
Int. J. Appl. Math. Comput. Sci., 2023, Vol. 33, No. 2, 327–339
DOI: 10.34768/amcs-2023-0024

A COMBINATORIAL AUCTION MECHANISM FOR TIME–VARYING
MULTIDIMENSIONAL RESOURCE ALLOCATION AND

PRICING IN FOG COMPUTING

SHIYONG LI a, YANAN ZHANG a, WEI SUN a, JIA LIU b,c,*

aSchool of Economics and Management
Yanshan University

No. 438 West Hebei Avenue, Haigang District, Qinghuangdao 066004, China
e-mail: shiyongli,wsun@ysu.edu.cn, 15831232797@163.com

bState Key Laboratory of Media Convergence and Communication
Communication University of China

No. 1 Dingfuzhuang East Street, Chaoyang District, Beijing 100024, China
e-mail: jialiu@cuc.edu.cn

cSchool of Economics and Management
Communication University of China

No. 1 Dingfuzhuang East Street, Chaoyang District, Beijing 100024, China

It is a hot topic to investigate resource allocation in fog computing. However, currently resource allocation in fog computing
mostly supports only fixed resources, that is, the resource requirements of users are satisfied with a fixed amount of resources
during the usage time, which may result in low utility of resource providers and even cause a waste of resources. Therefore,
we establish an integer programming model for the time-varying multidimensional resource allocation problem in fog
computing to maximize the utility of the fog resource pool. We also design a heuristic algorithm to approximate the solution
of the model. We apply a dominant-resource-based strategy for resource allocation to improve resource utilization as well
as critical value theory for resource pricing to enhance the utility of the fog resource pool. We also prove that the algorithm
satisfies truthful and individual rationality. Finally, we give some numerical examples to demonstrate the performance of
the algorithm. Compared with existing studies, our approach can improve resource utilization and maximize the utility of
the fog resource pool.

Keywords: fog computing, combinatorial auction, time-varying multidimensional resource allocation, resource pricing.

1. Introduction
With the rapid development of IoT applications, the
traditional cloud computing faces some challenges
including latency, network bandwidth (Song et al., 2021b;
2021a), and security problems (Ghobaei-Arani et al.,
2020). To overcome these challenges, a new distributed
computing technology called fog computing has been
proposed by Cisco, which extends the core of the cloud
data center to the edge of the network (Sharghivand
et al., 2021). The basic architecture of fog computing
has three layers, which include cloud servers, edge

*Corresponding author

servers and mobile devices. Edge servers act as the
middle layer between cloud servers and mobile devices to
meet the computational requirement of latency-sensitive
applications (Ghobaei-Arani et al., 2020; Chang et al.,
2019). The advantage is that edge servers are placed
closer to mobile devices to achieve better computing
power and less transmission delay, which is a win-win
situation for both fog resource providers and end users.
Furthermore, fog computing is a service platform that can
integrate CPU, memory, storage and other resources into
fog nodes to form a fog resource pool to provide services
for end users.

At present, resource allocation in fog computing has

© 2023 S. Li et al.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

mailto:{shiyongli,wsun}@ysu.edu.cn
mailto:15831232797@163.com
mailto:jialiu@cuc.edu.cn

328 S. Li et al.

been attracting much attention. Resource allocation
approaches are categorized into two methods:
auction-based and optimization (Ghobaei-Arani et
al., 2020, Li et al., 2019; 2023; Li and Sun 2021). Many
resource allocation problems can be transformed into
a knapsack problem (Leao et al., 2014; Angelelli and
Filippi, 2011). For this reason, resource providers have
introduced auction mechanisms in fog computing to
obtain more profit, allowing idle resources to be sold at
dynamic prices (Zhang et al., 2020).

In the vehicle fog computing (VFC) field, Lee
et al. (2020) proposed a VCG auction mechanism for
actual service allocation. However, they did not consider
the costs of users. Subsequently, for VFC parking
assistance, Zhu et al. (2020) set forth a VFC parking
assistance allocation strategy (RAFC) based on the
reverse auction. This approach can reduce users’ costs,
but it only considers price attributes. Peng et al. (2020)
proposed a double auction mechanism based on multiple
features, but they did not take latency requirements
into account. Then, Junior et al. (2021) established
a request-processing-response-actuation programming
model based on a distributed auction protocol to match
clients and servers and meet latency requirements.

In the hybrid fog-cloud environment, in response to
the low utilization of fog resources, Sun et al. (2020)
proposed a general IoT-fog-cloud computing architecture
based on a sealed-bid bilateral auction. Moreover,
Besharati et al. (2021) set forth a second-price sealed-bid
auction mechanism, which is significantly better than
other methods in terms of execution time and energy
consumption. Further, to reduce response time, Aggarwal
et al. (2021) proposed a fog-integrated cloud auctioning
model (FICAM). Then, Houshyar et al. (2021) applied
the Nash equilibrium and auction to improve resource
allocation, but they did not take energy consumption and
execution time into account. Finally, Guo et al. (2020)
presented an auction method to reduce electric energy
consumption and execution time of fog nodes and servers.

In the mobile communication field, Han et al.
(2019) proposed a combinatorial auction problem
and suggested a joint processing strategy from a
market perspective. Later, Tasiopoulos et al. (2018)
constructed an auction-based resource allocation and
supply mechanism. Still, the efficiency and network
utilization were low. Therefore, Kayal and Liebeherr
(2019) proposed a game-theoretic approximation method
inspired by an iterative combinatorial auction. Then,
Bandyopadhyay et al. (2020) set forth two types of
truthful resource allocation and pricing mechanisms.
Later, Bermbach et al. (2020) proposed an auction-based
approach in which application developers bid for
resources. In addition, Baranwal and Kumar (2020)
recommended a decentralized auction to improve the
utilization of fog resources.

We can find from previous studies above that there
are some interesting research results on auction-based
resource allocation of fog computing. However, most of
them are dedicated to allocating fixed resources, which
may result in low utility of resource providers and
even cause a waste of resources (Ghobaei-Arani et al.,
2020). Also, few studies have considered the allocation
of time-varying multidimensional resources. On the
contrary, there are more studies in cloud computing.
For example, Zhang et al. (2019) established an integer
programming model based on limited task resource
requirements at different times. However, users with more
profit may fail to match the resource due to lower ranking.
Therefore, Zhang et al. (2020) further proposed a waiting
period strategy to improve social welfare and resource
utilization. At the same time, they proposed a pricing
algorithm according to the greedy mechanism offered by
Zaman and Grosu (2012). It has the characteristics of
high social welfare, high resource utilization and short
execution time compared with the online virtual machine
allocation and pricing mechanism (OVMAP) proposed by
Mashayekhy et al. (2016).

In summary, time-varying multidimensional
resource allocation in cloud computing has achieved
some interesting results in the past years, which is
equally essential in fog computing today. However,
existing allocation algorithms in fog computing cannot
be directly applied to time-varying multidimensional
resource allocation. Therefore, we propose an integer
programming model and a heuristic algorithm to calculate
resource allocation and resource pricing. We also
apply a dominant-resource-based strategy for resource
allocation to improve resource utilization and propose a
critical value theory for resource pricing to improve the
utility of the fog resource pool. Finally, we give some
numerical examples to demonstrate the performance
of the algorithm. Compared with existing research
results, our approach can improve resource utilization and
maximize the utility of the fog resource pool.

2. Time-varying multidimensional resource
allocation problem

2.1. Model description. As shown in Fig. 1, in the
network, a complete resource allocation system consists
of a cloud resource provider, a fog resource pool, a
third-party platform and end users. In this paper,
we mainly consider resource allocation among the fog
resource pool, the third-party platform and the end users.
The fog resource pool is a virtual integration of resources
of fog nodes, which can provide services to end users.
Specifically, it refers to a fog cluster composed of a
cluster head and multiple cluster members. Among them,
the cluster head is mainly responsible for collecting and
summarizing the data of other nodes in the cluster and

A combinatorial auction mechanism for time-varying multidimensional resource allocation . . . 329

Fig. 1. Basic architecture of resource allocation in fog comput-
ing.

transmitting the total resource data to the third-party
platform.

In this paper, we investigate the time-varying
multidimensional resource allocation problem (TMRAP)
in fog computing, mainly focusing on offline resource
allocation. When end users have the same arrival time
slots and execution times, the fog resource pool provides
service to end users through different types of resources.
The model maximizes the utility of the fog resource pool
within the scope of users’ bids based on satisfying the
resource requirements of end users, while ensuring that
the consumption rate of each resource is as consistent as
possible to improve the utilizations of resources and the
success matching rates of end users. The relationship
between the fog resource pool, the third-party platform,
and the end users is shown in Fig. 2.

As shown in Fig. 2, in the combinatorial auction
model, the end users act as buyers to submit their resource
requirements and bids, and the fog resource pool acts
as a seller to provide resource services. The third-party
platform acts as an auction agent responsible for receiving
information, coordinating allocation, and informing both
parties about the final results. The auction process
A indeed consists of two parts. One part means that
the fog resource pool submits resource capacity to the
third-party platform. The other part means that each user
offers its time-varying requirement matrix and bid to the
third-party platform. The process B indicates that the
third-party platform determines the winner of the auction.
It calculates resource allocation and pricing based on the
information submitted by the fog resource pool and the
end users, and it finally informs both buyers and sellers
of auction results. The process C indicates that, when the
auction is successful, the fog resource pool will pay the
agency fee to the third-party platform, and the end users

Fig. 2. Schematic diagram of the relationship between three
parties in a combinatorial auction.

also pay the agency fees to the third-party platform. At the
same time, each user needs to pay the transaction price to
the fog resource pool. The notation used in this paper is
summarized in Table 1.

2.2. Utility function.

2.2.1. Utility function of user m. In Eqn. (1), for each
user m, utility function Um consists of three parts. The
first part, Hm, is the maximum expense that user m is
willing to pay. The second part, V f

m, is the payment that
user m offers to fog resource pool f when the transaction
is successful, and the third part, V l

m, is the payment that
user m offers to third-party platform l:

Um = Hm − V f
m − V l

m. (1)

The second part is given by

V f
m = ampm, (2)

in which am indicates the requirement satisfaction of
user m, i.e., am = 1 indicates that the requirement is
satisfied and otherwise am = 0, and pm represents the
final transaction price.

2.2.2. Utility function of fog resource pool f . For fog
resource pool f , utility function Uf consists of two parts

Uf =
∑

m∈M

(V f
m − V l

f). (3)

330 S. Li et al.

Table 1. Notation list.
Notation Meaning

M set of users, M = {1, 2, . . . , I}, m ∈M
f fog resource pool f
l third-party platform l
R set of resources, R = {1, 2, . . . , N}, r ∈ R
T total time
Bm bid requirement of user m
xm time-varying resource requirement matrix of user m
xt
mr amount of resources r required by user m at time t
Hm maximum expense that user m is willing to pay
hm maximum bid that user m is willing to pay
pm transaction price of user m
cr capacity of resource r
ctr remaining amount of resource r at time t
c vector of the capacities of different resources
C matrix of the remaining amount of resources at each time
am matching indicator of user m
vm dominant resource proportion of user m
dm bid density of user m
Um utility generated by user m
Uf utility generated by fog resource pool f
Ul utility generated by third-party platform l
V f
m payment of user m to fog resource pool f

V l
m payment of user m to third-party platform l
V l
f payment of fog resource pool f to third-party platform l

Cl cost generated by third-party platform l

The first part,
∑

m∈M V f
m, is the resource revenue

of providing resources, and the second part, V l
f , is the

payment that fog resource pool f offers to third-party
platform l.

The first part,
∑

m∈M V f
m, is the sum of all

transaction prices. The second part is made specific as

V l
f

=

⎧
⎪⎨

⎪⎩

amV1, pm ≤ p1,

am

{
V2−V1

p2−p1
(pm − p1) + V1

}
, p1 < pm < p2,

amV2, pm ≥ p2.

(4)

Cost V l
f is a function of pm, (p1, V1) and (p2, V2) are the

coordinates of two points on curve V l
f , and p1, p2, V1, V2

represent constants and p1 < p2, V1 < V2.

2.2.3. Utility function of third-party platform l.
In (5), for third-party platform l, utility function Ul

consists of two parts. The first part,
∑

m∈M (V l
m + V l

f),
is the agency fee paid by users and fog resource pool f to
third-party platform l when the transaction is successful,
and the second part, Cl, is the cost of the allocation service

provided by third-party platform l:

Ul =
∑

m∈M

(V l
m + V l

f)− Cl. (5)

2.3. Model formulation. In this section, we
introduce the objective function of the time-varying
multidimensional resource allocation model based on a
combinatorial auction in fog computing. Additionally, we
assume that the set of users is M = {1, 2, . . . , I}, and
each element is user m ∈ M . The set of resources is
R = {1, 2, . . . , N}, and each element is resource r ∈ R.
Additionally, we assume that fog resource pool f provides
N types of resources, such as a CPU, memory and storage.
The capacities of resources are represented by vector

c =

⎡

⎢⎢⎢⎣

c1
c2
...
cN

⎤

⎥⎥⎥⎦ .

Then we can get the multidimensional resource capacity
matrix as follows:

C =

⎡

⎢⎢⎢⎣

c11 c21 . . . cT1
c12 c22 . . . cT2
...

...
. . .

...
c1N c2N . . . cTN

⎤

⎥⎥⎥⎦ . (6)

A combinatorial auction mechanism for time-varying multidimensional resource allocation . . . 331

We assume that the arrival time slots and execution
times of users are the same, that is, each user m ∈
M submits the resource requirement and bid Bm =
(xm, hm) at time slot t = 1 and the execution interval
is [1, T], where hm represents the maximum bid that user
m is willing to pay, and time-varying requirement matrix
xm is

xm =

⎡

⎢⎢⎢⎣

x1
m1 x2

m1 . . . xT
m1

x1
m2 x2

m2 . . . xT
m2

...
...

. . .
...

x1
mN x2

mN . . . xT
mN

⎤

⎥⎥⎥⎦ . (7)

For each user m, we introduce variable am to
indicate the requirement satisfaction of user m, that is,
am = 1 indicates that the requirement is satisfied and
otherwise am = 0.

We denote by Uf the utility function generated by
fog resource pool f , which is described in Eqn. (3).
Therefore, the time-varying multidimensional resource
allocation problem (TMRAP) in fog computing can be
modeled as an integer programming problem as follows:

M : max Uf (8)

subject to
∑

m∈M

amxt
mr ≤ ctr, (8a)

∑

m∈M

am ≤M, (8b)

over

am ∈ {0, 1}, 0 ≤ pm ≤ hm, (8c)
∀m ∈M, ∀r ∈ R, ∀t ∈ [1, T]. (8d)

The objective (8) indicates that the goal of the
time-varying multidimensional resource allocation
problem is to maximize the utility of fog resource pool f .
The inequality (8a) indicates that the resource allocation
at any time t should not exceed the capacity of any
resource. The inequality (8b) indicates that the user
is allocated resources at most once during [1, T]. The
constraint (8c) indicates that the value of am is 0 or 1.
The actual transaction price pm is not higher than bid hm.

2.4. Model analysis. Substituting (2) into (3), we can
obtain utility function Uf of fog resource pool f ,

Uf =
∑

m∈M

(V f
m − V l

f) =
∑

m∈M

(ampm − V l
f). (9)

Then, substituting (4) into (9), we can analyze utility
function Uf of fog resource pool f as follows:

(i) If pm ≤ p1,

Uf =
∑

m∈M

(V f
m − V l

f) =
∑

m∈M

(ampm − amV1)

=
∑

m∈M

am(pm − V1),

(ii) If pm ≥ p2,

Uf =
∑

m∈M

(V f
m − V l

f) =
∑

m∈M

(ampm − amV2)

=
∑

m∈M

am(pm − V2).

(ii) If p1 < pm < p2,

Uf =
∑

m∈M

(V f
m − V l

f)

=
∑

m∈M

am

{
pm −

{V2 − V1

p2 − p1
(pm − p1) + V1

}}
.

Finally, we can obtain utility function Uf of fog
resource pool f as

V l
f =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m∈M

am(pm − V1),

pm ≤ p1,∑
m∈M

am{pm −
{

V2−V1

p2−p1
(pm − p1) + V1}

}
,

p1 < pm < p2,∑
m∈M

am(pm − V2),

pm ≥ p2.

(10)

In summary, the TMRAP is a 0-1 integer
programming problem, which belongs to non-convex
optimization problems. The goal is to maximize the utility
of the fog resource pool. According to (10), we know that
the goal of the TMRAP mainly depends on transaction
price pm. Accordingly, the TMRAP is to achieve resource
allocation with an objective function of transaction price
pm. However, the 0-1 integer programming problem
has been proven to be NP-hard. Most of the traditional
algorithms for solving this kind of problem take too
much computing time, and they even exhibit difficulty
in obtaining an optimal result when there are a large
number of users. Therefore, the traditional algorithms
have limited practical application.

Furthermore, objective function Uf of the model is
quadratic, and there are linear constraints and integer
variable constraints, so the model is a mixed integer
quadratic programming problem (MIQP), which belongs
to nonlinear programming problems. Since objective
function Uf of the model is nonlinear and the feasible
region is not a polygonal region, it is difficult to obtain an

332 S. Li et al.

optimal solution. In addition, traditional algorithms also
hardly guarantee obtaining the optimal solution over the
entire feasible region, that is, the global optimal solution.
They can only obtain an optimal solution in a certain part
of the feasible region, that is, the local optimal solution.
It is also difficult to obtain a global optimal solution by
using traditional tools such as LINGO to solve the above
nonlinear programming problem.

Therefore, in order to better obtain a global optimum,
inspired by the greedy algorithm idea, we propose a
heuristic algorithm by using a combinatorial auction
to solve the time-varying multidimensional resource
allocation problem in the following section.

3. Resource allocation algorithm for the
time-varying multidimensional resource
allocation problem

3.1. Algorithm description. To solve the problem
of time-varying multidimensional resource allocation,
we will introduce a combinatorial auction algorithm
(CAA-TMRAP) which includes three stages. The first
stage is collecting bids. The third-party platform collects
bids submitted by end users and resource capacity offered
by the fog resource pool. The second stage is determining
the resource allocation strategy and winners. The
dominant-resource-based strategy is used as the basis for
the resource allocation algorithm. We define the dominant
resource proportion of the user as follows:

vm = max
r

max
t

xt
mr

cr
,

∀m ∈M, ∀r ∈ R, ∀t ∈ [1, T], (11)

where xt
mr is the amount of resource r required by

user m at time t, maxt x
t
mr represents the maximum

amount of resource r required by user m during different
time slots, (maxt x

t
mr)/cr is the ratio of the maximum

amount of resource r to resource capacity cr, and
maxr (maxt x

t
mr)/cr is the maximum of the ratio.

Then, we define bid density dm according to vm as

dm =
hm

vm
, ∀m ∈M. (12)

The third stage of the algorithm is resource pricing,
which uses a pricing method according to which bid is the
transaction price.

Above all, in this algorithm, the resources are
allocated in descending order according to bid density dm,
and the transaction price is set according to bid hm to
maximize the utility of the fog resource pool.

The general process of the algorithm is summarized
as follows. The algorithm is invoked at t = 1, assuming
that the arrive time slots and execution times of users are

the same. Time-varying requirement matrix xm records
the resource requirement of user m in each period [1, T].
The users are arranged in descending order according to
bid density dm. If the resource requirement is satisfied, the
transaction price is set. The remaining resource capacity
matrix C will be updated after it is successfully allocated
to a user.

3.2. Algorithm analysis. The cores of the algorithm
are the second stage and the third stage, i.e., resource
allocation and pricing. The utility of the fog resource
pool is improved by determining the allocation order and
transaction prices of users that the fog resource pool needs
to supply.

In the second stage of the algorithm, we use a
dominant-resource-based strategy as the basis for user
ranking of resource allocation. This strategy is derived
from dominant resource fairness (DRF), which calculates
the ratio of the maximum demand of each resource
required by users to the total amount of resources in
the system. The idea of this strategy is to satisfy the
requirements of users with a smaller share of dominant
resources as much as possible and to ensure the fairness
of resource allocation in the case of multiple resources
coexisting. At the same time, the strategy can make
the consumption rate of each resource as consistent
as possible, and increase social welfare and conserve
space to support the requirement allocation of other
users. Under the dominant-resource-based strategy, the
algorithm will be more inclined to the user with a higher
bid and a smaller dominant resource proportion.

In the third stage of the algorithm, we use a pricing
method according to which the bid is the transaction price.
The pricing method can ensure that the maximum utility
of the fog resource pool is achieved under the condition
that transaction price pm is not higher than highest price
hm that the user is willing to pay.

In addition, to illustrate the effectiveness of the
CAA-TMRAP algorithm, we compare it with the
CA-GREEDY algorithm (Zaman and Grosu, 2012), but
CA-GREEDY does not support time-varying resource
requirements of users in resource allocation. Therefore,
in order to compare CA-GREEDY with our algorithm, we
modify the bid density to order users in the CA-GREEDY
algorithm.

3.3. Algorithm basic steps. The implementation steps
of the algorithm are described as follows:

At time t = 1, 2, . . . , T :

Step 1: Initialize variables and parameters. Input
requirement: Bm = (xm, hm), time-varying
requirement matrix xm, bid hm and the initial
resource capacity matrix C. Initialize the set a

A combinatorial auction mechanism for time-varying multidimensional resource allocation . . . 333

mm

mt

Fig. 3. Flowchart of the CAA-TMRAP algorithm.

of matching indicators of users and the set P of
transaction prices.

Step 2: Calculate the dominant resource proportions and
bid densities of users. Compute the dominant
resource proportions vm obtained by the third-party
platform according to (11), and compute the bid
densities dm of users according to (12).

Step 3: Determine whether the remaining resources can
satisfy the user requirement in period t. If fulfilled,
the user will be allocated; otherwise, consider the
next user.

Step 4: Calculate the prices paid by users to the fog
resource pool. The third-party platform performs
resource pricing that the bid is transaction price pm.

Step 5: Update the set a of matching indicators of users
and the set P of transaction prices. When the user is
successfully allocated, set a of matching indicators
of users and set P of transaction prices are updated.

Step 6: Update the remaining amount of resources of the
fog resource pool. After a successful transaction, the
remaining amount of resources C is updated.

Step 7: Check the stop criterion. The algorithm stops
when the users are entirely traversed or the resources
are completely allocated. Set a of matching
indicators of users and set P of transaction prices are
obtained.

The flowchart of the CAA-TMRAP algorithm is
shown in Fig. 3, and its pseudocode is detailed in
Algorithm 1.

Algorithm 1. CAA-TMRAP.
Require: Bm = (xm, hm),C;

1: {The first stage: collecting information}
2: for all m ∈M do
3: collect the requirements Bm = (xm, hm) from

users
4: end for
5: for f do
6: collect the resource capacity matrix C from fog

resource pool f
7: end for
8: {The second stage: determining resource allocation

strategy and winners}
9: a← φ, P ← φ;

10: for all m ∈M, r ∈ R, t ∈ [1, T] do

11: vm = max
r

max
t

xt
mr

cr
; {the dominant resource

proportion}
12: dm ← hm

vm
; {the bid density}

13: end for
14: for all m ∈M reordering, so that d1 ≥ d2 ≥ . . . ≥
15: end for
16: for all m ∈M, r ∈ R, t ∈ [1, T] do
17: if xt

mr ≤ ctr then
18: am ← 1;
19: a← a ∪ {am};
20: ctr ← ctr − xt

mr;
21: end if
22: end for
23: {The third stage: resource pricing}
24: for all m ∈M do
25: if am = 1 then
26: pm ← hm;
27: else
28: pm ← 0;
29: end if
30: P ← P ∪ {pm};
31: end for
32: return (a, P);

3.4. Algorithm properties. For mechanism design,
truthful and individual rationality are two important
features to be satisfied. In this section, we first introduce
the preliminaries of mechanism design and then propose
an offline optimal auction mechanism. The following
definitions need to be met in mechanism design.

Definition 1. (Individual rationality) For a mechanism
to ensure individual rationality, it should satisfy the
condition that, when the user submits a requirement and
bid, his utility value will be nonnegative, that is, Um ≥ 0.
In other words, as long as the user participates in the
auction and reports his requirement and bid truthfully, he
will never incur losses.

334 S. Li et al.

Definition 2. (Critical value) Critical value theory means
that all sellers are reluctant to provide services at a price
lower than the user’s bids, and all buyers are unwilling to
purchase resources at a cost higher than the price. Thus,
the price is the critical value.

Definition 3. (Truthfulness) If the allocation function
of a mechanism satisfies monotonicity and the payment
function satisfies critical value theory, then the mechanism
is truthful.

Theorem 1. The CAA-TMRAP algorithm satisfies indi-
vidual rationality.

Proof. From (1) and (2) it follows that the utility of user m
is Um = Hm − ampm − V l

m, pm is the optimal solution,
Hm ≥ ampm + V l

m, thus Um ≥ 0. According to the
CAA-TMRAP algorithm, for the winning users, the bids
of the users are greater than or equal to the payment price,
and the utility is nonnegative. By contrast, for the losing
users, the utility is always 0, so the mechanism satisfies
individual rationality. �

Theorem 2. The CAA-TMRAP algorithm is based on crit-
ical value theory.

Proof. In the third stage of the algorithm, when fog
resource pool f allocates resources to user m, it is
unwilling to provide services at a price lower than bid hm,
reducing the resource revenue and its utility. User m is
reluctant to purchase resources at a cost higher than bid
hm. Therefore, the transaction price satisfies pm = hm.
In summary, for fog resource pool f and user m, the
CAA-TMRAP algorithm satisfies critical value theory.

�

Theorem 3. The CAA-TMRAP algorithm is correct.

Proof. First, it is shown that the CAA-TMRAP algorithm
is monotonic. User m can increase the probability
of successful applications by increasing bid density.
According to (12), under the premise that vm remains
unchanged, if h1 ≤ h2, d1 ≤ d2. Also, under
the premise that hm remains unchanged, if v1 ≤ v2,
d1 ≥ d2. Therefore, if users want to rank higher
when the CAA-TMRAP algorithm makes allocation, they
can increase their bids or reduce the requirements for
dominant resources. Thus, the CAA-TMRAP allocation
algorithm is monotonic. Secondly, according to the
pricing method of the CAA-TMRAP algorithm, we can
know that the bid is the critical value, that is, pm = hm.
Therefore, according to Definition 3, the CAA-TMRAP
algorithm is truthful. �

Theorem 4. The time complexity of the CAA-TMRAP al-
gorithm is polynomial.

Proof. The CAA-TMRAP algorithm includes three
stages: collecting bids, determining resource allocation
strategy and winners, and resource pricing. The time
complexity of the CAA-TMRAP algorithm is o(2MRT).
It will be invoked one time at t = 1 during the entire
period [1, T]. As a result, the time complexity of the
CAA-TMRAP algorithm is polynomial. �

Fig. 4. CPU resource allocation.

Fig. 5. Memory resource allocation.

Fig. 6. Storage resource allocation.

A combinatorial auction mechanism for time-varying multidimensional resource allocation . . . 335

4. Simulation and numerical examples
4.1. Experimental setup. We use the MATLAB
simulation platform to verify the feasibility of the
CAA-TMRAP algorithm, and give a numerical example
to illustrate time-varying multidimensional resource
allocation, which comes from the data set provided by the
Alibaba Global Scheduling Algorithm Contest (Alibaba,
2019). Each requirement includes time-varying CPU,
memory and storage demands for different time slots.
The system consists of three types of resources whose
capacities are represented by a vector of

c =

⎡

⎣
32
64

1440

⎤

⎦

and 20 users whose requirements are Bm = (xm, hm).
We assume that users’ arrival time slots and execution
times are the same (all arrive at t = 1) and the execution
time is T = 4, which is divided into four periods,
namely t = 1, 2, 3, 4. Calculate the dominant resource
proportions vm and bid densities dm to obtain the user
requirements as shown in Table 2.

According to bid density dm, the users are sorted
in descending order for resource allocation. Thus, the
solution to the TMRAP is shown in Figs. 4, 5, and 6,
respectively.

Figures 4, 5, and 6 show one of the best solutions,
which is an offline auction-based allocation that needs
to know all users’ requirements in advance. The users
arrive at t = 1 and all are candidates. We sort them in
descending order according to bid density, and finally we
get the allocation result. From the vertical direction, we
can see the allocation result of users at different times;
from the horizontal direction, we can see the resource
allocation result of different users at the same time.
Specifically, in descending order of bid density dm, the
order of allocation should consists of users 18, 17, 20, 3,
7, 9, 8, 15, 13, 10, 2, 5, 11, 14, 6, 16, 19, 12, 4 and 1,
but the final order of allocation consists of users 18, 17,
20, 3, 7, 9, 8, 15, 13, 10 and 16. Because the remaining
resources do not satisfy the requirements of users 2, 5, 11,
14, 6, 19, 12, 4 and 1, and the objective of this paper is to
maximize the utility of the fog resource pool, users 2, 5,
11, 14, 6, 19, 12, 4 and 1 fail to obtain the resources and
user 16 succeeds. Then, the transaction price of each user
in the CAA-TMRAP algorithm is shown in Table 3.

Furthermore, it is necessary to calculate the agency
fee to obtain the utility of the fog resource pool.
According to the Auction Law of the People’s Republic of
China, different proportions of commissions are charged
for auctioning arbitrary items and public properties. If
the client and the auctioneer have previously agreed, they
will be charged according to the agreement. Otherwise,
the auctioneer may charge the client a commission that

does not exceed 5% of the transaction price. According
to the law, we assume that the third-party platform
charges an agency fee of 5% of the transaction price in
each transaction. Therefore, the agency fee V l

f can be
specifically shown as follows:

V l
f =

⎧
⎪⎨

⎪⎩

am, pm ≤ 20,

0.05pmam, 20 < pm < 30,

1.5am, pm ≥ 30.

(13)

Then, by calculating the agency fee for each
transaction, Table 4 gives the utility of the fog resource
pool in the CAA-TMRAP algorithm.

Furthermore, to prove the effectiveness of the
CAA-TMRAP algorithm, we compare it with the
CA-GREEDY algorithm. In addition to the pricing
method based on the bid of the CAA-TMRAP algorithm,
there is another pricing method of critical value in
the CA-GREEDY algorithm. Many researchers use
the highest bid density of failed users to calculate the
transaction price (Zhang et al., 2020; Zaman and Grosu,
2012; Li et al., 2019; Mashayekhy et al., 2016), and
it is regarded as the critical value in the CA-GREEDY
algorithm.

First, the pricing method of critical value in the
CA-GREEDY algorithm is to find the highest bid density
of failed users m′. Then, the transaction price of each
winner m is calculated as the product of its dominant
resource proportion vm and bid density dm′ , and all failed
users do not need to pay. In the numerical example,
this method determines that the failed user m′ is user 2.
Table 5 shows the transaction price of each user in the
CA-GREEDY algorithm.

From Tables 3 and 5, we can observe that, under the
premise of ranking in descending order according to bid
density dm, the resource revenue of the fog resource pool
in the CAA-TMRAP algorithm is 249, but the resource
revenue in the CA-GREEDY is 167.020. Therefore, we
can state that the pricing method based on the bid of the
CAA-TMRAP algorithm can better satisfy the maximum
income of the fog resource pool. After calculating the
agency fees, we can obtain the utility of the fog resource
pool in the CA-GREEDY algorithm, as shown in Table 6.

From Tables 4 and 6, we can observe that, under
the premise of ranking in descending order according to
bid density dm, the utility of the fog resource pool in
the CAA-TMRAP algorithm is 235.600, and the utility
of the resource pool in the CA-GREEDY algorithm is
156.020. Therefore, we can state that the pricing method
based on the bid in the CAA-TMRAP algorithm can better
satisfy the maximum utility of the fog resource pool,
which proves the effectiveness of choosing the bid as the
transaction price.

Moreover, the CA-GREEDY algorithm cannot
satisfy the requirement that the transaction price pm

336 S. Li et al.

Table 2. User requirements.
m CPU Memory Storage hm vm dm
1 (11.988,6.278,2.800,0.500) (16.000,4.314,16.000, 12.763) (200,200,200, 200) 6 0.375 16.000
2 (5.842,6.000,0.500,3.399) (8.000,1.000,8.000,5.675) (40,40,40,40) 25 0.188 132.979
3 (0.855,1.505,0.522,0.500) (8.000,6.600,8.000, 5.667) (100, 100, 100, 100) 28 0.125 224.000
4 (0.653,0.500,0.700,0.500) (32.000,13.400,1.000,32.000) (80,80,80,80) 9 0.500 18.000
5 (0.500,0.552,0.629,0.500) (8.000,8.000,8.000,8.000) (60,60,60,60) 14 0.125 112.000
6 (0.500,0.500,0.500,0.500) (8.000,7.837, 7.935,8.000) (60,60,60,60) 8 0.125 64.000
7 (0.500,0.500,0.500,0.500) (5.495,2.560,7.590,2.668) (60,60,60,60) 26 0.119 218.487
8 (0.500,0.649,0.562,0.500) (8.000,1.000,8.000,5.667) (60,60,60,60) 23 0.125 184.000
9 (0.500,0.500,0.500,0.500) (1.000,7.510,1.000,6.921) (60,60,60,60) 24 0.117 205.128

10 (0.640,1.191,0.555,0.529) (1.000,6.600,8.000,3.333) (60,60,60,60) 17 0.125 136.000
11 (1.283,0.500,1.247,0.500) (8.000,7.718,7.888,8.000) (60,60,60,60) 13 0.125 104.000
12 (0.886,0.509,1.766,0.500) (16.000,16.000,16.000,16.000) (60,60,60,60) 5 0.250 20.000
13 (0.500,0.500,0.500,0.500) (8.000,2.400,1.000,7.723) (60,60,60,60) 20 0.125 160.000
14 (2.333,0.500,4.878,0.500) (8.000,1.000,5.200,8.000) (60,60,60,60) 12 0.152 78.947
15 (0.500,0.525,0.500,0.500) (8.000,8.000,7.952,8.000) (60,60,60,60) 21 0.125 168.000
16 (0.500,0.500,0.624,0.500) (6.023,5.631,6.280,5.800) (60,60,60,60) 4 0.098 40.816
17 (0.500,0.506,0.504,0.500) (8.000,8.000,8.000,8.000) (60,60,60,60) 30 0.125 240.000
18 (0.500,0.503,0.502,0.500) (2.490,3.008,2.020,2.275) (60,60,60,60) 27 0.047 574.468
19 (0.500,0.519,0.515,0.500) (8.000,8.000,6.826,7.059) (60,60,60,60) 3 0.125 24.000
20 (0.500,0.500,0.500,0.500) (7.990,8.000,5.702,7.910) (60,60,60,60) 29 0.125 232.000

Fig. 7. Transaction price under different users.

should not be higher than the highest price hm that the
user is willing to pay. For instance, the highest bid density
of failed users is that of user 2. But it will result in a
problem in which the transaction price of user 16 will be
higher than the bid. During the process of allocation, there
will be a situation where the bid density is higher than
others, but the resource requirement is not satisfied. For
example, users 2, 5, 11, 14 and 6 fall into the situation
mentioned above. Therefore, if the transaction price is
calculated according to the critical value, it cannot be
guaranteed that the value of pm of each successful user
is not higher than hm. Thus, the method of pricing with
critical value in CA-GREEDY is not advisable.

Fig. 8. Utility of fog resource pool under different users.

4.2. Analysis of results. From Tables 3 and 5, we can
compare the transaction price under different users of the
CAA-TMRAP and CA-GREEDY algorithms in Fig. 7.

We can find that, under the premise of ranking
in descending order according to bid density dm,
the resource revenue of the fog resource pool in
the CAA-TMRAP algorithm is larger than in the
CA-GREEDY algorithm. Furthermore, from Tables 4 and
6, we also compare the utility of the fog resource pool of
CAA-TMRAP and CA-GREEDY algorithms in Fig. 8.

We can find that, under the premise of ranking in
descending order according to bid density dm, the method
according to which the bid is the transaction price in the
CAA-TMRAP algorithm has larger excellent utility to the

A combinatorial auction mechanism for time-varying multidimensional resource allocation . . . 337

Table 3. Transaction price of each user in the CAA-TMRAP al-
gorithm.
m hm vm dm am pm
1 6 0.375 16.000 0 0
2 25 0.188 132.979 0 0
3 28 0.125 224.000 1 28
4 9 0.500 18.000 0 0
5 14 0.125 112.000 0 0
6 8 0.125 64.000 0 0
7 26 0.119 218.487 1 26
8 23 0.125 184.000 1 23
9 24 0.117 205.128 1 24

10 17 0.125 136.000 1 17
11 13 0.125 104.000 0 0
12 5 0.250 20.000 0 0
13 20 0.125 160.000 1 20
14 12 0.152 78.947 0 0
15 21 0.125 168.000 1 21
16 4 0.098 40.816 1 4
17 30 0.125 240.000 1 30
18 27 0.047 574.468 1 27
19 3 0.125 24.000 0 0
20 29 0.125 232.000 1 29∑

m∈M

ampm – – – – 249

fog resource pool. Therefore, we can further prove the
effectiveness of choosing the bid as the transaction price.
In summary, the CAA-TMRAP algorithm of resource
allocation and pricing is effective.

5. Conclusion
In this paper, we investigated the time-varying
multidimensional resource allocation problem in fog
computing. To achieve the goal of resource allocation
in maximizing the satisfaction of the fog resource pool,
we established an integer programming model with
the objective of maximizing network utility of the fog
resource pool. Furthermore, we designed a heuristic
algorithm to find an approximate solution. Finally,
we gave some numerical examples to demonstrate the
performance of the algorithm. Theoretical analysis and
experimental results show that the algorithm can improve
resource utilization and maximize the utility of the fog
resource pool while ensuring truthful and individual
rationality. In this paper, we just considered an offline
auction-based time-varying multidimensional resource
allocation problem in fog computing. In the future,
we will consider an on-line auction-based time-varying
multidimensional resource allocation problem in fog
computing and formulate an actual on-line auction
mechanism for resource allocation in a competitive
environment.

Table 4. Utility of the fog resource pool in the CAA-TMRAP
algorithm.

m pm V l
f ampm − V l

f

1 0 0 0
2 0 0 0
3 28 1.400 26.600
4 0 0 0
5 0 0 0
6 0 0 0
7 26 1.300 24.700
8 23 1.150 21.850
9 24 1.200 22.800

10 17 1 16
11 0 0 0
12 0 0 0
13 20 1 19
14 0 0 0
15 21 1.050 19.950
16 4 1 3
17 30 1.500 28.500
18 27 1.350 25.650
19 0 0 0
20 29 1.450 27.550

Uf =
∑

m∈M

(ampm − V l
f) – – 235.600

Acknowledgment
The authors would like to thank the anonymous reviewers
for very detailed and helpful comments and suggestions
to improve this article. This work was supported by
the National Natural Science Foundation of China (no.
71971188), the Humanity and Social Science Foundation
of the Ministry of Education of China (no. 22YJCZH086),
the Natural Science Foundation of Hebei Province (nos.
G2022203003, G2020203005, G2020203012), the S&T
Program of Hebei (no. 22550301D), and a project funded
by the Hebei Education Department (no. ZD2022142).

References
Aggarwal, A., Kumar, N., Vidyarthi, D. and Buyya, R. (2021).

Fog-integrated cloud architecture enabled multi-attribute
combinatorial reverse auctioning framework, Simulation
Modelling Practice and Theory 109: 102307.

Alibaba (2019). Alibaba cloud, https://tianchi.aliyu
n.com/.

Angelelli, E. and Filippi, C. (2011). On the complexity of
interval scheduling with a resource constraint, Theoretical
Computer Science 412(29): 3650–3657.

Bandyopadhyay, A., Roy, T., Sarkar, V. and Mallik, S.
(2020). Combinatorial auction-based fog service allocation
mechanism for IoT applications, 2020 10th International
Conference on Cloud Computing, Data Science and Engi-
neering (Confluence), Noida, India, pp. 518–524.

https://tianchi.aliyun.com/
https://tianchi.aliyun.com/

338 S. Li et al.

Table 5. Transaction price of each user in the CA-GREEDY
algorithm.

m hm vm dm am pm
1 6 0.375 16.000 0 0
2 25 0.188 132.979 0 0
3 28 0.125 224.000 1 16.622
4 9 0.500 18.000 0 0
5 14 0.125 112.000 0 0
6 8 0.125 64.000 0 0
7 26 0.119 218.487 1 15.825
8 23 0.125 184.000 1 16.622
9 24 0.117 205.128 1 15.559
10 17 0.125 136.000 1 16.622
11 13 0.125 104.000 0 0
12 5 0.25 20.000 0 0
13 20 0.125 160.000 1 16.622
14 12 0.152 78.947 0 0
15 21 0.125 168.000 1 16.622
16 4 0.098 40.816 1 13.032
17 30 0.125 240.000 1 16.622
18 27 0.047 574.468 1 6.250
19 3 0.125 24.000 0 0
20 29 0.125 232.000 1 16.622∑

m∈M

ampm – – – – 167.020

Baranwal, G. and Kumar, D. (2020). DAFNA: Decentralized
auction based fog node allocation in 5G era, 2020
IEEE 15th International Conference on Industrial and
Information Systems (ICIIS), Rupnagar, Punjab, India,
pp. 575–580.

Bermbach, D., Maghsudi, S., Hasenburg, J. and Pfandzelter,
T. (2020). Towards auction-based function placement in
serverless fog platforms, 2020 IEEE International Con-
ference on Fog Computing (ICFC), Sydney, Australia,
pp. 25–31.

Besharati, R., Rezvani, M. and Sadeghi, M. (2021). An
incentive-compatible offloading mechanism in fog-cloud
environments using second-price sealed-bid auction, Jour-
nal of Grid Computing 19(3): 37.

Chang, B.-J., Hwang, R.-H., Tsai, Y.-L., Yu, B.-H. and Liang,
Y.-H. (2019). Cooperative adaptive driving for platooning
autonomous self driving based on edge computing, Inter-
national Journal of Applied Mathematics and Computer
Science 29(2): 213–225, DOI: 10.2478/amcs-2019-0016.

Ghobaei-Arani, M., Souri, A. and Rahmanian, A. (2020).
Resource management approaches in fog computing:
A comprehensive review, Journal of Grid Computing
18(1): 1–42.

Guo, Y., Saito, T., Oma, R., Nakamura, S., Enokido, T.
and Takizawa, M. (2020). Distributed approach to fog
computing with auction method, Advanced Information
Networking and Applications 1151: 268–275.

Han, C., Zhang, P., Wang, W., Wang, W., Wang, Y. and
Zhang, Z. (2019). Delay-optimal joint processing in

Table 6. Utility of the fog resource pool in the CA-GREEDY
algorithm.

m pm V l
m pm − V l

m

1 0 0 0
2 0 0 0
3 16.622 1 15.622
4 0 0 0
5 0 0 0
6 0 0 0
7 15.825 1 14.825
8 16.622 1 15.622
9 15.559 1 14.559

10 16.622 1 15.622
11 0 0 0
12 0 0 0
13 16.622 1 15.622
14 0 0 0
15 16.622 1 15.622
16 13.032 1 12.032
17 16.622 1 15.622
18 6.250 1 5.250
19 0 0 0
20 16.622 1 15.622

Uf =
∑

m∈M

(ampm − V l
f) – – 156.020

computation-constrained fog radio access networks, IEEE
Access 7: 58857–58865.

Houshyar, M., Seyyed, J., Hamidreza, N. and Afshin, R. (2021).
A new resource allocation method in fog computing via
non-cooperative game theory, Journal of Intelligent &
Fuzzy Systems 41(2): 3921–3932.

Junior, F., Dias, K., d’Orey, P. and Kokkinogenis, Z. (2021).
Fogwise: On the limits of the coexistence of heterogeneous
applications on fog computing and Internet of vehicles,
Transactions on Emerging Telecommunications Technolo-
gies 32(1): e4145.

Kayal, P. and Liebeherr, J. (2019). Distributed service placement
in fog computing: An iterative combinatorial auction
approach, 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), Richardson,
USA, pp. 2145–2156.

Leao, A., Cherri, L. and Arenales, M. (2014). Determining the
k-best solutions of knapsack problems, Computers & Op-
erations Research 49: 71–82.

Lee, Y., Jeong, S., Masood, A., Park, L., Dao, N. and
Cho, S. (2020). Trustful resource management for
service allocation in fog-enabled intelligent transportation
systems, IEEE Access 8: 147313–147322.

Li, S., Liu, H., Li, W. and Sun, W. (2023). An
optimization framework for migrating and deploying
multiclass enterprise applications into the cloud, IEEE
Transactions on Services Computing 16(2): 941–956.

A combinatorial auction mechanism for time-varying multidimensional resource allocation . . . 339

Li, S. and Sun, W. (2021). Utility maximisation for resource
allocation of migrating enterprise applications into the
cloud, Enterprise Information Systems 15(2): 197–229.

Li, S., Zhang, Y., Wang, Y. and Sun, W. (2019). Utility
optimization-based bandwidth allocation for elastic and
inelastic services in peer-to-peer networks, International
Journal of Applied Mathematics and Computer Science
29(1): 111–123, DOI: 10.2478/amcs-2019-0009.

Mashayekhy, L., Nejad, M., Grosu, D. and Vasilakos, A.
(2016). An online mechanism for resource allocation
and pricing in clouds, IEEE Transactions on Computers
65(4): 1172–1184.

Peng, X., Ota, K. and Dong, M. (2020). Multiattribute-based
double auction toward resource allocation in vehicular
fog computing, IEEE Internet of Things Journal
7(4): 3094–3103.

Sharghivand, N., Derakhshan, F. and Siasi, N. (2021). A
comprehensive survey on auction mechanism design for
cloud/edge resource management and pricing, IEEE Ac-
cess 9: 126502–126529.

Song, F., Ai, Z., Zhang, H., You, I. and Li, S. (2021a).
Smart collaborative balancing for dependable network
components in cyber-physical systems, IEEE Transactions
on Industrial Informatics 17(10): 6916–6924.

Song, F., Li, L., You, I. and Zhang, H. (2021b).
Enabling heterogeneous deterministic networks with smart
collaborative theory, IEEE Network 35(3): 64–71.

Sun, H., Yu, H. and Fan, G. (2020). Contract-based resource
sharing for time effective task scheduling in fog-cloud
environment, IEEE Transactions on Network and Service
Management 17(2): 1040–1053.

Tasiopoulos, A., Onur, A., Ioannis, P. and George, P.
(2018). Edge-map: Auction markets for edge resource
provisioning, 2018 IEEE 19th International Symposium
“A World of Wireless, Mobile and Multimedia Networks
(WoWMoM)”, Chania, Greece, pp. 14–22.

Zaman, S. and Grosu, D. (2012). Combinatorial auction-based
allocation of virtual machine instances in clouds, Journal
of Parallel and Distributed Computing 73(4): 495–508.

Zhang, J., Li, J., Li, W. and Zhang, X. (2019). A fair distribution
strategy based on shared fair and time-varying resource
demand, Journal of Computer Research and Development
56(7): 1534–1544.

Zhang, J., Yang, X., Xie, N., Zhang, X., Vasilakos, A. and Li,
W. (2020). An online auction mechanism for time-varying
multidimensional resource allocation in clouds, Future
Generation Computer Systems 111: 27–38.

Zhu, L., Sun, L. and Yan, Y. (2020). Parking assistance scheme
based on reverse auction in vehicle fog computing, Com-
puter Engineering 46(7): 14–20.

Shiyong Li received his PhD degree from Bei-
jing Jiaotong University, China, in 2011. Cur-
rently he is a full professor in the School of Eco-
nomics and Management at Yanshan University.
He is the (co)author of more than 60 papers in
mathematics, engineering and management jour-
nals. His research interests include cloud migra-
tion for enterprise applications, resource alloca-
tion of cloud/edge computing, information sys-
tems and electronic commerce.

Yanan Zhang received her BSc degree from
Hebei Finance University, Baoding, in 2019 and
is currently working toward her MSc degree at
the School of Economics and Management, Yan-
shan University, Qinhuangdao, China. Her re-
search interests include resource allocation in
edge computing and fog computing.

Wei Sun received her PhD degree from Yan-
shan University, Qinhuangdao, China, in 2010.
Currently she is a full professor in the School of
Economics and Management at Yanshan Univer-
sity. She has published more than 50 papers in
leading international journals in the areas of op-
erations research and applied mathematics. Her
research interests include economics of queues,
and queueing systems with vacations.

Jia Liu received her PhD degree from the Bei-
jing Institute of Technology, China, in 2011. Cur-
rently she is an associate professor in the School
of Economics and Management at the Communi-
cation University of China. She is the (co)author
of more than 40 papers in engineering and man-
agement journals. Her research interests include
technology innovation management, data min-
ing, and technology evaluation.

Received: 23 December 2021
Revised: 9 April 2022
Re-revised: 14 August 2022
Accepted: 19 August 2022

	Introduction
	Time-varying multidimensional resource allocation problem
	Model description
	Utility function
	Utility function of user m
	Utility function of fog resource pool f
	Utility function of third-party platform l

	Model formulation
	Model analysis

	Resource allocation algorithm for the time-varying multidimensional resource allocation problem
	Algorithm description
	Algorithm analysis
	Algorithm basic steps
	Algorithm properties

	Simulation and numerical examples
	Experimental setup
	Analysis of results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

