
Int. J. Appl. Math. Comput. Sci., 2023, Vol. 33, No. 2, 267–284
DOI: 10.34768/amcs-2023-0020

TECHNOLOGY MAPPING OF MULTI–OUTPUT FUNCTIONS LEADING TO
THE REDUCTION OF DYNAMIC POWER CONSUMPTION IN FPGAS

ADAM OPARA a,* , MARCIN KUBICA b

aDepartment of Graphics, Computer Vision and Digital Systems
Silesian University of Technology

ul. Akademicka 2A, 44-100 Gliwice, Poland
e-mail: Adam.Opara@polsl.pl

bDepartment of Digital Systems
Silesian University of Technology

ul. Akademicka 2A, 44-100 Gliwice, Poland
e-mail: Marcin.Kubica@polsl.pl

This article presents a synthesis strategy aimed at minimizing the dynamic power consumption of combinational circuits
mapped in LUT blocks of FPGAs. The implemented circuits represent the mapping of multi-output functions. Properly
selected multi-output functions are described using a new form of the binary decision diagram (BDD), which is an exten-
sion of pseudomulti-terminal BDDs (PMTBDDs) in the literature. The essence of limiting power consumption is to include
additional parameters during decomposition, such as the switching activity associated with the switching PMTBDD (SW-
PMTBDD). In addition, we highlight the key importance of circuit optimization methods via non-disjoint decomposition
when minimizing power consumption. An algorithm is proposed to assess the effectiveness of decomposition, considering
several parameters, such as the number of non-disjoint decompositions as well as that of shared and non-shared bound
functions or the switching activity. The results of experiments that demonstrate the effectiveness of the proposed methods
are also included.

Keywords: low power synthesis, FPGA, switching activity, decomposition, technology mapping.

1. Introduction
Reducing power consumption in digital devices is
becoming increasingly important, and well-designed and
optimized devices effectively reduce the requirements
of their power sources. This process has opened up
new spaces for complex digital devices, such as the
Internet of things (IoT) or, more broadly, cyber-physical
systems (CPSs) (Wojnakowski et al., 2021; Wisniewski,
2021; Patalas-Maliszewska et al., 2022; Wisniewski et al.,
2020). Naturally, the reduction of power consumption
improves user comfort with mobile devices (e.g., longer
battery life). These issues make us consider how digital
devices should be designed to be efficient in terms of
power consumption.

There are many ways to reduce power consumption.
The simplest approach is to temporarily disable modules

*Corresponding author

that are not being currently used. Another solution is the
employment of specific functions in a hardware-software
manner (Benini and Micheli, 2000), which can be
implemented as a high-level synthesis (Raghunathan
et al., 2012; Ali and Al-Hashimi, 2007; Bard and
Rafla, 2008; Brooks et al., 2000; Kim and Kim,
2000). Additionally, techniques exist to reduce power
consumption at a low level of synthesis. These methods
include local voltage reduction (Chen et al., 2001;
Manzak and Chakrabarti, 2002), “power gating” (Kim and
Kim, 2000) and techniques related to limiting the clock
frequency, which negatively affects the execution time of
the implemented functions. Therefore, a good alternative
is “clock gating” (Kuc et al., 2020) or implementing the
circuit in the form of a GALS (globally asynchronous
locally synchronous) structure. The essence of GALS is
the implementation of the global asynchronous structure,
in which synchronous structures with an appropriately

© 2023 A. Opara and M. Kubica.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

mailto:Adam.Opara@polsl.pl
mailto:Marcin.Kubica@polsl.pl

268 A. Opara and M. Kubica

adjusted clock frequency are locally located.
Many complex digital circuits are implemented in

FPGA (field programmable gate array) devices. This
approach allows easy prototyping of circuits and ensures
good time efficiency of the implementation of specific
functions. The growing popularity of FPGAs leads to the
development of dedicated synthesis strategies targeted at
these devices. The goal of these strategies is to obtain
effective solutions in terms of limiting the use of logic
resources (Opara et al., 2018; 2019; Rawski et al., 2005;
Selvaraj et al., 2006; Vermuri et al., 2002; Jóźwiak and
Chojnacki, 2003; Ling et al., 2005; Li et al., 2022) or
speed of operation (Cheng et al., 2008).

The problem of mapping logic circuits with the use
of 3-input NPN (negation/permutation/negation) classes
has been presented by Marakkalage et al. (2020). There
are also strategies to reduce power consumption (Chung
and Brayton, 2009; Kubica et al., 2021a; Lin et al.,
2022). The key is therefore to identify methods reducing
power consumption that can be used in FPGA-oriented
synthesis. In the case of combinational circuits, the
methods of reducing power consumption are shown
by BLSG (2005), Sánchez et al. (2009), Lindgren
et al. (2001), Balasubramanian and Anantha (2007), or
Mehrotra (2013). However, in the case of sequential
circuits, the problem of power consumption was discussed
by Barkalov et al. (2020b; 2020b; 2021; 2022).
Additionally, Kajstura and Kania (2018) as well as Kubica
et al. (2018) proposed a method associated with the
appropriate coding of FSM internal states, which leads to
a reduction in the number of circuit switches and thus a
reduction in dynamic power consumption.

The goal of this article is to present a new strategy
that aims to reduce dynamic power consumption of
structures implemented in FPGAs. This strategy is
intended for effective implementation of the multi-output
functions, which will ensure the sharing of logical
resources. The key element of this strategy is the
decomposition of multi-output functions, considering
the necessity to reduce the switching activity of the
implemented circuits.

This article is an extension of the methods developed
by the authors that focus on power. The authors
have adapted these methods to implement a power
minimization strategy, and some of the ideas featured
are an extension of those initially presented by Kubica
et al. (2021a). The primary contributions of the article
are (i) adapting various forms of BDDs describing sets
of functions to the power minimization process, and (ii)
proposing a power minimization process strategy using
the description of the set of functions in the form of
a BDD. Additionally, the authors describe an improved
algorithm for dividing functions into clusters.

The paper includes the following: a theoretical
introduction showing the essence of decomposition with

the use of the BDD; a section presenting the problem
of the initial division of functions into clusters and a
section presenting the essence of writing a multi-output
function in the form of a PMTBDD; a new diagram
type, SWPMTBDD, that accounts for the switching
activity for the description of a multi-output function;
a decomposition method that aims to reduce dynamic
power consumption, which is the essence of the synthesis
strategy presented in the next section; a presentation of
the results of the experiments performed; and conclusions
drawn from the results of this study.

2. Theoretical background
The key element of FPGA-oriented synthesis is the
decomposition of functions related to the technology
mapping of functions in the logic resources of these
devices. These resources are commonly LUT (look-up
table) blocks, which can implement any logic function
with a limited (small) number of k variables. Function
decomposition is a mathematical model of the division
of the implemented structure between these blocks.
Naturally, the method of representing the logic function
is important for the implementation of decomposition.
Efficient, in terms of memory use and speed of operation
implementation, is the representation of functions in the
form of a BDD (binary decision diagram) (Akers, 1978).

Function decomposition theory dates back to the
mid-twentieth century, as shown by Ashenhurst (1957)
and further developed by Curtis (1962). The simplest
decomposition model is simple serial decomposition. In
this model, all variables of the function are divided into
two disjoint sets: the bound set Xb and the free set Xf .
In the logic structure, individual sets are implemented
in separate blocks: a bound block and a free block
(Fig. 1). These blocks are connected to each other by
the numb of g lines. These connections are associated
with the bound functions g. The bound functions are
generated in a bound block based on the variables in
the bound set Xb. Conversely, the target free function
f is generated in a free block based on variables from
the set Xf and the values of individual bound functions.
From the perspective of the efficiency of the obtained
solutions, the goal of this method is to limit the number
of functions g. Therefore, it becomes critical to efficiently
determine the number of these functions (numb of g)
when selecting variables for individual sets.

With the representation of a function in the form
of a BDD (the authors mean the reduced and ordered
form—an ROBDD), the decomposition is performed by
cutting the diagram horizontally (Minato, 1996; Scholl,
2001). The upper part of the diagram, which is above
the cut line, corresponds to the bound set Xb. The lower
part of the diagram (below the cut line) corresponds to
the free set Xf . With a BDD, to determine the number

Technology mapping of multi-output functions leading to the reduction . . . 269

x0

x1

x2

x3

x4

01

x0
x1

x2

x3
x4

B
ou
nd

B
lo
ck
s

Fr
ee

B
lo
ck
s

b)a) c)

g0

g1g0

g1g1

x3

x4

01

f

Xb

Xf

a

b

c

f

f

Fig. 1. Simple serial decomposition: BDD cut (a), obtained BDD after decomposition (b), partition model for simple serial decompo-
sition (c).

of necessary linking functions g, it is necessary to know
the number of the so-called cut nodes (i.e., the number
of g must be large enough to distinguish between the
individual cut nodes). The cut nodes are the nodes in the
lower part of the diagram that have the edges from the
upper part brought together. The idea of decomposition
with a BDD is shown in Fig. 1.

Considering the example from Fig. 1(a), three cut
nodes can be distinguished in the lower part of the diagram
(marked in grey) as a result of the cut. To distinguish
them, it is necessary to introduce two bound functions: g0
and g1. Therefore, in Fig. 1(b), the top part of the diagram
has been replaced with nodes associated with the bound
functions (marked in grey), which leads to the partition
shown in Fig. 1(c). The partition model associated with
simple serial decomposition is shown, where there are
two connections between the bound and the free block
corresponding to the functions g0 and g1. The number
of entries to individual blocks depends on the number
of LUT block entries in which a given structure will be
mapped.

In the classical approach, the sets Xb bound and
Xf free do not contain common elements. In some
cases, one of the variables contained in the bound set
may play the role of a bound function. Such a variable
is then attached to both the bound and the free set,
which leads to a reduction in the number of necessary
bound functions and thus the reduction of the complexity
of the bound block responsible for the implementation
of the function g. This approach is called non-disjoint
decomposition (Dubrova, 2004; Dubrova et al., 2004),
and the methods of searching for appropriate variables
are presented by Kubica and Kania (2017a) as well as

x0
x1

x2

x3
x4

B
ou

nd

B
lo

ck
s

Fr
ee

B

lo
ck

s

b)a)

g1
x0

g1g1

x3

x4

01

f

Fig. 2. Non-disjoint decomposition: BDD in which g0 is re-
placed by x0 (a), partition model for non-disjoint decom-
position (b).

Kubica et al. (2021b). Not every variable can play
the role of function g, and such variables often do not
exist at all. In the case shown in Fig. 1, the variable
x0 performs the same role as the function g0. Using
non-disjoint decomposition, the BDD can be represented
after decomposition, as shown in Fig. 2(a), leading to a
partition corresponding to non-disjoint decomposition, as
shown in Fig. 2(b).

The use of non-disjoint decomposition reduces the
number of LUTs and the average fanout. The explanation
of the above observation will be based on Figs. 1(c)
and 2(b). The signals x0, x1, x2 can be treated as

270 A. Opara and M. Kubica

Start

Is fi already
contained in any
of the clusters?

Y

N

next fi

specify
numb_of_x_dep

create a new cluster Ci
and add fi to it

search for functions that
can be added to the cluster Ci

End

Y

N

Were there any fi
that were not included

in any cluster?

Start

Y
N

End

Y

N

Y

N

next fj not
included in any

cluster

specify
numb_

_
of_x_dif

numb_of_x_dif == 0 &&
numb_of_x_dep<=K

numb_of_x_dif <=
numb_of_x_com

numb of_x_com

add fj to the cluster Ci

last fj?

fi fj
Y Y

Y

Y

N

N

N N

numb_of_x_com

none

numb_of_x_diff

numb_of_x_diff

inc

a) b)

Fig. 3. Algorithms: initial division of a set of functions into clusters (a), adding functions to the cluster (b).

outputs of FPGA input buffers or outputs of LUTs from
earlier decomposition steps. In the case of disjoint
decomposition (Fig. 1(c)), the fanout of the signal x0 is
2 (signal x0 leads to two LUT3 blocks, g0 and g1), the x1

fanout is 2, the x2 fanout is 2. In the case of non-disjoint
decomposition (Fig. 2(b)) the fanout of the signal x0 is 2
(the signal x0 goes to one LUT3 bound block and to the
free block), but the fanout of x1 is 1 and that of x2 is 1.
The number of LUT blocks has been reduced, as has the
average fanout, which also reduces the dynamic power of
the circuit.

Naturally, simple serial decomposition is the model
upon which more complex decomposition models, such
as iterative or multiple decomposition, are based. Search
methods can be found in the works of Opara et al.
(2018), Scholl (2001) or Kubica et al. (2021b; 2017).
Additionally, apart from the methods using a single BDD
cut, there are also those in which the number of cut lines
in a single decomposition step may be greater than one
(Kubica et al., 2021b; Kubica and Kania, 2017b; 2016;
2019).

In engineering practice, combinational circuits are
usually described by a multi-output function, not a single
one, which indicates that it is necessary to extend the

theory of decomposition to a set of functions in such
a way as to obtain the most effective solutions after
implementation. Section 6 proposes a new decomposition
method aimed at reducing power consumption for the
implementation of a multi-output function.

3. Initial selection of functions for the
cluster

Appropriate mapping of a multi-output function can lead
to the sharing of logic resources between structures
associated with individual single functions. Naturally, this
process does not always lead to solutions that are efficient
in terms of both logic resources and power consumption.
It thus becomes necessary to define which of the functions
should be implemented together.

In the first steps of the synthesis before
decomposition, there is a need to pre-group the functions.
The entire set of functions is divided into clusters
containing one or several functions that can potentially be
implemented together.

The initial selection of functions for individual
clusters is performed by defining a set of common
dependent variables. Initially, the list of functions among

Technology mapping of multi-output functions leading to the reduction . . . 271

which suitable cluster candidates are searched contains
f0, . . . , fn−1. First, a cluster C0 containing only f0
is created, and then, a candidate most similar to f0 is
searched for among f1, . . . , fn−1 and attached to C0. The
similarity is determined based on the number of common
and different variables, and the process repeats in a loop.
The essence of the initial division of a set of functions
into clusters is shown in the algorithm in Fig. 3(a). In
this algorithm, functions are selected that do not belong to
any of the previously created clusters. Then, the number
of variables on which the given function is dependent
is determined (numb of x dep). A new cluster Ci is
created for it, and then, attempts are made to join that
cluster with other functions that were not included in the
earlier clusters. This procedure has been marked in grey
in this algorithm and is described in the flowchart shown
in Fig. 3(b).

The algorithm for adding functions to the cluster Ci

with initially added fi (Fig. 3(b)) begins with determining
the number of common variables (numb of x com) and
that of different variables (numb of x dif) for functions
not connected to any cluster fj and the given function
fi. This procedure is presented in the form of a table
describing the grey part of the algorithm in Fig. 3(b). If
both functions depend on a given variablex (marked in the
row of the table as Y, Y), the parameter numb of x com
is incremented. If one function is independent of the
variable x (marked as N, Y or Y, N in the table), the
parameter numb of x dif is incremented. Otherwise,
both parameters remain unchanged. This procedure looks
for functions with the largest possible number of common
variables and the smallest number of distinct variables.
The function considered is included in the cluster if
numb of x dif = 0 for the case where it is not necessary
to decompose the given function (numb of x dep≤ k) or if
numb of x dif ≤ numb of x com. The computational
complexity of the algorithm is O(n3 ×m), where n is the
number of functions and m is that of variables.

In the next stages of synthesis, individual clusters are
subjected to further analysis, in which case decomposition
and technology mapping algorithms are implemented.
Unfortunately, the proposed decomposition algorithm is
not always successful. In such a case, the cluster
considered is divided into two (the set of functions
included in the original cluster is partitioned). The
newly created clusters (sets of functions) are subject to
decomposition again. In the case of hard-to-decompose
functions, this approach may lead to a situation where
clusters split up into those that contain only a single
function. If, in the case of single functions, the proposed
algorithm is also ineffective, the only solution is to use
decomposition associated with the Shannon expansion.
Unfortunately, this type of decomposition is ineffective
in terms of the use of logic resources and thus power
consumption.

To decompose the multi-output function contained in
the cluster, it becomes necessary to adequately describe
this assembly with an appropriate form of the BDD.

4. Description of the multi-output function
with the use of a PMTBDD

There are many methods of describing a multi-output
function with a BDD. The most popular are the SBDD
(Shared BDD) and the MTBDD (multi terminal BDD)
(Minato, 1996; Hasan Babu and Sasao, 1999). In the
case of the SBDD, single functions are associated with
the individual roots of the diagram. In the case of the
MTBDD, leaves are modified in such a way that they
represent the output vectors (i.e., the values taken by the
single functions included in the set). The number of such
leaves may also be greater than 2.

From the perspective of decomposition (technology
mapping), it is most often better to implement a
multi-output function than single functions separately.
Unfortunately, this is not always the case. Too many
or poorly chosen functions in one set can cause a
significant increase in the number of cut nodes and thus
in that of bound functions, which means that for a
multi-output function (MTBDD), decomposition depends
on the selection of variables for the related set Xb and
the cut level, and on the selection of functions included in
the set. This process leads to the necessity of developing
quick methods allowing attachment or detachment of a
selected single function from a multi-output function.
Thus, it is a difficult task for both the MTBDD and
the SBDD. In this situation, the authors proposed the
introduction of a new form of the PMTBDD, as presented
by Opara et al. (2019) or Kubica et al. (2021b; 2017).

The essence of the representation of a multi-output
function in the form of a PMTBDD is adding new
variables represented by additional nodes. These nodes
are associated with single functions included in the
multi-output function. Thus, compared with the MTBDD,
multi-bit leaves, which represent the values of the
multioutput function, are replaced with subdiagrams that
represent additional nodes. This approach allows us
to easily attach or detach a single function using the
well-known procedures bdd or() and bdd compose(), as
shown by Opara et al. (2019) or Kubica et al. (2021b;
2017).

Consider the two functions described by PMTBDD,
as shown in Fig. 4 (the function f0 is represented by the
diagram of Fig. 4(a), and function f1 is represented by the
diagram in Fig. 4(b)).

Considering the diagrams in Fig. 4, additional nodes
associated with individual functions have been introduced
(marked in grey). The rules for placing new nodes in
PMTBDD are described by Opara et al. (2019) or Kubica
et al. (2021b; 2017). Additionally, cut nodes in both

272 A. Opara and M. Kubica

1 0 1 0

x2 x2

x3x3x3x3

x4x4 x4x4 x4x4

x5x5 x5x5 x5x5x5x5

x0x0x0x0

x1x1 x1x1

f’0 f’1

b)a)

Fig. 4. PMTBDD representing the functions f0 (a) and f1 (b).

1 0

x2

x3x3

x4 x4x4

x5x5x5x5

x0x0

x1x1

f’1

x1x1

f’0f’0

x2

x3x3

x4 x4 x4

x5x5 x5x5

x0x0

x1x1x1x1

1
1

0
1

1
0

0
0

f0

f1

b)a)

Fig. 5. Representation of the multi-output function f0f1 in the
form of a PMTBDD (a) and an MTBDD (b).

cases are marked in grey. As a result of merging both
diagrams (bdd or), a PMTBDD was created representing
the f0f1 functions, as shown in Fig. 5(a). As before,
additional nodes and cut nodes are marked. Figure 5(b)
shows the same multi-output function f0f1 in the form of
the MTBDD.

Naturally, a multi-output function described in both
the form of an MTBDD and a PMTBDD can be
decomposed by horizontal cutting. In the case under
consideration, the diagrams describing the multioutput
function from Fig. 5 have three cut nodes. Therefore, it
is necessary to use two bound functions. Similarly, for the
diagrams describing single functions (Fig. 4), the number
of cut nodes for single functions is also three. Therefore,
for function f0, it is necessary to introduce two bound

functions, and function f1 requires two bound functions.
Comparing the implementation of a multi-output function
with of single functions, the implementation of the
multi-output function leads to the reduction of the number
of necessary bound functions from four to two. As a
result, the bound block implementing them a smaller
number of logic resources of the FPGA device and thus
will require less power consumption.

The reduction of power consumption can also
be performed in the process of decomposition itself.
Unfortunately, this process requires the modification of
the PMTBDD diagram to include additional information
necessary for its reduction.

5. SWMTBDDs and SWPMTBDDs

With digital devices, the total power consumed by a
given device Pdev consists of two components: the static
power, Pstat and the dynamic power, Pdyn, which can be
summarized by the relationship (1):

Pdyn = Pstat + Pdyn. (1)

The static power Pstat is strictly dependent on the
technology in which the given device was made. Static
power is influenced by a number of factors, such as gate
leakage, drain junction leakage, and subthreshold current.
Due to the nature of static power, the minimization of
its consumption using synthesis algorithms is limited.
The situation is marginally different in the case of the
dynamic power Pdyn. The value of dynamic power can
be determined from

Pdyn =
1

2
V 2
ddf

n∑

i=1

CiSW i. (2)

Analyzing (2), the dynamic power Pdyn depends on
a number of parameters, such as the supply voltage of the
circuit Vdd or the operating frequency of the circuit f and
the sum of parameters for n circuit nodes. With FPGA
devices, these nodes are configurable logic blocks. The
capacitance Ci must be reloaded in the event of a logical
transition in a given node to the opposite state. It thus
becomes critical to determine for each of i nodes how
often the logic state changes to the opposite one. For this
purpose, an additional parameter has been introduced: the
switching activity for the node considered (SWi). This
parameter can be influenced at the stage of logic synthesis.
Since the influence of the synthesis tools on the capacity
of Ci is small, one can try to minimize the absorbed
dynamic power by reducing the switching activity (Kubica
et al., 2021a).

The switching activity is directly related to the
probability of a given variable’s state transition. Thus, we
can talk about the probability of transition from state 0

Technology mapping of multi-output functions leading to the reduction . . . 273

to 1 and from state 1 to 0. If all variables are mutually
independent, the value of the switching activity can be
described by

SW = 2P (x)(1− P (x)), (3)

where P (x) is the probability of the value 1 for the
variable x, and (1− P (x)) is the probability of 0 for
the same variable. When analyzing a particular system,
we usually know nothing about the probability of 0 or
1 appearing on a given system input. In this situation,
it becomes necessary to make some assumptions about
these probabilities. Most often, we assume that the
probability of the occurrence of the value 0 is the same
as the probability of the occurrence of the value 1,
therefore P (x = 0) = P (x = 1) = 0.5. Ferreira et al.
(2000) present a model of power estimation with the use
of a BDD. Conversely, in the work of Bogliolo et al.
(1998), time relations were introduced into the BDD. The
essence of determiningSW for combinational circuits can
be found in the work of Costa et al. (1997).

Classic BDD do not contain information on the
probability P value and the switching activity SW . The
usefulness of such diagrams in the process of minimizing
dynamic power consumption is therefore limited. Kubica
et al. (2021a) modify the classic BDD (ROBDD) in such
a way that additional factors (P (x) and SW) were placed
at individual nodes. This approach made it possible to
search for the appropriate decomposition that aimed to
minimize dynamic power consumption depending on the
parameters contained in the nodes. This new form of the
BDD has been named the SWBDD (Kubica et al., 2021a).
Unfortunately, the SWBDD is a description of a single
function; therefore, its usefulness for the implementation
of a multi-output function is limited.

In this situation, the authors propose introducing two
new types of diagrams describing multi-output functions
while considering parameters related to power.

The first diagram proposed by the authors is the
SWMTBDD, which is an extension of the MTBDD. For
each of the nodes, additional parameters are determined
related to the probability of obtaining the value 1 (P)
for each of the functions from the set described in the
SWMTBDD under consideration. Thus, the switching
activity (SW) is determined using Eqn. (3), for each
function. Figure 6 shows an example of an SWMTBDD
obtained after determining additional parameters for the
MTBDD from Fig. 5(b).

Because the multi-output function considered
consists of two functions, f0 and f1, a pair of parameters
(P , SW) for each of the functions were determined for
each of the nodes. The parameters P were determined
based on the analysis of the respective paths. The
probability is calculated similarly to the Shannon
expansion. For each BDD node associated with a variable

x2

x3x3

x4 x4 x4

x5x5 x5x5

x0x0

x1x1x1x1

1
1

0
1

1
0

0
0

f0

f1

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0
Pf1=0.5
SWf0=0
SWf1=0.5

Pf0=1
Pf1=0.5
SWf0=0
SWf1=0.5

Pf0=0.25
Pf1=0.25
SWf0=0.375
SWf1=0.375

Pf0=0.25
Pf1=0.25
SWf0=0.375
SWf1=0.375

Pf0=0.375
Pf1=0.375
SWf0=0,469
SWf1=0,469

Pf0=0.375
Pf1=0.375
SWf0=0,469
SWf1=0,469

Pf0=0.437
Pf1=0.437
SWf0=0,492
SWf1=0,492

Pf0=0.437
Pf1=0.437
SWf0=0,492
SWf1=0,492

Pf0=0.437
Pf1=0.437
SWf0=0,492
SWf1=0,492

Fig. 6. SWMTBDD example.

x, the following formula is applied:

P (node) = P (x)P (nodexi=1)

+ (1− P (x))P (nodexi=0),
(4)

where nodexi=1 and nodexi=0 are child nodes for true
and false edges.

In the available BDD programming libraries, to unify
the execution of all logical operations, the introduction
of the ITE (if-then-else) operator was proposed (Minato,
1996). ITE is given by

ITE(x, y, z) = x · y + x · z. (5)

Because there is one operator, one result table (cache) is
required. Basic logical operations can be expressed with
a single operator, e.g., f · g = ITE(f, g, 0), f + g =
ITE(f, 1, g). The result of the operation can also be
obtained iteratively similar to the Shannon expansion:

ITE(f, g, h) = ITE(xi,

ITE(fxi=1, gxi=1, hxi=1),

ITE(fxi=0, gxi=0, hxi=0)).

(6)

Based on the expression (6), a typical ITE calculation
algorithm is constructed (Algorithm 1, lines 7–8). To
avoid calculating the results for the same arguments
many times, the ResultTable is used (lines 3–4). In
the proposed solution, each node is associated with an
array of probabilities, and thus, the algorithm calculates
probabilities if the result is not included in the result table

274 A. Opara and M. Kubica

1 0

x2

x3x3

x4 x4x4

x5x5x5x5

x0x0

x1x1

f’1

x1x1

f’0f’0

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.25
Pf1=0.25
SWf0=0.375
SWf1=0.375

Pf0=0.25
Pf1=0.25
SWf0=0.375
SWf1=0.375

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0,5
Pf1=0.5
SWf0=0,5
SWf1=0.5

Pf0=1
Pf1=0.5
SWf0=0
SWf1=0.5

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.5
Pf1=0.5
SWf0=0.5
SWf1=0.5

Pf0=0.375
Pf1=0.375
SWf0=0,469
SWf1=0,469

Pf0=0.375
Pf1=0.375
SWf0=0,469
SWf1=0,469

Pf0=0.437
Pf1=0.437
SWf0=0,492
SWf1=0,492

Pf0=0.437
Pf1=0.437
SWf0=0,492
SWf1=0,492

Pf0=0.437
Pf1=0.437
SWf0=0,492
SWf1=0,492

Pf0=0
Pf1=0.5
SWf0=0
SWf1=0.5

Pf0=1
Pf1=1

Pf0=1
Pf1=0

Pf0=0
Pf1=1

Pf0=0
Pf1=0

Fig. 7. SWPMTBDD example.

(lines 13–15).
The second diagram proposed by the authors is

SWPMTBDD, in which the same set of parameters was
introduced for the nodes associated with the variables x.
From the PMTBDD shown in Fig. 5(a), the SWPMTBDD
can be derived as shown in Fig. 7.

The multi-output function described by the
SWPMTBDD can be decomposed to minimize the
dynamic power consumption.

The form of the PMTBDD and the SWPMTBDD
allows us to conveniently combine single functions into
diagrams of sets of functions or to separate them. This
process was described in earlier works (Opara et al.,
2018; Kubica et al., 2021b, 2017). During merging, the
logic sum operator is used for the functions multiplied
by the additionally introduced variables f ′

0f
′
1 (Eqn. (7))

represented by the diagram in Fig. 5(a):

f0f
′
0 + f1f

′
1. (7)

The standard operator ITE is used for a logic sum
implementation in libraries for BDD operations. By
making some modifications to the ITE algorithm,
information about the probability can be retained.

When combining diagrams, we can use previously
calculated probabilities for individual functions, thanks to
which we can obtain an effective tool for combining (and

Algorithm 1. ITE operator.
Require: bdd I , bdd T , bdd E

1: if terminal case applies to I , T , E then
2: return computed result;
3: else if found in ResultTable then
4: return result from ResultTable;
5: else
6: x smallest index var from among roots of I , T , E;
7: PosFactor = ITE(Ix=1, Tx=1, Ex=1);
8: NegFactor = ITE(Ix=0, Tx=0, Ex=0);
9: R = FindNodeInResultTable

(x,NegFactor, PosFactor);
10: if not found R then
11: R.high = PosFactor;
12: R.low = NegFactor;
13: for all functions fi do
14: R.P [fi]

= P (x) × PosFactor.P [fi]
+(1− P (x)) ×NegFactor.P [fi] ;

15: end for
16: end if
17: InsertIntoResultTable((I ,T ,E),R);
18: return R ;
19: end if

separating) functions into appropriate sets. Combining
functions into appropriate sets should be done in such
a way that the number of cut nodes does not increase.
Thus, it is possible to obtain the sharing of logic resources
(Kubica et al., 2021b) and the minimization of the number
of logic blocks used. From the perspective of power
minimization, it is critical to use additional information
about the probability and the switching activity contained
in the diagram.

6. Decomposition of the multi-output
function aimed at minimizing dynamic
power

The SWPMTBDD can be decomposed with the same
methods as diagrams without probability information. By
combining single function diagrams into SWPMTBDDs
and then cutting off the top of the diagram, one can obtain
a common bound block for n functions. Figure 8(a)
shows a bound block with three outputs common for
two functions, f0 and f1. If no efficient decomposition
can be found for a particular multi-output function, the
functions must be separated. Then, these functions should
be decomposed separately. In this case, it is possible to
search for sharing only for some functions of the bound
block. Figure 8(b) shows that only a single function g0 is
shared. The search process is described by Kubica et al.
(2021b). The essence of function decomposition with the
use of a BDD is the cutting of the diagram, which leads

Technology mapping of multi-output functions leading to the reduction . . . 275

f0

f1

Xb

Xf

g00

g01
g02 f0

Xf

g’0

g1
g2

f1

Xf

Xb

b) a)

Fig. 8. Idea of sharing bound functions: all (a), selected (b).

to the fact that the variables above the cut line belong to
the bound set; the critical determination is which variables
to include in this set. Therefore, different orderings of
variables in the BDD are analyzed. The effectiveness
of the solution found should be assessed each time. For
this purpose, the cost function was introduced, which
depends on a number of parameters, such as the number
of bound functions (associated with the complexity of the
bound block), the cardinality of the bound set Xb or the
switching activity. The idea of searching for an effective
decomposition using the cost function is presented in
Algorithm 2. This algorithm is a key element of the
strategy described in this article further later.

The key element of the algorithm is the reordering of
variables in the BDD (line 2). Because the decomposition
is designed to minimize the dynamic power consumption,
an important element of determining the cost function
is considering the switching activity (lines 4–7). SW
is evaluated based on the formula (3). The probability
is calculated similarly to the Shannon expansion and
formula (4). The order of variables in the diagram
is changed by a series of swaps of adjacent nodes.
The probabilities do not need to be recalculated for all
nodes in the diagram when the order of the variables
is changed; only swapped nodes must be recalculated.
In the proposed solution, the sum SW is determined
for the nodes above the cut line for all functions in the
set. Next, non-disjoint decomposition is searched for.
Shared bound functions are created. The next step is
to calculate the cost of the solution found (lines 10–18).
For this purpose, the sum of all g functions (which are
associated with single LUTs) and that of the cardinality
of bound sets are counted. The temporary numeric
value of the cost function is determined in line 18. The
expression uses bit shift operators to give the appropriate
parts of the expression appropriate weights, which allows
the cost value to be stored as a single number. The
factor num g − sum card Xb has the greatest weight
and SW cost sum the least. Based on experiments, the
SW cost sum is always smaller than 27; therefore, the
shift is seven bits. In addition, num ndisj is always less
than 25; therefore, the offset is five bits. The last step is

Algorithm 2. Decomposition step.
Require: multioutput function

1: for n times do
2: change BDD var order();
3: get cut nodes();
4: SW cost sum = 0;
5: for all functions fi do
6: SW cost sum + = calculate SW activity sum

of nodes over cut ln(fi);
7: end for
8: find nondisjoint decomp();
9: generate shared g()

10: {Calculate cost }
11: num ndisj = sum nondisjoint vars(); {number of

nondisjoint g}
12: num g = sum shared g(); {number of shared g }
13: sum card Xb =0; {sum of cardinalities of bound

sets }
14: for all functions fi do
15: num g + = num not shared g(fi);
16: sum card Xb + = num

dependend variables(fi);
17: end for
18: tmp cost = ((num g − sum card Xb)<<5 +

num ndisj)<<7 − SW cost sum);
19: if tmp cost > best cost then
20: best cost = tmp cost;
21: remember solution();
22: end if
23: end for

to compare the (temporary) solution found with the best
solution obtained thus far. If an interim solution is more
effective, it is kept as the best one found thus far.

7. Synthesis strategy
The described methods lead to a consistent synthesis
strategy named by the authors PowerDekBDD MF. This
strategy is a development of the DekBDD (Opara et al.,
2019) and PowerDek (Kubica et al., 2021a) strategies
implemented earlier by the authors. The DekBDD’s
strategy was intended to minimize the use of the
number of logic resources for the implementation of
the multi-output function. In contrast, the PowerDek
strategy is geared toward minimizing power consumption
for single functions.

Before applying the decomposition methods
described in Section 6, there is a need to pre-classify
functions into clusters using the algorithm presented in
Section 3. Additionally, it is necessary to prearrange the
order of variables. The next step is the implementation
of the decomposition algorithm aimed at minimizing
dynamic power, which is shown in Fig. 9.

276 A. Opara and M. Kubica

The essence of this algorithm is the successive
change in the order of the variables performed using
the swap(xi, xj , F) operation for the multi-output
function F . For different orderings of variables,
a non-disjoint decomposition (process of technology
mapping optimization) is searched, and parameters related
to power (P and SW) are determined. Next, the
temporary cost parameter (Costtemp) is estimated, which
is then compared with the best-known solution (Cost).
Appropriate selection of functions to F is of key
importance; therefore, the SWPMTBDD form is used,
which allows easy grouping of functions.

It is possible that, after performing the
decomposition with the algorithm in Fig. 9, we will
not obtain a satisfactory result. In this situation, the
operations indicated in Section 3 are performed, i.e.,
the division of the cluster or the implementation of
decomposition associated with the Shannon expansion.

The presented algorithms were implemented using
the PowerDek MF tool, which was employed to perform
the experiments.

8. Experimental results
To confirm the effectiveness of the proposed algorithms,
multiple experiments were performed. The set of the
described benchmarks (CBEAL, 2004) was used for the
experiments. The benchmark circuits described by *.pla
files were decomposed using the PowerdekBDD MF tool.
Three series of experiments were performed.

In the first series of experiments, two academic
synthesis tools developed by the authors of the DekBDD
(Opara et al., 2018; Kubica et al., 2021b; 2017)
and PowardekBDD MF were compared. The DekBDD
strategy is the traditional serial decomposition performed
by a single BDD cut aimed at minimizing the number
of logic blocks. The PowerdekBDD MF strategy is the
development toward minimizing power consumption. The
goal of this series of experiments was to compare the two
approaches in terms of the number of LUT blocks (limited
to blocks with five inputs—LUT 5), the number of logical
levels and the switching activity. It is also critical to
determine the effect of the number of shared bound
functions and the number of non-disjoint decompositions
found.

The results of the comparison are summarized
in Table 1. The first three columns describe the
benchmark (name, number of inputs and number of
outputs). The remainder of the table is split into
two parts associated with the systems being compared.
Two cases can be distinguished for both parts: with
a non-disjoint decomposition “withnon− dis.dec.” and
without “withoutnon− dis.dec.” Table 1 lists the
number of LUT blocks “LUT 5”, the number of shared
bound functions g “Shared”, the number of logic

Start

i=0
Cost = max

Y

N
i = i + 1

Ftmp = swap(xi,xj,F)

Create function
groups (PMTBDD)

Find non-disjoint
decomposition

End

Y

N
Costtemp < Cost

j < numb_of_x_dep

j < n

Y

N

Define P and SW
(SWPMTBDD)

Define Costtemp

Cost = Costtemp
F=Ftemp

j = j + 1

i < card(Xb)

Determine
shared g

Fig. 9. Decomposition algorithm aimed at minimizing dynamic
power.

levels “Levels”, and the switching activity “SW”. In
addition, information about the synthesis time ”time”
(expressed in seconds) and the value of the fanout
“fanout” are also provided. Additionally, in the
section ”withnon− dis.dec.” the number of non-disjoint
decompositions “Ndisj” is given.

At the bottom of Table 1, the individual sums
are presented, which are summarized in the form of
graphs in Fig. 10. To improve readability, non-disjoint
decomposition is denoted as NDD.

Comparing the obtained results in terms of

Technology mapping of multi-output functions leading to the reduction . . . 277

Ta
bl

e
1.

C
om

pa
ri

so
n

of
th

e
D

ek
B

D
D

an
d

Po
w

er
de

k
M

F
sy

st
em

s.

LU
T_
5

Nd
is
j

Sh
ar
ed

Le
ve
ls

tim
e

fa
no
ut

SW
LU
T_
5

Sh
ar
ed

Le
ve
ls

tim
e

fa
no
ut

SW
LU
T_
5

Nd
is
j

Sh
ar
ed

Le
ve
ls

tim
e

fa
no
ut

SW
LU
T_
5

Sh
ar
ed

Le
ve
ls

tim
e

fa
no
ut

SW

5x
p1

7
10

13
3

1
2

0.
01

3.
1

6.
00

13
4

2
0.
01

3.
1

5.
99

13
3

1
2

0.
01

3.
1

6.
00

13
4

2
0.
01

3.
1

5.
99

9s
ym

9
1

6
0

0
3

0.
01

2
2.
77

6
0

3
0.
01

2
2.
77

6
0

0
3

0.
01

2
2.
77

6
0

3
0.
01

2
2.
77

al
u2

10
8

25
6

2
3

0.
01

3.
49

10
.4
2

26
1

3
0.
01

3.
61

1
9.
85

26
9

2
4

0.
02

3.
61

1
11

.0
0

26
1

3
0.
04

3.
61

1
9.
68

al
u4

14
8

37
6

47
7

17
0.
28

4.
41

16
7.
76

64
2

14
18

0.
35

4.
44

1
28

2.
25

44
6

50
0

15
0.
37

4.
40

7
19

6.
91

71
1

13
17

0.
65

4.
45

9
29

9.
24

ap
ex
7

49
37

13
0

10
3

27
8

0.
34

3.
59

45
.8
6

19
8

37
7

0.
39

3.
89

1
68

.8
7

94
11

5
25

8
0.
52

3.
22

4
32

.3
1

30
6

44
13

0.
73

4.
11

8
10

8.
76

b1
2

15
9

21
6

2
3

0.
01

2.
86

6.
13

20
2

3
0.
01

2.
91

4
6.
00

18
3

2
2

0.
02

2.
78

8
5.
40

23
2

3
0.
06

3.
02

6
7.
13

b9
16

5
44

28
9

5
0.
03

2.
47

14
.1
4

72
23

6
0.
05

3.
11

5
23

.3
3

45
25

9
5

0.
05

2.
47

7
14

.3
3

66
14

7
0.
04

3.
06

5
22

.0
3

bw
5

28
28

0
0

1
0.
02

4.
91

11
.6
6

28
0

1
0.
01

4.
90

9
11

.6
6

28
0

0
1

0.
01

4.
90

9
11

.6
6

28
0

1
0.
02

4.
90

9
11

.6
6

c8
28

18
30

15
3

4
0.
02

2.
47

13
.2
4

39
5

4
0.
02

2.
80

6
17

.2
7

29
14

3
4

0.
03

2.
43

9
12

.3
6

40
5

4
0.
03

2.
83

8
17

.3
1

ch
t

47
36

37
0

0
2

0.
01

2.
27

14
.0
0

37
0

2
0.
01

2.
27

4
14

.0
0

37
0

0
2

0.
01

2.
27

4
14

.0
0

37
0

2
0.
01

2.
27

4
14

.0
0

cl
ip

9
5

18
16

4
3

0.
03

3.
52

7.
73

17
5

3
0.
04

3.
23

1
7.
12

18
16

4
4

0.
03

3.
51

9
8.
10

17
5

3
0.
04

3.
23

1
7.
12

cm
16

2a
14

5
11

2
4

3
0.
01

2.
12

4.
24

12
5

3
0.
01

2.
23

1
4.
04

11
2

4
3

0.
01

2.
12

4.
24

12
5

3
0.
01

2.
23

1
3.
98

cm
16

3a
16

5
9

2
2

3
0.
01

1.
8

2.
98

10
2

3
0.
01

1.
92

3
3.
26

9
2

2
3

0.
01

1.
8

3.
28

10
2

3
0.
01

1.
92

3
3.
26

cm
85

a
11

3
8

1
2

3
0.
01

1.
89

3.
10

9
4

3
0.
01

2.
2

2.
69

8
1

2
3

0.
02

1.
89

5
2.
99

9
4

3
0.
01

2.
2

2.
69

co
n1

7
2

3
1

0
2

0.
00

5
1.
5

1.
40

4
0

2
0.
01

1.
81

8
1.
64

3
1

0
2

0.
01

1.
5

1.
40

4
0

2
0.
00

5
1.
81

8
1.
83

co
un

t
35

16
44

35
12

6
0.
07

2.
72

19
.9
6

49
15

5
0.
08

2.
88

1
17

.1
7

42
41

9
6

0.
1

2.
67

5
18

.5
3

46
14

6
0.
09

2.
76

5
15

.7
0

du
ke
2

22
29

26
5

12
2

18
10

0.
57

4.
45

87
.5
3

40
8

37
12

0.
67

4.
50

7
12

2.
96

25
1

12
4

17
10

0.
69

4.
44

72
.6
2

38
2

39
11

0.
85

4.
52

5
97

.9
8

e6
4

65
64

10
6

0
37

8
1.
29

2.
9

2.
11

10
6

37
8

1.
25

2.
90

1
2.
11

10
6

0
37

8
1.
75

2.
90

1
2.
06

10
6

37
8

1.
71

2.
90

1
2.
06

ex
am

pl
e2

85
66

12
4

88
22

6
0.
34

2.
83

31
.2
0

15
2

29
5

0.
34

2.
98

7
38

.6
2

12
3

90
21

6
0.
41

2.
78

8
31

.7
5

14
2

25
6

0.
41

3.
07

5
33

.1
5

f5
1m

8
8

10
2

1
3

0.
01

2.
5

4.
94

12
2

3
0.
01

2.
8

5.
65

10
2

1
3

0.
01

2.
5

4.
94

12
2

3
0.
01

2.
8

5.
65

in
c

7
9

20
3

0
3

0.
01

3.
52

8.
08

20
0

2
0.
01

3.
59

3
7.
97

20
3

0
3

0.
01

3.
51

9
7.
89

20
0

2
0.
01

3.
59

3
7.
32

m
is
ex
1

8
7

15
0

2
2

0.
01

3.
13

5.
66

15
2

2
0.
01

3.
13

5.
66

15
0

2
2

0.
01

3.
13

5.
66

15
2

2
0.
01

3.
13

5.
66

m
is
ex
2

25
18

33
10

4
3

0.
03

2.
78

6.
22

37
10

3
0.
03

2.
90

3
5.
15

32
12

5
4

0.
03

2.
77

2
4.
56

37
8

3
0.
02

2.
85

5
4.
02

m
is
ex
3

14
14

43
4

96
14

14
0.
52

4.
54

17
0.
12

49
7

18
12

0.
68

4.
54

18
1.
26

29
7

84
12

11
0.
57

4.
51

4
10

9.
25

47
3

16
11

0.
82

4.
49

5
15

9.
97

m
is
ex
3c

14
14

13
4

36
1

8
0.
14

4.
27

57
.9
7

18
5

7
10

0.
22

4.
41

7
76

.5
6

12
5

42
1

10
0.
17

4.
32

4
54

.2
7

17
7

4
9

0.
3

4.
39

3
73

.9
0

m
ux

21
1

21
17

0
6

0.
02

2.
48

9.
00

53
0

9
0.
02

3.
32

4
24

.2
6

17
16

0
7

0.
02

2.
21

1
7.
46

39
0

9
0.
03

3.
13

3
15

.3
5

pc
le

19
9

18
8

5
4

0.
03

2.
38

5.
27

21
4

4
0.
02

2.
6

8.
40

18
11

3
4

0.
02

2.
40

5
5.
22

21
4

4
0.
02

2.
55

6.
13

pd
c

16
40

11
7

42
7

6
0.
39

4.
29

34
.4
0

13
7

15
6

0.
39

4.
41

2
36

.4
8

12
0

51
7

8
0.
4

4.
28

7
35

.6
3

16
0

14
8

0.
44

4.
38

6
46

.7
2

rd
53

5
3

3
0

0
1

0.
01

2.
25

1.
27

3
0

1
0.
00

5
2.
25

1.
27

3
0

0
1

0.
01

2.
25

1.
27

3
0

1
0.
01

2.
25

1.
27

rd
73

7
3

6
0

2
2

0.
01

2.
23

2.
97

6
2

2
0.
01

2.
23

1
2.
97

6
0

2
2

0.
01

2.
23

1
2.
97

6
2

2
0.
01

2.
23

1
2.
97

rd
84

8
4

9
1

2
3

0.
02

2.
65

3.
32

10
2

3
0.
01

2.
77

8
3.
62

9
1

2
3

0.
01

2.
64

7
3.
32

10
2

3
0.
02

2.
77

8
3.
67

sa
o2

10
4

33
14

4
5

0.
03

3.
84

10
.6
5

33
8

5
0.
03

3.
81

4
9.
20

33
12

6
6

0.
04

3.
83

7
7.
99

31
7

5
0.
03

3.
80

5
8.
44

sc
t

19
15

20
14

4
4

0.
02

2.
56

6.
07

23
7

3
0.
01

2.
76

2
7.
13

20
14

4
4

0.
02

2.
56

4
6.
04

23
7

3
0.
02

2.
76

2
7.
14

sp
la

16
46

37
2

13
3

32
12

0.
99

4.
61

12
6.
67

46
7

54
13

1.
33

4.
63

8
15

4.
08

32
8

12
3

36
11

1.
28

4.
58

7
10

0.
34

43
9

48
14

2.
56

4.
62

6
14

0.
66

sq
ua

r5
5

8
8

0
0

1
0.
01

3.
23

3.
49

8
0

1
0.
01

3.
23

1
3.
49

8
0

0
1

0.
01

3.
23

1
3.
49

8
0

1
0.
01

3.
23

1
3.
49

t4
81

16
1

5
2

0
3

0.
04

1.
1

2.
12

10
0

4
0.
03

1.
96

2
3.
95

5
2

0
4

0.
04

1.
09

5
2.
12

8
0

4
0.
07

1.
62

5
3.
61

ta
bl
e3

14
14

77
2

90
9

13
0.
65

4.
43

30
6.
82

10
78

23
15

0.
78

4.
46

9
41

9.
77

81
3

11
7

9
15

0.
96

4.
47

31
0.
46

11
87

42
17

1.
33

4.
54

4
44

6.
61

te
rm

1
34

10
30

51
12

6
0.
08

2.
34

7.
89

66
19

5
0.
09

3.
3

20
.0
3

30
32

14
5

0.
14

2.
31

3
7.
78

13
8

28
14

0.
28

3.
72

1
46

.2
0

tt
t2

24
21

40
16

8
3

0.
03

2.
97

14
.2
6

45
13

3
0.
03

3.
20

3
16

.8
6

40
16

8
3

0.
04

2.
96

9
14

.1
4

46
12

3
0.
05

3.
21

4
17

.2
7

vg
2

25
8

72
46

5
6

0.
11

3.
68

28
.7
5

77
13

6
0.
13

3.
75

5
25

.2
4

65
43

9
7

0.
17

3.
56

7
26

.2
2

39
4

15
17

0.
71

4.
32

16
9.
94

x2
10

7
15

6
3

3
0.
01

2.
72

5.
47

20
4

3
0.
01

3.
1

6.
79

15
6

3
3

0.
01

2.
72

4.
64

20
4

4
0.
02

3.
1

6.
85

x4
94

71
10

9
41

18
4

0.
24

2.
67

37
.2
2

12
4

25
4

0.
28

2.
84

4
42

.9
9

11
3

51
18

5
0.
31

2.
69

6
37

.2
8

12
4

23
4

0.
41

2.
77

5
44

.1
0

35
94

11
03

28
5

20
7

6.
48

5
12

6
13

10
.8

5
47

95
44

8
21

2
7.

43
5

13
3.

8
17

10
.3

9
34

55
11

34
28

0
21

3
8.

37
12

5.
7

12
14

.6
4

53
75

45
4

24
3

11
.9

25
13

4.
4

18
93

.3
0

31
.4

5
3.

92
0.

04
2.

87
10

.9
3

37
.9

3
3.

93
0.

04
3.

08
12

.7
2

30
.5

7
4.

06
0.

05
2.

85
10

.3
5

40
.0

7
4.

28
0.

06
3.

08
13

.2
7

Su
m

:

G
eo

m
et

ri
c

m
ea

n:

Benchm.

Inputs

Outputs

De
kB

D
D

Po
w

er
de

kB
D

D
_M

F

w
it

h
no

n-
di

s.
 d

ec
.

w
it

ho
ut

 n
on

-d
is

. d
ec

.
w

it
h

no
n-

di
s.

 d
ec

.
w

ith
ou

t n
on

-d
is

. d
ec

.

278 A. Opara and M. Kubica

0

1000

2000

3000

4000

5000

6000

DekBDD with NDD DekBDD without
NDD

PowerdekBDD_MF
with NDD

PowerdekBDD_MF
without NDD

LUTs

180

190

200

210

220

230

240

250

DekBDD with NDD DekBDD without
NDD

PowerdekBDD_MF
with NDD

PowerdekBDD_MF
without NDD

Levels

0
200
400
600
800

1000
1200
1400
1600
1800
2000

DekBDD with NDD DekBDD without
NDD

PowerdekBDD_MF
with NDD

PowerdekBDD_MF
without NDD

SW

(a) (b) (c)

0
50

100
150
200
250
300
350
400
450
500

DekBDD with NDD DekBDD without
NDD

PowerdekBDD_MF
with NDD

PowerdekBDD_MF
without NDD

Number of shared g

1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140

DekBDD PowerdekBDD_MF

Number of non-disjoint decomp.

(d) (e)
Fig. 10. Comparison of the DekBDD and PowerdekBDD systems in terms of: number of LUT blocks (a), number of logical levels (b),

switching activity (c), number of shared bound functions (d), number of non-disjoint decompositions found (e).

3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100

PowerdekBDD_MF ABC Baseline ABC PowerMap ABC PowerDC

LUTs

0

50

100

150

200

250

PowerdekBDD_MF ABC Baseline ABC PowerMap ABC PowerDC

Levels

6000

6200

6400

6600

6800

7000

7200

PowerdekBDD_MF ABC Baseline ABC PowerMap ABC PowerDC

Power total sum

50

55

60

65

70

75

80

PowerdekBDD_MF ABC Baseline ABC PowerMap ABC PowerDC

Power geometric mean

(a) (b) (c) (d)

Fig. 11. Comparison of the PowerdekBDD MF and ABC systems in terms of: number of LUT blocks (a), number of logical levels (b),
power total sum (c) and geometric average (d).

the number of logic blocks (Fig. 10a), non-disjoint
decomposition is shown to have strong impact (Opara
and Kubica, 2018; 2017; Opara and Kania, 2009).
In both systems, non-disjoint decomposition led to a
significant reduction in the number of necessary LUTs
compared with the exclusively disjoint decomposition.
Additionally, considering the non-disjoint decomposition
for the PowerdekBDD MF system, a marginally
lower number of blocks was obtained than for the
DekBDD. Thus, the average fanout was reduced in
every case where the non-disjoint decomposition was
applied. This observation emphasizes the importance
of the non-disjoint decomposition in methods aimed at
minimizing power. Comparing the number of logical
levels (Fig. 10(b)), we can see the advantage of the
DekBDD system over PowerdekBDD MF. It is essential
to compare both systems in terms of the switching activity
(Fig. 10(c)). As expected, the best results were obtained
for the PowerdekBDD MF system with the non-disjoint
decomposition.

From the perspective of the implementation of
the multioutput function, the number of shared bound
functions is important. The obtained results for both

systems are practically the same (Fig. 10(d)). In relation to
the results for single functions presented by Kubica et al.
(2021a) without shared resources, some observations can
be made regarding the number of g functions. In Table 1,
the given LUT5 is the sum of the number of non-shared
and shared g functions (LUT 5multioutput = gnotshared+
gshared). Comparing LUT5 with the number of LUT
blocks for single functions, the approximate dependence
of LUT 5singleoutput ≈ LUT 5multioutput + gshared =
gnotshared+2×gshared in many cases is observed, which
suggests that g functions are shared between two functions
in the cluster in many cases.

Comparing the DekBDD and PowerdekBDD MF in
terms of the number of non-disjoint decompositions found
(Fig. 10(e)), the PowerdekBDD MF system is shown to be
marginally more efficient.

The second series of experiments compared
the PowerdekBDD MF system with non-disjoint
decomposition, for which the best results were obtained
with the leading academic synthesis system ABC
(BLSG, 2005). The method of performing synthesis by
ABC must be specified each time by an appropriate set
of commands (script). Depending on the script used, the

Technology mapping of multi-output functions leading to the reduction . . . 279

Table 2. Comparison of the PowerdekBDD MF system with the ABC system.

LUT_5 Levels Power LUT_5 Levels Power LUT_5 Levels Power LUT_5 Levels Power
5xp1 7 10 13 2 30,80 23 3 47,86 27 3 52,25 21 3 40,98
9sym 9 1 6 3 14,56 67 5 131,85 68 5 132,04 68 5 128,43
alu2 10 8 26 4 54,55 37 3 70,57 39 3 74,35 37 3 67,57
alu4 14 8 446 15 925,03 377 6 692,28 375 6 678,96 376 6 640,96
apex7 49 37 94 8 178,08 104 4 189,59 93 4 173,24 109 4 198,51
b12 15 9 18 2 40,27 18 2 39,04 19 2 38,21 18 2 36,58
b9 16 5 45 5 86,12 23 3 47,57 25 4 49,05 23 3 47,2
bw 5 28 28 1 77,17 28 1 77,82 28 1 77,82 28 1 77,82
c8 28 18 29 4 65,51 32 3 65,91 33 3 63,33 32 3 61,73
cht 47 36 37 2 92,59 37 2 92,59 37 2 92,97 37 2 92,59
clip 9 5 18 4 43,14 42 3 81,43 37 4 71,36 42 3 69,43

cm162a 14 5 11 3 21,74 11 3 21,13 11 3 21,13 11 3 21,13
cm163a 16 5 9 3 19,49 9 2 21,38 9 2 19,71 9 2 19,71
cm85a 11 3 8 3 16,63 11 2 23,73 11 3 22,31 11 2 23,71
con1 7 2 3 2 7,31 3 2 7,35 3 2 7,35 3 2 7,35
count 35 16 42 6 90,36 49 3 83,07 51 3 83,3 49 3 78,8
duke2 22 29 251 10 443,89 178 4 294,81 173 4 289,06 178 4 280,89
e64 65 64 106 8 162,57 191 4 221,76 180 4 205,19 192 4 224,58

example2 85 66 123 6 231,71 104 3 176,72 104 3 166,23 104 3 169,82
f51m 8 8 10 3 22,73 26 3 56,56 36 4 73,83 25 3 52,38
inc 7 9 20 3 44,56 25 3 53,26 28 3 58,67 25 3 52,04

misex1 8 7 15 2 32,54 17 2 34,89 19 2 36,57 17 2 34,23
misex2 25 18 32 4 63,97 35 3 64,71 36 3 58,75 35 3 63,95
misex3 14 14 297 11 584,78 382 6 668,89 371 6 636,49 383 6 608,73
misex3c 14 14 125 10 272,88 194 5 358,97 196 5 349,67 193 5 343,3
mux 21 1 17 7 40,72 10 3 24,26 13 3 25,29 11 3 24,64
pcle 19 9 18 4 36,04 16 3 31,94 16 3 29,29 16 3 29,82
pdc 16 40 120 8 241,88 596 6 1082,39 601 6 1007,31 535 6 797,69
rd53 5 3 3 1 8,60 3 1 8,6 3 1 8,6 3 1 8,6
rd73 7 3 6 2 14,34 16 3 38,91 23 4 46,63 16 3 38,89
rd84 8 4 9 3 21,05 63 4 122,25 79 5 140,76 62 4 115,55
sao2 10 4 33 6 56,56 36 3 72,55 40 3 72,23 36 3 68,89
sct 19 15 20 4 44,98 20 2 37,93 20 2 37,44 20 2 37,93
spla 16 46 328 11 634,34 363 5 624,5 355 6 588,81 353 5 539,48

squar5 5 8 8 1 20,18 8 1 20,18 8 1 20,18 8 1 20,18
t481 16 1 5 4 10,23 20 4 31,05 19 4 29,72 18 4 27,24
table3 14 14 813 15 1467,82 568 6 894,72 560 6 846,9 569 6 833,05
term1 34 10 30 5 52,78 39 4 77,98 37 4 71,07 40 4 68,79

t2 24 21 40 3 82,52 47 3 88,68 40 3 80 47 3 85,05
vg2 25 8 65 7 134,68 40 4 66,06 42 4 66,02 42 4 66,24
x2 10 7 15 3 29,95 13 2 28,36 14 2 28,88 13 2 28,36
x4 94 71 113 5 234,38 115 3 208,6 115 3 204,87 114 3 198,26

3455 213 6754,03 3996 137 7082,7 3994 144 6835,84 3929 137 6431,08
30,57 4,06 64,98 39,80 2,98 78,85 41,20 3,13 78,19 39,65 2,98 75,07

ABC PowerDCPowerdekBDD_MF (with non-
disj. dec.)

ABC Baseline ABC PowerMap

Sum:
Geometric mean:

Be
nc

hm
.

In
pu

ts

O
ut

pu
ts

ABC system generates different synthesis results. For
comparison, three synthesis scripts described by Chung
and Brayton (2009) were used: Baseline (strash; dch; if
-K 5 -e; ps -p;), PowerMap (strash; dch; resyn2; if -K 5
-p; ps -p;), and PowerDC (strash; dch; if -K 5 -p; mfs -p;
ps -p;). The relevant results are summarized in Table 2.
The first three columns describe the benchmark (name,
number of inputs and number of outputs). The remainder
of the table is divided into four parts associated with the
compared systems (synthesis scripts). The comparison
was made in terms of the number of LUT blocks with five
inputs “LUT 5”, the number of logic levels “Levels”

and power. For this parameter, the value reported by ABC
for the output circuit network is given.

At the bottom of Table 2, individual sums are
presented, which are summarized in the form of graphs
in Fig. 11.

Comparing the two systems in terms of the
number of required LUTs, a clear advantage of the
PowerdekBDD MF system (Fig. 11(a)). Unfortunately,
this advantage comes at the expense of the dynamic
properties of the circuit, as shown in Fig. 11(b), where
the number of logic levels for the PowerdekBDD MF
system is much greater. It is difficult to draw far-reaching

280 A. Opara and M. Kubica

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

5x
p1

9s
ym al
u2

al
u4

ap
ex

7
b1

2 b9 bw c8 ch
t

cl
ip

cm
16

2a
cm

16
3a

cm
85

a
co

n1
co

un
t

du
ke

2
e6

4
ex

am
pl

e2
f5

1m in
c

m
ise

x1
m

ise
x2

m
ise

x3
m

ise
x3

c
m

ux
pc

le
pd

c
rd

53
rd

73
rd

84
sa

o2 sc
t

sp
la

sq
ua

r5
t4

81
ta

bl
e3

te
rm

1
�t

2
vg

2 x2 x4

LUTs PowerdekBDD with NDD / LUTs ABC baseline

(a)

0

1

2

3

4

5

6

7

8

9

10

5x
p1

9s
ym al
u2

al
u4

ap
ex

7
b1

2 b9 bw c8 ch
t

cl
ip

cm
16

2a
cm

16
3a

cm
85

a
co

n1
co

un
t

du
ke

2
e6

4
ex

am
pl

e2
f5

1m in
c

m
ise

x1
m

ise
x2

m
ise

x3
m

ise
x3

c
m

ux
pc

le
pd

c
rd

53
rd

73
rd

84
sa

o2 sc
t

sp
la

sq
ua

r5
t4

81
ta

bl
e3

te
rm

1
�t

2
vg

2 x2 x4

LUTs PowerdekBDD without NDD / LUTs ABC baseline

(b)
Fig. 12. Ratio of the number of LUTs for PowerDek MF to the ABC baseline: with (a) and without (b) non-disjoint decomposition,

ordered ascending by circuit size.

1500
1550
1600
1650
1700
1750
1800
1850
1900
1950

DekBDD with
NDD

DekBDD
without NDD

PowerdekBDD
with NDD

PowerdekBDD
without NDD

ABC Baseline ABC
PowerMap

ABC PowerDC Vivado

LUTs

0

1

2

3

4

5

6

7

8

DekBDD with
NDD

DekBDD
without NDD

PowerdekBDD
with NDD

PowerdekBDD
without NDD

ABC Baseline ABC
PowerMap

ABC PowerDC Vivado

Power LUT

(a) (b)
Fig. 13. Vivado synthesis results: number of LUT blocks (a), dynamic power for LUT (b).

conclusions in the case of the diagram in Fig. 11(c). The
total power for PowerdekBDD MF is smaller than that
for ABC Baseline and ABC PowerMap but greater than
that for ABC PowerDC. Looking at the geometric mean
of power, PowerdekBDD MF has the lowest value. We
also decided to perform the third series of experiments, in
which the descriptions of the decomposed systems were
further analyzed (synthesized) with commercial tools to
unequivocally define dynamic power consumption, which
will ensure the reliability of the comparison.

To report the obtained results more clearly, Fig. 12
shows the ratio of the number of LUT blocks for the

PowerdekBDD MF system to the ABC baseline for each
benchmark. This relationship is presented for two
cases: with consideration of non-disjoint decomposition
(Fig. 12a) and without it (Fig. 12(b)). The benchmarks
are arranged in ascending order by the size of the circuit
for the ABC baseline, and no regularity is shown based on
the size of the circuit.

In the third series of experiments, the synthesis
results obtained with the commercial Xilinx Vivado
synthesis tool (Xilinx, 2021) were compared. Using
academic tools, descriptions of the decomposed circuits
in Verilog HDL were generated and then further

Technology mapping of multi-output functions leading to the reduction . . . 281

Table 3. Results obtained after synthesis in the Vivado tool.

LU
T

Po
w

er
 L

U
T

LU
T

Po
w

er
 L

U
T

LU
T

Po
w

er
 L

U
T

LU
T

Po
w

er
 L

U
T

LU
T

Po
w

er
 L

U
T

LU
T

Po
w

er
 L

U
T

LU
T

Po
w

er
 L

U
T

LU
T

Po
w

er
 L

U
T

5xp1 7 10 3 020. 7 6 02054 3 020. 7 6 02054 14 0205 14 020. 3 11 0205 14 0205

39sy 3 1 . 020. . 020. . 020. . 020. m 0204a m 0204a m 0204a m 0204.

l u84 10 6 1. 02057 15 0207. 1. 02056 1. 02056 44 02064 40 02073 13 020m7 41 0206m

l u8. 1. 6 47. 023. 6 aa4 12. mm 174 0277. 4m. 02311 44. 1204 166 02643 41a 02353 4m7 02346

l pex7 . 3 a7 5m 0244. 55 0244 57 02447 57 0244m 51 0241 50 02406 57 02445 5m 02445

b14 15 3 1a 020. 7 1m 02054 1a 020. m 1. 0205 14 020. . 1a 020. m 1a 020. a 1. 0205

b3 1m 5 43 02103 46 02114 43 02111 43 02111 1. 020m. 15 020m6 1. 020m. 4m 02103

bw 5 46 1. 02035 1. 02035 1. 02035 1. 02035 1. 0203m 1. 0203m 1. 0203m 1. 02035

c6 46 16 16 0207a 16 0207. 16 0207a 16 0207a 40 02073 40 0206a 41 02064 16 02074

cht . 7 am 47 02106 47 02106 47 02106 47 02106 4m 02103 4m 02103 4m 02103 4m 02103

cuip 3 5 15 02077 3 02054 1. 02071 3 02054 4m 021a6 1m 0206m 16 0206. 47 021a

cy 1m4l 1. 5 6 02045 6 02043 6 02046 6 02046 7 0204m 6 0204m 7 0204m 7 0204.

cy 1mal 1m 5 m 02041 m 02041 m 02041 m 02041 m 02041 7 0204a m 02041 m 0204

cy 65l 11 a m 02041 m 02041 m 02044 m 02041 m 02041 m 02041 m 02041 m 02044

con1 7 4 4 02007 4 02006 4 02007 4 02007 4 02007 4 02007 4 02007 4 02007

co8nt a5 1m 45 02075 45 02075 45 02075 45 02075 4. 0207m a0 0203m 47 02065 45 0207m

d8ke4 44 43 3m 0246. 107 02a. 4 37 02466 37 02467 10a 02a4a 101 02a44 104 02a45 10. 02a4m

em. m5 m. 63 024a5 63 024a5 30 024a3 30 024a3 1a. 02a4. 1am 02aa1 1. 5 02am3 1. a 02a5

exl y pue4 65 mm mm 02445 70 024a. m3 024a4 m6 02444 m. 02416 m7 024a. ma 02413 61 02a1

f51y 6 6 7 020. 7 020. 1 7 020. 7 020. 1 10 020. 10 020. . 10 020. 10 020. 6

inc 7 3 3 020a3 3 020a6 3 020a3 3 020a3 1a 020. 5 1a 020. 5 14 020. a 14 020. .

y i9ex1 6 7 6 020aa 6 020aa 6 020aa 6 020aa 6 020aa 6 020aa 6 020aa 6 020aa

y i9ex4 45 16 44 0206. 4. 02075 44 02061 4a 02061 4. 02076 45 0206 45 0206 45 02077

y i9exa 1. 1. 157 02574 1. 7 025a7 1a. 02. 7a 13. 027. 7 150 0257m 1a5 02. 34 1m0 02564 163 027.

y i9exac 1. 1. 6a 02a4. 106 02. 1 6m 02a4m 65 02a4 107 02. 1m 107 02. 41 100 02a77 107 02. 1m

y 8x 41 1 5 02044 5 02044 m 02045 m 0204m 5 02044 5 02041 5 02041 m 0204m

pcue 13 3 14 020. a 14 020. a 14 020. a 14 020. a 14 020. a 11 020a3 10 020a3 14 020. 4

pdc 1m . 0 m5 024a3 mm 024. 5 m. 024am ma 024aa 1a3 02. a6 1a4 02. 44 1a7 02. . a 113 02a63

rd5a 5 a 4 02014 4 02014 4 02014 4 02014 4 0201a 4 02014 4 0201a 4 02014

rd7a 7 a . 020aa . 020aa . 020aa . 020aa m 02043 m 02043 m 02043 m 020a

rd6. 6 . 5 020. 5 5 020. 4 5 020. 5 5 020. 5 11 0205m 11 0205m 11 025m 11 02057

9l o4 10 . 13 0211m 16 02116 40 02101 40 0210. 40 020m4 40 020m7 40 02071 a6 021aa

9ct 13 15 14 0205a 1m 020m 14 0205a 1m 020m4 14 0205 14 0205 14 0205 1a 02051

9pul 1m . m 1. 1 02. mm 1a3 02. ma 1a3 02. m5 1. 3 02. 63 1a3 02. 57 1a. 02. a4 1a5 02. 4. 143 02. 0m

9q8l r5 5 6 . 0204m . 0204m . 0204m . 0204m . 02045 . 0204m . 02045 . 0204m

t. 61 1m 1 5 02013 5 02017 5 02013 7 02013 5 02016 5 02016 7 02016 5 02047

tl buea 1. 1. 463 02m7a 465 02m64 4m4 02m. 6 473 02m53 46m 02307 471 02m. 5 477 02m77 4m0 02m4m

tery 1 a. 10 44 02064 a1 02114 16 0207m 43 02107 4m 02035 44 0206a 44 02076 43 0211.

ttt4 4. 41 44 02036 4m 0211m 45 02104 4. 02117 45 02101 4a 0203. 46 0211. a0 0211m

vg4 45 6 46 0210m 46 0210m 46 0210m 4. 0203. 44 0206 13 020m6 4m 02036 46 02106

x4 10 7 7 020a4 3 020a. 7 020a. 3 020am 6 020a5 6 020a5 6 020a5 6 020a4

x. 3. 71 75 024mm 7. 024m4 75 024m. 75 024m4 75 02a17 76 02a17 73 02a03 75 024ma

1774 6.141 1871 6.837 1628 5.842 1814 6.304 1882 6.867 1798 6.265 1874 7.034 1987 6.829

18.13 0.077 18.66 0.079 17.90 0.076 18.60 0.078 20.00 0.079 19.66 0.077 19.99 0.082 21.27 0.083

Vivado

Geometric mean:

ABC PowerMap ABC PowerDC
with non-dis. dec. without non-dis. dec with non-dis. dec. without non-dis. dec

Be
nc

hm
.

In
pu

ts

Ou
tp

ut
s

DekBDD PowerdekBDD
ABC Baseline

Sum:

synthesized in Vivado. Results were obtained regarding
the number of LUT blocks used “LUT” and the value of
dynamic power consumed by the created logic structures
“PowerLUT ”, which are shown in Table 3. In this

table, the first three columns are the description of
the benchmark (name, number of inputs and number of
outputs), and the remainder of the table is divided into five
parts associated with the DekBDD, PowerdekBDD MF,

282 A. Opara and M. Kubica

ABC Baseline, ABC PowerMap and ABC PowerDC.
In addition, the fragments of Table 3 containing
the results for DekBDD and PowerdekBDD MF
systems are divided into two parts: with non-disjoint
decomposition “withnon− dis.dec.” and without
non-disjoint decomposition “withoutnon− dis.dec.”
Additionally, there is a column presenting the results of
the synthesis performed only in the Vivado system.

At the bottom of Table 3, individual sums are
presented, which are summarized in the form of graphs
in Fig. 13. To improve readability, the non-disjoint
decomposition was denoted as NDD.

Analyzing the graph shown in Fig. 13(a), the best
results in terms of the use of LUTs are obtained for the
PowerdekBDD MF system, which looks for non-disjoint
decompositions. DekBDD also provides good results
with regard to non-disjoint decomposition. However, it is
critical to compare the systems in terms of the dynamic
power consumption in the obtained LUT structures,
which are shown in Fig. 13(b). Additionally, in this
study, the PowerdekBDD MF system with non-disjoint
decomposition achieved the best results, which confirms
the effectiveness of the developed methods in the process
of reducing dynamic power.

9. Conclusions
The results of this study show that the proposed
decomposition techniques related to the reduction of
the switching activity can reduce dynamic power
consumption. The approach that uses effective sharing
of logic resources between the structures associated with
the relevant functions included in the implemented team
is effective both in terms of cutting down the use of logic
resources and reducing dynamic power consumption.
Results thus highlight the key impact of non-disjoint
decomposition on decomposition efficiency.

Unfortunately, the proposed methods can only be
used for relatively small circuits. With larger systems,
the proposed solutions can be employed locally in a larger
logical network. The scalability problem is a key flaw of
the proposed approach, which we are still working on.

The proposed approach does not use the
configuration capabilities of modern logic blocks
contained in FPGA devices. This topic should be
investigated in future research in the field of synthesis to
reduce power consumption.

Acknowledgment
This publication was supported by the Department
of Digital Systems (Rau12) and the Department of
Computer Graphics, Vision and Digital Systems (Rau6)
of the Silesian University of Technology under the 2023
statutory research project.

References
Akers, S.B. (1978). Binary decision diagrams, IEEE Transac-

tions on Computers 27(06): 509–516.

Ali, H. and Al-Hashimi, B.M. (2007). Architecture level
power-performance tradeoffs for pipelined designs, IEEE
International Symposium on Circuits and Systems, New
Orleans, USA, pp. 1791–1794.

Ashenhurst, R.L. (1957). The decomposition of switching
functions, Proceedings of the International Symposium on
the Theory of Switching, Cambridge, USA, pp. 76–116.

Balasubramanian, P. and Anantha, K. (2007). Power and
delay optimized graph representation for combinational
logic circuits, Engineering and Technology Interna-
tional Journal of Structural and Construction Engineering
1(8): 2481–2487.

Bard, S. and Rafla, N.I. (2008). Reducing power consumption
in FPGAs by pipelining, 51st Midwest Symposium on Cir-
cuits and Systems, Knoxville, USA, pp. 173–176.

Barkalov, A., Titarenko, L. and Chmielewski, S. (2020b).
Improving characteristics of LUT-based Moore
FSMSs, IEEE Access 8: 155306–155318, DOI:
10.1109/ACCESS.2020.3006732..

Barkalov, A., Titarenko, L. and Mazurkiewicz, M. (2022).
Improving the LUT count for Mealy FSMs with
transformation of output collections, International Jour-
nal of Applied Mathematics and Computer Science
32(3): 479–494, DOI: 10.34768/amcs-2022-0035.

Barkalov, A., Titarenko, L., Mazurkiewicz, M. and Krzywicki,
K. (2021). Improving LUT count of FPGA-based
sequential blocks, Bulletin of the Polish Academy of Sci-
ences: Technical Sciences 69(2): 1–12.

Barkalov, A., Titarenko, L. and Mielcarek, K. (2020b).
Improving characteristics of LUT-based Mealy FSMs, In-
ternational Journal of Applied Mathematics and Computer
Science 30(4): 745–759, DOI: 10.34768/amcs-2020-0055.

Benini, L. and Micheli, G.d. (2000). System-level power
optimization: Techniques and tools, ACM Transactions on
Design Automation of Electronic Systems 5(2): 115–192.

BLSG (2005). ABC: A system for sequential synthesis and
verification, Berkeley Logic Synthesis and Verification
Group, http://www.eecs.berkeley.edu/˜ala
nmi/abc.

Bogliolo, A., Benini, L. and De Micheli, G. (1998).
Characterization-free behavioral power modeling, De-
sign, Automation and Test in Europe, Paris, France,
pp. 767–773.

Brooks, D., Tiwari, V. and Martonosi, M. (2000). Wattch:
A framework for architectural-level power analysis and
optimizations, ACM SIGARCH Computer Architecture
News 28(2): 83–94.

Chen, C., Srivastava, A. and Sarrafzadeh, M. (2001). On gate
level power optimization using dual-supply voltages, IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems 9(5): 616–629.

http://www.eecs.berkeley.edu/~alanmi/abc
http://www.eecs.berkeley.edu/~alanmi/abc

Technology mapping of multi-output functions leading to the reduction . . . 283

Cheng, L., Chen, D. and Wong, M.D. (2008). DDBDD:
Delay-driven BDD synthesis for FPGAs, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems 27(7): 1203–1213.

Chung, S.J.K. and Brayton, A.M.R. (2009). A power
optimization toolbox for logic synthesis and mapping, ht
tps://people.eecs.berkeley.edu/˜alanmi
/publications/2009/iwls09_pwr.pdf.

CBEAL (2004). Collection of digital design benchmarks, htt
ps://ddd.fit.cvut.cz/www/prj/Benchmark
s/.

Costa, J.C., Monteiro, J.C. and Devadas, S. (1997). Switching
activity estimation using limited depth reconvergent path
analysis, Proceedings of the 1997 International Sympo-
sium on Low Power Electronics and Design, Monterey,
USA, pp. 184–189.

Curtis, H.A. (1962). The Design of Switching Circuits, D. van
Nostrand Company, New York.

Dubrova, E. (2004). A polynomial time algorithm for
non-disjoint decomposition of multiple-valued functions,
34th International Symposium on Multiple-Valued Logic,
Toronto, Canada, pp. 309–314.

Dubrova, E., Teslenko, M. and Martinelli, A. (2004). On relation
between non-disjoint decomposition and multiple-vertex
dominators, 2004 IEEE International Symposium on
Circuits and Systems, Vancouver, Canada, Vol. 4,
pp. 493–496.

Ferreira, R., Trullemans, A.-M., Costa, J. and Monteiro, J.
(2000). Probabilistic bottom-up RTL power estimation,
IEEE 2000 1st International Symposium on Quality Elec-
tronic Design, San Jose, USA, pp. 439–446.

Hasan Babu, H.M. and Sasao, T. (1999). Representations of
multiple-output functions using binary decision diagrams
for characteristic functions, IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer
Sciences 82(11): 2398–2406.

Jóźwiak, L. and Chojnacki, A. (2003). Effective and
efficient FPGA synthesis through general functional
decomposition, Journal of Systems Architecture
49(4): 247–265.

Kajstura, K. and Kania, D. (2018). Low power synthesis
of finite state machines—State assignment decomposition
algorithm, Journal of Circuits, Systems and Computers
27(03): 1850041.

Kim, S. and Kim, J. (2000). Low-power data representation,
Electronics Letters 36(11): 1.

Kubica, M., Kajstura, K. and Kania, D. (2018). Logic synthesis
of low power FSM dedicated into LUT-based FPGA, Pro-
ceedings of the International Conference of Computa-
tional Methods in Sciences and Engineering, Thessaloniki,
Greece, pp. 1–4.

Kubica, M. and Kania, D. (2016). SMTBDD: New form of BDD
for logic synthesis, International Journal of Electronics
and Telecommunications 62(1): 33–41.

Kubica, M. and Kania, D. (2017a). Area-oriented technology
mapping for LUT-based logic blocks, International Jour-
nal of Applied Mathematics and Computer Science 27(1):
207–222, DOI: 10.1515/amcs-2017-0015.

Kubica, M. and Kania, D. (2017b). Decomposition of
multi-output functions oriented to configurability of logic
blocks, Bulletin of the Polish Academy of Sciences: Tech-
nical Sciences 65(3): 317–331.

Kubica, M. and Kania, D. (2019). Technology mapping oriented
to adaptive logic modules, Bulletin of the Polish Academy
of Sciences: Technical Sciences 67(5): 947–956.

Kubica, M., Opara, A. and Kania, D. (2017). Logic
synthesis for FPGAs based on cutting of BDD, Mi-
croprocessors and Microsystems 52: 173–187, DOI:
10.1016/j.micpro.2017.06.010.

Kubica, M., Opara, A. and Kania, D. (2021a). Logic synthesis
strategy oriented to low power optimization, Applied Sci-
ences 11(19): 8797.

Kubica, M., Opara, A. and Kania, D. (2021b). Technology
Mapping for LUT-based FPGA, Springer, Cham, DOI:
10.1007/978-3-030-60488-2.

Kuc, M., Sułek, W. and Kania, D. (2020). Low power
QC-LDPC decoder based on token ring architecture, En-
ergies 13(23): 6310.

Li, X., Chen, L., Yang, F., Yuan, M., Yan, H. and Wan, Y. (2022).
HIMAP: A heuristic and iterative logic synthesis approach,
Proceedings of the 59th ACM/IEEE Design Automation
Conference, DAC’22, San Francisco, USA, pp. 415–420,
DOI: 10.1145/3489517.3530460.

Lin, Z., Yuan, Z., Zhao, J., Zhang, W., Wang, H. and Tian,
Y. (2022). Powergear: Early-stage power estimation in
FPGA HLS via heterogeneous edge-centric GNNs, Pro-
ceedings of the 2022 Conference & Exhibition on Design,
Automation & Test in Europe, DATE’22, Antwerp, Bel-
gium, pp. 1341–1346.

Lindgren, P., Kerttu, M., Thornton, M. and Drechsler, R.
(2001). Low power optimization technique for BDD
mapped circuits, Proceedings of the 2001 Asia and South
Pacific Design Automation Conference, Yokohama, Japan,
pp. 615–621.

Ling, A., Singh, D.P. and Brown, S.D. (2005). FPGA technology
mapping: A study of optimality, Proceedings of the 42nd
Annual Design Automation Conference, DAC’05, New
York, USA, pp. 427–432, DOI: 10.1145/1065579.1065693.

Manzak, A. and Chakrabarti, C. (2002). A low power scheduling
scheme with resources operating at multiple voltages,
IEEE Transactions on Very Large Scale Integration Sys-
tems 10(1): 6–14.

Marakkalage, D.S., Testa, E., Riener, H., Mishchenko, A.,
Soeken, M. and De Micheli, G. (2020). Three-input gates
for logic synthesis, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems
40(10): 2184–2188.

Mehrotra, R. (2013). Systematic Delay-driven Power Optimi-
sation and Power-driven Delay Optimisation of Combina-
tional Circuits, PhD thesis, University College Cork, Cork.

https://people.eecs.berkeley.edu/~alanmi/publications/2009/iwls09_pwr.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/2009/iwls09_pwr.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/2009/iwls09_pwr.pdf
https://ddd.fit.cvut.cz/www/prj/Benchmarks/
https://ddd.fit.cvut.cz/www/prj/Benchmarks/
https://ddd.fit.cvut.cz/www/prj/Benchmarks/

284 A. Opara and M. Kubica

Minato, S.-i. (1996). Binary Decision Diagrams and Applica-
tions for VLSI CAD, Kluwer Academic Publishers, New
York.

Opara, A. and Kania, D. (2009). A novel non-disjunctive method
for decomposition of CPLDs, Electronics and Telecommu-
nications Quarterly 55(1): 95–111.

Opara, A. and Kubica, M. (2017). Optimization of synthesis
process directed at FPGA circuits with the usage of
non-disjoint decomposition, AIP Conference Proceedings,
1906: 120004, DOI: 10.1063/1.5012396.

Opara, A. and Kubica, M. (2018). The choice of decomposition
path taking non-disjoint decomposition into account, AIP
Conference Proceedings 2040, Paper ID: 080010, DOI:
10.1063/1.5079144.

Opara, A., Kubica, M. and Kania, D. (2018). Strategy of logic
synthesis using MTBDD dedicated to FPGA, Integration
62: 142–158, DOI: 10.1016/j.vlsi.2018.02.009.

Opara, A., Kubica, M. and Kania, D. (2019). Methods
of improving time efficiency of decomposition dedicated
at FPGA structures and using BDD in the process of
cyber-physical synthesis, IEEE Access 7: 20619–20631,
DOI: 10.1109/ACCESS.2019.2898230.

Patalas-Maliszewska, J., Wiśniewski, R., Topczak, M. and
Wojnakowski, M. (2022). Design optimization of
the Petri net-based production process supported by
additive manufacturing technologies, Bulletin of the Polish
Academy of Sciences: Technical Sciences 70(2): e140693.

Raghunathan, A., Jha, N.K. and Dey, S. (2012). High-Level
Power Analysis and Optimization, Springer, New York,
USA.

Rawski, M., Łuba, T., Jachna, Z. and Tomaszewicz, P. (2005).
The influence of functional decomposition on modern
digital design process, in M.A. Adamski et al. (Eds), De-
sign of Embedded Control Systems, Springer US, Boston,
pp. 193–204, DOI: 10.1007/0-387-28327-7 17.

Sánchez, F.M., Fungairiño, Y.T. and Alcaide, T.R. (2009).
A BDD proposal for probabilistic switching activity
estimation, Proceedings of the 23rd International Confer-
ence on Design of Circuits and Integrated Systems (DCIS),
Grenoble, France.

Scholl, C. (2001). Functional Decomposition with Applications
to FPGA Synthesis, Springer, New York.

Selvaraj, H., Sapiecha, P., Rawski, M. and Łuba, T. (2006).
Functional decomposition—The value and implication for
both neural networks and digital designing, International
Journal of Computational Intelligence and Applications
6(01): 123–138.

Vemuri, N., Kalla, P. and Tessier, R. (2002). BDD-based logic
synthesis for LUT-based FPGAs, ACM Transactions on
Design Automation of Electronic Systems 7(4): 501–525.

Wisniewski, R. (2021). Design of Petri net-based cyber-physical
systems oriented on the implementation in field
programmable gate arrays, Energies 14(21): 7054,
DOI: 10.3390/en14217054.

Wisniewski, R., Grobelna, I. and Karatkevich, A. (2020).
Determinism in cyber-physical systems specified by
interpreted Petri nets, Sensors 20(19): 5565.

Wojnakowski, M., Wiśniewski, R., Bazydło, G. and Popławski,
M. (2021). Analysis of safeness in a Petri net-based
specification of the control part of cyber-physical
systems, International Journal of Applied Mathemat-
ics and Computer Science 31(4): 647–657, DOI:
10.34768/amcs-2021-0045.

Xilinx (2021). Vivado design suite user guide: Implementation
(UG904), https://docs.xilinx.com/r/en-US/
ug904-vivado-implementation.

Adam Opara received his MSc and PhD degrees
from the Faculty of Automatic Control, Electron-
ics and Computer Science, Silesian University of
Technology, Poland, in 2002 and 2009, respec-
tively, where he is currently an assistant profes-
sor with the Department of Graphics, Computer
Vision and Digital Systems. His research inter-
ests include programmable digital devices, mi-
croprocessors, logic synthesis, and technology
mapping.

Marcin Kubica received his MSc and PhD de-
grees from the Silesian University of Technology,
Gliwice, Poland, in 2010 and 2014, respectively,
where he has been an assistant professor with
the Department of Digital Systems. His main
research interests include programmable devices
and systems, and logic synthesis.

Received: 27 June 2022
Revised: 24 October 2022
Re-revised: 30 November 2022
Accepted: 12 January 2023

https://docs.xilinx.com/r/en-US/ug904-vivado-implementation
https://docs.xilinx.com/r/en-US/ug904-vivado-implementation

	Introduction
	Theoretical background
	Initial selection of functions for the cluster
	Description of the multi-output function with the use of a PMTBDD
	SWMTBDDs and SWPMTBDDs
	Decomposition of the multi-output function aimed at minimizing dynamic power
	Synthesis strategy
	Experimental results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

