offs
between security, cost and performance in lightweight cryptography. This article discusses asymmetric numeral systems—
an innovative approach to entropy coding which can be used for compression with encryption. It provides a compression
ratio comparable with arithmetic coding at a similar speed as Huffman coding; hence, this coding is starting to replace them
in new compressors. Additionally, by perturbing its coding tables, the asymmetric numeral system makes it possible to
simultaneously encrypt the encoded message at nearly no additional cost. The article introduces this approach and analyzes
its security level. The basic application is reducing the number of rounds of some cipher used on ANS-compressed data, or
completely removing an additional encryption layer when reaching a satisfactory protection level.
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1. Introduction
Reliable and efficient data transmission is a crucial aim
of communications. Modern telecommunication systems
are facing a new challenge: security. Usually, data
confidentiality is implemented by additional services,
which are able to protect sensitive data against
disclosure (Huang et al., 2015; El-Douh et al.,
2022). Unfortunately, cryptographic algorithms decrease
performance. Moreover, it is impossible to implement
security services in many systems with limited resources
(e.g., resource-constrained IoT devices). Therefore,
system architects must find other ways to ensure data
protection. One such possibility is integration of
encryption with other data processing steps, such as
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source coding.

Prefix codes, such as the well-known Huffman
coding (Huffman, 1952), Golomb, Elias, unary and many
others, are the basis of data storage and transmission
due to their low cost. They directly translate a symbol
into a bit sequence. As the symbol of probability p
generally contains lg(1/p) bits of information (lg ≡
log2), prefix codes are perfect for probabilities with a
power of 1/2. However, this assumption is rarely true in
practice. While encoding a sequence {ps} of probability
distributions with a coding optimal for distributions {qs},
we use asymptotically ΔH =

∑
s ps lg(ps/qs) more

bits/symbol than required (Kullback–Leibler divergence).
This cost of inaccuracy is especially significant for highly
probable symbols. They can carry nearly 0 bit/symbol
of information, while prefix codes have to use at least 1
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bit/symbol.
Arithmetic and range coding (Rissanen, 1976;

Martin, 1979) avoid this cost by operating on nearly
accurate probabilities. However, they are more costly
and usually require multiplication, which is an operation
with a high computational complexity. Using lookup
tables to avoid multiplication is achieved, for example,
by CABAC (Marpe et al., 2003) in H.264, H.265 video
compressors. However, it operates on the binary alphabet,
requiring eight steps to process a byte.

Recently, a new multiplication-free large alphabet
entropy coder was proposed (Duda, 2009; 2014b; 2015)
for low cost systems: asymmetric numeral systems
(ANSs). In contrast to prefix codes, this coding uses
nearly accurate probabilities for coded symbols. The
high performance and efficiency of ANSs is leading to
Huffman and Range being replaced in new compressors
(Collet, 2013b; Buzidi, 2014; Francesco, 2014), including
the Facebook Zstandard compressor (FZC, 2016), the
Apple LZFSE compressor (ALC, 2017) and JPEG XL
(Alakuijala et al., 2019) to improve performance. Table 1
presents some benchmarks showing advantages especially
in decoding time. One of the reasons is that, while
Huffman coding requires costly sorting of symbols to
build the prefix tree, ANS initialization is cheap: with
linear time and memory cost. This advantage is especially
important for the cost of hardware implementations,
and the resulting improvements have been already
demonstrated for FPGA (Najmabadi et al., 2015).

As well as providing effective data compression,
another basic requirement of data storage and
transmission is confidentiality. We are able to
ensure data confidentiality using symmetric ciphers
(asymmetric cryptography is not an appropriate solution
in environments with limited resources because of its high
computational cost). However, popular symmetric ciphers
such as the Advanced Encryption Standard (AES), turn
out to be too costly for many applications, especially
battery-powered, such as autonomous remote sensors or
resource-constrained IoT devices. As such, there is a
growing field of lightweight cryptography (Eisenbarth
et al., 2007; Poschmann, 2009; Cole and
Ranasinghe, 2008), with the focus on low cost, at a
trade-off for having lower protection requirements.

Since a combination of compression and encryption
is a common requirement, the cost priority suggests a
natural solution of combining these two steps. Many
approaches were considered for adding encryption
into methods which are already a part of data
compressors: Lempel–Ziv substitution schemes (Xie
and Kuo, 2005; Kelley and Tamassia, 2014),
Burrows–Wheeler transform (Külekci, 2012) and
arithmetic coding (Witten and Cleary, 1988; Kim
et al., 2007). These articles contain some general
techniques, whose addition might be considered to

improve security of discussed ANS-based encryption.
Huffman coding has also been discussed for adding

simultaneous encryption (Tseng et al., 2012). An abstract
of an article by Gillman et al. (1996) concludes that
“We find that a Huffman code can be surprisingly
difficult to cryptanalyze”. The main problem is the
lack of synchronization—the attacker does not know how
to split the bit sequence into blocks corresponding to
symbols. Additionally, data compression offers auxiliary
protection by reducing redundancy which could be used
for cryptanalysis.

A Huffman decoder can be viewed as a special case
of the tabled variant of an ANS decoder, referred as
tANS (Duda, 2014b). This generalization allows for more
complex behavior and other features, which suggest that
secure encryption could be included inside the entropy
coding process. While the prefix code is a set of rules:
“symbol→ bit sequence”, tANS also has a hidden internal
state x ∈ {2R, . . . , 2R+1 − 1} for some R ∈ N, which
acts as a buffer containing lg(x) ∈ [R,R + 1) bits of
information. The transition rules have the form

(symbol, state) → (bit sequence, new state).

Therefore, in comparison with Huffman coding, there is
an additional hidden variable x, which controls the bit
sequence to produce, including the number of produced
bits in this step: floor or ceiling of lg(1/p). As
chaos is seen as strongly linked to the security of
cryptography (Baptista, 1998; Jakimoski and Kocarev,
2001), the authors discuss three sources of chaos in
evolution of this internal state, making its behavior
virtually unpredictable while incomplete knowledge.
Figure 1 compares it with the standard S-Box approach.

As only a few ciphers like the one-time pad can be
formally proven to be safe, practical encryption schemes
often require time to gain trust as being secure: by the
lack of successful attacks. Hence, while there are some
arguments of the strength of the proposed encryption
scheme, until gaining such trust it is suggested to be
used together with a convenient cipher like AES, for
example with a reduced number of rounds. Comparing
Huffman-based compression plus 10 round of AES, with
tANS-based compression+encryption plus 5 rounds of
AES, we get improvement in both the compression ratio
and performance.

The idea presented in this paper was available as
a preprint document before 2021. Therefore, the first
papers that developed this approach—encryption based
on ANS—were recently published (Camtepe et al., 2021;
Mahboubi et al., 2022; Pieprzyk et al., 2022). This
confirms usability and a great potential of this solution.

The remainder of the paper proceeds as follows.
Section 2 introduces the ANS algorithm: coding and
decoding as well as some examples of these steps.
Section 3 presents the basic concept of including
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Table 1. Benchmarks of data compressors from https://encode.su/threads/3315-enwik10-benchmark-results
with ANS-based (marked grey) and classical. A great advantage, especially in decoding time, is visible. All but the last one
use tANS variant, which allows for discussed simultaneous encryption through perturbation of coding tables.

encryption in tANS and properties influencing the security
level: the set of cryptographic keys, chaotic behavior, etc.
Section 4 describes the security features of this encryption
method. Finally, Section 5 concludes the paper.

2. Asymmetric numeral systems (ANSs)
This section introduces ANSs, focusing on the tabled
variant (tANS). A further discussion and other variants of
ANS can be found in the work of Duda (2014b).

2.1. Coding into a large natural number. Let us
first consider the standard binary numeral system. It
allows us to encode a finite sequence of symbols from
the binary alphabet (si ∈ A = {0, 1}) into x =
∑n−i

i=0 si2
i ∈ N. This number can be finally written

as a bit sequence of length approximately equal to
lg(x). This length does not depend on exact values of
symbols—this approach is optimized for a symmetric case
of Pr(0) = Pr(1) = 1/2, when both symbols carry
one bit of information. In contrast, a symbol sequence
{ps} of probability distributions carries asymptotically∑

s ps lg(1/ps) bits/symbols (Shannon entropy), and a

general symbol of probability p carries lg(1/p) bits of
information. Hence, to add information stored in a natural
number x to information from a symbol of probability
p, the total amount of information will be ≈ lg(x) +
lg(1/p) = lg(x/p) bits of information. This means that
the new number x′ ∈ N containing both information
should be approximately x′ ≈ x/p, which is the basic
concept of ANSs.

Having a symbol sequence encoded as x =∑n−i
i=0 si2

i, we can add information from a new symbol
s ∈ A in two positions: the most or the least significant.
The former means that the new number containing both
information is x′ = x + s2n. The symbol s chooses
between two large ranges for x′: {0, . . . , 2n − 1} and
{2n, . . . , 2n+1 − 1}. The symmetry of their lengths
corresponds to the symmetry of the informational content
of both symbols. As depicted in the left panel of
Fig. 2, arithmetic or range coding can be viewed as an
asymmetrization of this approach to make it optimal for
different probability distributions. They require operating
on two numbers, defining the currently considered range,
which is analogous to the need to remember the current
position n in the standard numeral system.

https://encode.su/threads/3315-enwik10-benchmark-results
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Fig. 1. While S-box performs substitutions/permutations on
fixed length bit blocks, the discussed tANS analogue
has additional hidden chaotic pseudorandom evolution
of internal state x, which decides on both contents and
lengths of the processed bit blocks. In this way, an at-
tacker does not know the split of bit sequence into bit
blocks.

We can avoid this inconvenience by adding a new
symbol in the least significant position: C(s, x) = x′ =
2x + s. Old digits are shifted one position up. To
reverse this process, the decoding function is D(x′) =
(s, x) = ( mod (x′, 2), �x′/2�). This approach can
be viewed that x′ is x-th appearance of an even (s =
0) or odd (s = 1) number. We can use this rule to
asymmetrize this approach to be optimal for a different
probability distribution. In order to achieve this, we
need to redefine the division of natural numbers into
even and odd numbers, such that they are still distributed
uniformly, but with the density corresponding to the
assumed probability distribution. More formally, for a
probability distribution {ps} we need to define a symbol
distribution s : N → A, such that |{0 ≤ x < x′ : s(x) =
s}| ≈ x′ps. Then the encoding rule is

x′ = C(s, x) is the x-th appearance of symbol s

and correspondingly for the decoding function D, such
that D(C(s, x)) = (s, x). The decoded symbol is s(x′)
and x is the number of appearances of this symbol. More
formally,

C(s, x) = x′ : s(x′) = s,

|{0 ≤ y < x′ : s(y) = s}| = x,

D(x′) = (s(x′), |{0 ≤ y < x′ : s(y) = s(x′)}|).
The right panel of Fig. 2 depicts an example of

such a process for the probability distribution Pr(0) =
3/4, Pr(1) = 1/4. Starting with symbol/state x = 1, we
encode successive symbols 01111 into x = 47 or x = 18.
Then we can can successively use the decoding function

Algorithm 1. ANS decoding step from state x.
1: (s, x) = D(x) {the proper decoding

function}
2: useSymbol(s) {use or store decoded

symbol}
3: while x < L do
4: x = 2 · x+ readBit() {read bits until returning

to I}
5: end while

Algorithm 2. ANS encoding of symbol s from state x.
1: while x > maxX [s] do {maxX [s] will be found

later}
2: writeBit(mod(x, 2)); x = �x/2� {write youngest

bits}
3: end while {until we can encode

symbol}
4: x = C(s, x) {the proper encoding

function}

D to decode the symbol sequence in the reverse order. The
ANS results in a lower representation than the standard
numeral system, since it better corresponds with the digit
distribution of the input sequence 01111.

Arithmetic formulas can be found using
multiplication for such coding/decoding functions:
uABS and rABS variants for the binary alphabet, and
rANS variant for any large alphabet (Duda, 2014b).
The range variant (rANS) can be viewed as a
direct alternative to range coding with some better
performance properties such as a single multiplication
per symbol instead of two, leading to considerably faster
implementations (Giesen, 2014). However, since it
requires multiplication and is not suited for encryption,
this paper only discusses the tabled variant (tANS), in
which we put the entire coding or decoding function for a
range x ∈ I into a table.

2.2. Streaming ANS via renormalization. Using
the C function multiple times allows us to encode a
symbol sequence into a large number x. Working with
such a large number would be highly demanding. In
AC, renormalization is used to allow finite precision; an
analogous approach should be used for ANS. Specifically,
we enforce x to remain in a fixed range I by transferring
the least significant bits to the stream (we could transfer a
few at once, but this is not convenient for tANS). A basic
scheme for the decoding/encoding step with included
renormalization is shown as Algorithms 1 and 2.

To ensure that these steps are the inverse of each
other, we need to make sure that the loops for writing
and reading digits end up with the same values. For
this purpose, let us observe that if a range has the form
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I = {L, . . . , 2L − 1}, when removing (x → �x/2�) or
adding (x → 2x + d) the least significant bits, there is
exactly one way of achieving range I . For the uniqueness
of the loop in Algorithm 1, we need to use a range of the
type I = {L, . . . , 2L − 1}, where for practical reasons
we will use L = 2R. For the uniqueness of the loop in
Algorithm 2, we need to additionally assume that

Is = {x : C(s, x) ∈ I} (
I =

⋃

s

C(s, Is)
)

are also of this form: Is = {Ls, . . . , 2Ls − 1} and
therefore maxX [s] = 2Ls − 1, which is then used in
Algorithm 2.

2.3. Tabled variant (tANS). In the tabled variant
(tANS), which is used in most of compressors in Table 1
and is interesting for cryptographic purposes, we put the
entire behavior into a lookup table. Let us start with the

following example: we construct an automaton with L =
4 states optimized for the binary alphabet with Pr(a) =
3/4, Pr(b) = 1/4, as depicted in Fig. 3. We need to
choose a symbol distribution s : I → {a, b} for I =
{4, 5, 6, 7}. To correspond to the probability distribution,
the number of symbol appearances should be chosen as
La = 3, Lb = 1. There now remain four options
to choose the s function. Let us focus on the choice
s(5) = b, s(4) = s(6) = s(7) = a, or in other words,
the “abaa” symbol spread. We need to enumerate the
appearances using the numbers Ia = {3, 4, 5}, Ib = {1},
getting the decoding function D(4) = (a, 3), D(5) =
(b, 1), D(6) = (a, 4), D(7) = (a, 5). It allows us to
obtain the decoded symbol and a new state. However,
some of these states are below the I range; therefore, we
need to apply renormalization by reading some youngest
bits to return to the I range. For example, for x = 5, the
decoding function takes us to x = 1, so we need to read
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two bits from the stream (d1, d2) to return to I , leading to
state x = 4 + 2d2 + d1.

Assuming that the input source is i.i.d. and Pr(a) =
3/4, Pr(b) = 1/4, we can find the probability distribution
ρx of the visiting states of such an automaton. It allows us
to find the expected number of bits/symbol H ′ ≈ 1 · 1/4 ·
2 + (0.241 + 0.188) · 3/4 · 1 ≈ H + 0.01, where H =∑

s ps lg(1/ps) is the minimal value (Shannon entropy).
Generally, as discussed by Duda (2014b), ΔH = H ′−H
behave approximately like m2/L2, where m is the size of
the alphabet.

Connection with prefix codes. Using lookup tables, the
decoding procedure can be written as Algorithm 3,

where X = x − L ∈ {0, . . . , 2R − 1} is a more
convenient representation. It should be noted that this
method can also be used for decoding prefix codes such
as Huffman coding. In this case R should be chosen
as the maximal length of the bit sequence corresponding
to a symbol. The state X should be viewed as a buffer
containing the last R bits to process. It directly determines
the symbol, which uses nbBits ≤ R bits of the buffer.
The remaining bits should be shifted and nbBits should
be read from the stream to refill the buffer:

decodingTable[X ].newX = (X << nbBits) &mask

where << denotes left bit-shift operation and &mask
denotes restriction to the least significant R bits.

Just shifting the unused bits corresponds to assuming
that the produced symbol carried indeed nbBits bits of
information: it has a probability of 2−nbBits. tANS works
on fractional amounts of bits by not only shifting the
unused bits, but also modifying them according to the
fractional amount of bits of information.

It should be noted that if we choose Ls = 2rs for
symbol of probability ≈ 2rs−R, and spread symbols in
ranges, our tANS decoder would become a decoder for
a prefix code. For example, symbol spread “aaaabcdd”
would lead to a decoder for prefix code a → 0, b →
100, c → 101, d → 11. Therefore, prefix codes can be
regarded as a degenerated case of tANS.

2.4. Algorithms (tANS). Let us now construct the
algorithms. Assume that L = 2R: I = {L, . . . , 2L− 1},
Is = {Ls, . . . , 2Ls − 1} and that qs := Ls/L ≈ ps
approximates the probability distribution of the symbols.
There are |I| = 2R positions for spreading symbols with
|{x ∈ I : s(x) = s}| = Ls appearances of symbol s.
For convenient table handling, we use X := x − L ∈
{0, . . . , 2R − 1} and store the symbol spread as the table
symbol[X ] ≡ s(X + L) of size L.

Algorithm 4 generates the decodingTable for the
efficient decoding step from Algorithm 3. For efficient
memory handling while the encoding step, the encoding

Algorithm 3. Decoding step for prefix codes and tANS.
1: t = decodingTable[X ] {X ∈ {0, . . . , 2R − 1}

is current state}
2: useSymbol(t.symbol) {use or store decoded

symbol}
3: X = t.newX+readBits(t.nbBits) {state

transition}

Algorithm 4. Generating tANS decodingTable.
Require: next[s] = Ls {number of next appearance

of symbol s}
1: for X = 0 to L− 1 do
2: t.symbol = symbol[X ] {symbol is from spread

function}
3: x = next[t.symbol] + + {D(X + L) =

(symbol, x)}
4: t.nbBits = R − �lg(x)� {number of bits to return

to I}
5: t.newX = (x << t.nbBits) − L {properly

shift x}
6: decodingTable[X ] = t
7: end for

table can be stored in the one-dimensional form C(s, x) =
encodingTable[x + start[s]] ∈ I for x ∈ Is, where
start[s] = −Ls +

∑
s′<s Ls′ . To encode symbol s from

state x, we first need to transfer k[s]−1 or k[s] bits, where
k[s] = 	lg(L/Ls)
. This choice can be simplified to
nbBits = (x + nb[s]) >> r using a prepared table nb[].
Finally, the preparation and encoding step are written as
Algorithms 5 and 6, respectively.

Symbol spread function. We need to choose
symbol[X ] = s(X + L) distributing symbols over the
I range: Ls appearances of symbol s. Finding an optimal
way seems a difficult problem. We present only a fast
simple way of spreading symbols in a pseudorandom
manner in Algorithm 7, which already offers excellent
performance. Several symbol spreads can be found and
tested in the work of Duda (2014a).

3. Adding encryption
The construction of tANS code gives us an opportunity to
ensure data confidentiality. In this section the concept of
encryption in tANS coder is described.

3.1. Basic concept. We could use the freedom of
choosing the exact coding for encryption purposes. For
example, while building a prefix tree for a size m alphabet,
there are m − 1 internal nodes. Switching their left and
right children gives us 2m−1 options of encoding our
message.
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Algorithm 5. Preparation for tANS encoding, L = 2R,
r = R+ 1.
Require: k[s] = R − �lg(Ls)� {nbBits = k[s] or

k[s]− 1}
Require: nb[s] = (k[s] << r)− (Ls << k[s])
Require: start[s] = −Ls +

∑
s′<s Ls′

Require: next[s] = Ls

1: for x = L to 2L− 1 do
2: s = symbol[x− L]
3: encodingTable[start[s] + (next[s] + +)] = x;
4: end for

As discussed, prefix codes can be viewed as a tANS
for Ls being powers of 2 and symbols spread in ranges.
Without this restriction, there are much more options of
choosing the s function:

(
L

L1, . . . , Lm

)

≈ 2L·H(L1/L,...,Lm/L),

where H(p1, . . . , pm) =
∑

i pi lg(1/pi) is entropy.
Each option defines a different coding. Therefore

we need a method of spreading symbols according to
the cryptographic key. One way is first to use an
independent method, e.g., to put a successive symbol
every number of positions specified by step (cyclically).
Then we can perturb the obtained symbol spread
using a cryptographically-secure pseudorandom number

generator (CSPRNG) seeded with the key, for example by
taking blocks and cyclically shifting symbols inside such
blocks by a shift from the CSPRNG.

Figure 4 depicts an example of coding and
encryption processes for the following parameters: L =
16, alphabet size m = 3, step = 5 and size B = 4 blocks.
After Step 2, where we spread all symbols (globally), the
scrambling process in blocks is performed (locally). This
is crucial from the security point of view, since different
locations of symbols result in different forms of encoded
messages. The encoded messages depend strongly on the
CSPRNG key.

3.2. Numbers of possibilities. The key space is a
crucial element for protecting the secure cipher against
brute-force attacks; therefore, we analyze the number of
ways of encoding messages.

As default parameters (DP), we consider L = 2048
states, the alphabet of size m = 256 and B = 8 blocks,
which requires 8kB of lookup tables (or 6kB with simple
bit compression). As degenerated default parameters
(DDP), we consider the worst case scenario: when there is
one dominating symbol and the remaining ones have the
minimal, i.e., Ls = 1, number of appearances.

The number of different symbol spreads for DP is
22048H and depends on the entropy of the sequence. We
can use DDP to find the lower bound: the number of
symbol spreads here is L!

(L−m+1)! ≈ 1.65 · 10837 for
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Algorithm 6. tANS encoding step for symbol s and state
x = X + L.

1: nbBits = (x+nb[s]) >> r {r = R+1, 2r =
2L}

2: useBits(x, nbBits) {use nbBits of the youngest bits
of x}

3: x = encodingTable[start[s] + (x >> nbBits)]

Algorithm 7. Example of the fast symbol spread function
(Collet, 2013a).

1: X = 0; step = (5/8)L+3 {some initial position and
step}

2: for s = 0 to m− 1 do
3: for i = 1 to Ls do
4: symbol[X ] = s; X =mod(X + step, L)
5: end for
6: end for

L = 2048, m = 256.
The assumed perturbation using cyclic shifts by

values from PRNG reduces these numbers. For DP, this
number is BL/B = 8256 ≈ 1.55 · 10231. Some cyclic
shifts of such blocks may accidentally lead to identical
symbol alignments. The probability that two B blocks
of length from the i.i.d. probability distributions {pi}
are accidentally equal is approximately 2−BH(p1,...,pm).
Therefore, for practical scenarios (e.g., m = 256,
H > 1), the reduction in the space of possibilities is
practically negligible. For the DDP case, approximately
(
L−m+1

L

)B ≈ 0.345 blocks have the dominating
symbol only. The remaining ones are always changed
by the perturbation: the number of possibilities is ≈
B(1−0.345)B/L ≈ 2.49 · 10151.

3.3. Chaotic state behavior. Having a large number
of possible codings is not sufficient; strong dependence
on the key is also required. One source is relying on
the security of CSPRNG, which ensures that changing a
single bit in the key produces a completely independent
perturbation of the symbol spread. Additionally, eventual
inferring the coding function would give no information
about the key (seed).

Another source is the chaos of the dynamics of the
internal state x, ensuring that incomplete knowledge leads
to a rapid loss in any information about the state of the
coder. State x can be viewed as a buffer containing lg(x)
bits of information, and adding a symbol of probability
s increases it by lg(1/p) bits. Due to renormalization,
this addition is modulo 1—accumulated complete bits are
send to the stream. Finally, the approximate behavior is
lg(x) →≈ lg(x) + lg(1/p) mod 1.

This cyclic addition formula contains three sources
of chaos as depicted in Fig. 5.

asymmetry ergodicity diffusion

s=0 s=1

0 0 01 1 1

Fig. 5. Three sources of the chaotic behavior of the internal state
x: lg(x) →≈ lg(x) + lg(1/p) mod 1.

Fig. 6. Example of probability distribution of X = x − L for
L = 2048 and m = 256 and a fast symbol spread.

• asymmetry: each position may correspond to a
different symbol and so to a different shift,

• ergodicity: lg(1/p) is usually irrational, so even a
single symbol tends to cover the range uniformly,

• diffusivity: this formula is approximate, so even
knowing the symbol sequence, information about the
exact position is quickly lost.

These properties suggest that we should expect an
approximately uniform probability distribution of lg(x),
which corresponds to Pr(x) ∝ 1/x distribution of x.
Better symbol spreads are close to this behavior. For the
discussed fast symbol spread, the noise around this 1/x
curve can be high, as shown in Fig. 6.

4. Features and limitations
The presented concept of lightweight compression with
encryption should be verified from the security point of
view. In this section, we discuss results of standard
cryptographic tests of tANS encoding with encryption as
well as presenting ways of enhancing the security of this
solution. The tests were mainly performed for the DP
case: L = 2048, m = 256 for a pure tANS layer;
imperfections can be easily removed, e.g., by a reduced
number of layers of AES.

4.1. Balancing. The first question regarding the
statistics of the produced bit sequence is the density of
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zeros and ones. Are they equal? In general, for the ANS
algorithm it is not exactly fulfilled. This is due to the fact
that the probability distribution of used states x prefers
lower states: approximately Pr(x) ∝ 1/x, such as in
Fig. 6. For the DP case, tests show an approximately 0.001
difference (Pr(0) ≈ 0.501), it has never exceeded 0.002.
For different parameters, an approximate general behavior
of this difference is that it is proportional to m/L.

For higher correlations, the probability of a length
k bit sequence in the produced stream should be 2−k.
Beside the above difference, our tests could not detect
further disagreements with this rule.

The variable-length nature of the ANS makes
the issue Pr(0) ≈ 0.501 unlikely to be useful
for cryptanalysis (due to the lack of synchronization).
Additionally, this small imbalance can be easily removed
by adding an inexpensive additional operation, such as
XOR with a mask (or set of masks) having equal numbers
of zeros and ones.

4.2. Avalanche and nonlinearity. One crucial feature
of the secure cipher is the strict avalanche criterion (SAC),
which is satisfied if a change in a single bit of the key
results, on the average, in a change in one half of bits
of ciphertext. The tANS approach uses CSPRNG which
has a similar property: changing a single bit of the seed
leads to a statistically independent random stream, which
means an independent tANS coding table. We tested a
property which is even stronger than SAC: by encoding
the same symbol sequence using the same coding tables,
but starting with a different initial state. We were not
able to detect statistical dependencies between such two
streams.

Additionally, we verified the nonlinearity of the
encryption process (defined as the Hamming distance to
the nearest affine function). The tests confirmed the
nonlinear behavior of the encryption process.

4.3. Diffusion and completeness. The next important
feature is the diffusion of changes during the encryption
process. We verified that even when the number of
changes in the entry were low, the change in the output
bits was high.

The same behavior was observed during the tests of
completeness. Completeness is satisfied when a change in
a single bit of the plaintext causes a change in around one
half of bits of ciphertext. The discussed method processes
successive single symbols; thus, a change in a symbol
can influence only bits corresponding to the current and
successive positions. We have performed tests with two
encoding streams starting with the same state x. We
first encode a single symbol different for each streams,
followed by a sequence of symbols identical for both
streams. Encoding a symbol of probability p produces the

youngest �lg(1/p)� or 	lg(1/p)
 bits of x. This means
that the first few bits after the change in a symbol will
be identical—their number depends on the probability of
the symbol. Tests of further bits were not able to find
statistical dependencies.

Operating on short bit blocks (of varying lengths)
leaves an option for adaptive attacks by exploring
ciphertexts differing by single symbols. To protect against
this, the initial state can be chosen entirely randomly. We
can use such an initial state by analogy to the initial vector
in many modes of encryption, e.g., cipher block chaining
(CBC). In this way, the same symbol sequences lead to
independent bit sequences. As the number of the initial
states may be insufficient, this property can be enhanced
by adding a few random symbols at the beginning of the
plaintext.

We can enhance this protection by making sure that
we use an independent coding table each time. This can be
achieved by using what is referred to as ‘salt’: a random
number which affects the seed of CSPRNG and is stored
in the header of a file. Additionally, the stream is usually
divided into frames of, e.g., 10 kB size, which is common
in data compression applications for updating probability
distributions. For encryption purposes, new independent
coding tables can be generated for each frame, using the
number of the frame also as a seed. Finally, we could use
triple data: a cryptographic key, the number of the frame
and a random number (salt) as the seed of CSPRNG.

Summarizing, the tests of features confirm that the
presented solution is able to protect confidentiality at
a high level of security. We suggest the following
principles:

• using a relatively large number of states and a large
alphabet (protecting against brute-force attacks),

• encrypting the final state, which is required for
decoding,

• using a completely random initial state to protect
against adaptive attacks (additionally, appending a
few random symbols at the beginning, which are
discarded by the decoder, would strengthen this
protection).

During the implementation of the proposed solution,
it is possible to strengthen the security level by:

• using three parameters: the cryptographic key, the
number of the data frame (e.g. 10 kB) and a random
number stored in an encrypted file (salt) as a seed
for CSPRNG to make all coding tables completely
independent,

• using an inexpensive additional encryption layer,
such as XOR with a set of masks (generated using
CSPRNG), a simple substitution-permutation cipher,
or AES with a reduced number of rounds.
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We can consider Facebook Zstandard which works in
approximately 30 kB frames, each starting with ≈ 150 B
header storing a probability distribution. To add a nearly
free encryption, we can use CSPRNG with a seed (key,
frame number, salt) to generate a coding table for each
frame. The probability distribution should be encrypted,
which can be done with the AES cipher applied to first,
e.g., 200 B of the frame including the beginning of the
bitstream.

It is worth mentioning that the NIST Statistical
Test Suite (Bassham et al., 2010) was used to verify
the security of the chosen ciphertexts generated by
the cryptographic algorithm based on the ANS. This
well-known tool provides 15 different test scenarios which
assess the level of security of the tested input sequence
(the obtained p-value specifies the level of randomness).
It was observed that an initial state chosen by a user has
no real influence on security—a few states were chosen
and all tests were passed.

5. Conclusion
This paper proposes a new concept of compression with
simultaneous encryption. From the data compression
perspective, it provides a nearly optimal compression ratio
(such as arithmetic coding) at an even lower cost than
the Huffman coding (due to having inexpensive linear
initialization instead of the n logn cost of sorting in the
Huffman coding). Using CSPRNG initialized with a
cryptographic key to choose the coding tables means in
the message encoded in this way can be simultaneously
encrypted at nearly no additional cost. The variable-length
nature of this coding makes the eventual cryptanalysis
extremely difficult as the attacker does not know how
to split the bit sequence into blocks corresponding to
successive symbols. These blocks and even their lengths
depend on the internal state of the coder, which is hidden
from the attacker. The behavior of this state is chaotic,
rapidly eliminating any incomplete knowledge of the
attacker. Using CSPRNG ensures that even if an attacker
would obtain the applied coding table, no information
about the cryptographic key is acquired. Future work on
the proposed compression algorithm with an encryption
process should focus on advanced cryptanalysis and
finding an optimal compromise between security and
performance.

Such lightweight compression with encryption is
crucial in many situations, for example in battery-powered
remote sensors which should transmit the gathered
data in a compressed and secure manner. We are
entering the age of the Internet of Things, where
the use of such types of devices will be widespread.
Hundreds of potential applications of this solution
include medical implants transmitting diagnostic data,
smart RFIDs powered by electromagnetic impulses only,

smartphones or smartwatches with improved performance
and extended battery life, and many other situations for
data storage and transmission.
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