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This article deals with modelling and a flatness-based robust trajectory tracking scheme for a two degrees of freedom
helicopter, which is subject to four types of tail rotor disturbances to validate the control scheme robustness. A mathematical
model of the system, its differential flatness and a differential parametrization are obtained. The flat filtering control
is designed for the system control with a partially known model, assuming the non-modelled dynamics and the external
disturbances (specially the tail rotor ones) to be rejected by means of an extended state model (ultra-local model). Numerical
and experimental assessments are carried out on a characterized prototype whose yaw angle (ψ), given by the z axis, is in
free form, while the pitch angle (θ), which results from rotation about the y axis, is mechanically restricted. The proposed
controller performance is tested through a set of experiments in trajectory tracking tasks with different disturbances in
the tail rotor, showing robust behaviour for the different disturbances. Besides, a comparison study against a widely used
controller of LQR type is carried out, in which the proposed controller achieves better results, as illustrated by a performance
index.

Keywords: flat filtering control, generalized proportional integral control, non-linear systems, tail rotor disturbance, two
degrees of freedom helicopter.

1. Introduction

The research in the field of rotary wing unmanned aerial
vehicles (UAVs) has attracted attention from the research
and industry communities due to a variety of traditional
and emerging applications, from the development of
the Internet of things and new generation wireless
communication systems, to surveillance schemes, to flight
control development devices and theoretical contributions
among others (Zeng et al., 2019; Zhan and Huang, 2020;
Ferdaus et al., 2020; Ordaz et al., 2023; Pizetta et al.,
2016; Ross et al., 2022).

*Corresponding author

Helicopters are among rotary wing UAVs (Leishman,
2007; Kantue and Pedro, 2022), whose main features are
the capacity of rotation on its own axis, levitation, take
off and landing performed vertically, and that they can
move in their three axes of translation while in the air, etc.
In addition, there are different configurations that range
from containing one rotor or more (Nonami et al., 2010);
some of them have even been modified to provide hybrid
configurations (Tavoosi, 2021).

Due to the non-linearities and the coupling in the
dynamics between the performances of both rotors, the
helicopter has been a subject of research to improve
its stability and to compensate disturbances of internal
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and external nature (Zhu and Huo, 2013; Wang et al.,
2020), which involve a constant effort to improve the
robustness and performance of these systems (Budiyono
and Wibowo, 2007; He et al., 2021; Raffo et al., 2015;
Rysdyk and Calise, 1999; Kasac et al., 2019). The
necessity of validating control schemes under defined
conditions has motivated the development of different
experimental test benches and prototypes, most of which
being focused on specific applications (Bortoff, 1999;
Garcia and Valavanis, 2008; Vitzilaios and Tsourveloudis,
2009).

One of the most popular platforms used to recreate
part of the dynamics is the two-degrees-of-freedom
helicopter (henceforth TDFH), which recreates a subset
of the helicopter’s dynamic behaviour on its pitch (θ) and
yaw (ψ) rotations (Ahmed et al., 2010). Its orientation
is actuated by the joint work of two rotors with their
respective propellers and both positioned at the ends of
a rigid shaft attached to a rotating base that allows it to
rotate about the y and z axes (Nilsen, 2017).

However, there is a reduced number of commercial
TDFH prototypes with an open architecture that take
account of the presence of aerodynamic effects that
usually arise (Lynn et al., 1970; Tanner and Geering,
2003) and/or that allow modifications to its structure to
assess various control algorithms (Lozano-Hernandez and
Gutierrez-Frias, 2016; Kutay et al., 2005; Liu, 2022).
Furthermore, in helicopters, the tail rotor (hereinafter TR)
is affected on a larger scale by disturbances, causing flight
stability problems (Nilsen, 2017; Velagic and Osmic,
2010). For this reason, prototypes that allow inducing
perturbations in the TR are required to validate stability
tests.

In addition to the above, in the work of Schäferlein
et al. (2018), rotor-fuselage interactions often face
problems in fast-forward flight caused by strong tail
interactions, the so-called “tail shake phenomenon”. On
the other hand, Lynn et al. (1970) carry out the study of
aerodynamic interferences in the TR that are generated
by the main rotor (hereinafter MR), while Sánchez-Meza
et al. (2020) simulate generalized proportional integral
(GPI) control of the TDFH in the presence of disturbances
in the TR. Additionally, Tang et al. (2019) show that
the force varies in a quadratic relationship between the
pitch of the propellers and the speed of rotation, thus
highlighting the importance of rejecting this type of
disturbance.

Regarding the implementation of control algorithms,
Kumar et al. (2016) present a comparison of particle
swarm optimization (PSO) methods against adaptive
particle swarm optimization (APSO), to set the Q and
R matrices necessary to implement the LQR controller,
whose control task is to follow a sinusoidal trajectory
in the pitch angle and to stabilize the yaw angle
before a step. In addition, Butt and Aschemann

(2015) design multi-variable integral sliding mode control
to track the desired trajectories for both pitch and
yaw angles. Discrete-time extended Kalman filters
(EKFs) are also used and combined with a non-linear
control law for the estimation of non-measurable states.
Moreover, in the work of Rojas-Cubides et al. (2019), a
sliding mode control scheme is proposed for the TDFH
using generalized proportional integral type observers to
estimate and cancel perturbations caused by non-modelled
dynamics and external perturbations.

A special case of active disturbance rejection which
is free of state observers (Ramı́rez-Neria et al., 2021),
but with an equivalent response to that of an extended
state observer-based control (Sira-Ramı́rez et al., 2019)
is the flat filtering control. This is based on the
principle of controlling an extended state model (here
termed as the ultra-local model (Fliess and Join, 2013;
Sira-Ramı́rez et al., 2017)), which lumps the uncertainties
and external disturbances into a generalized disturbance
input, which is to be rejected by generalized proportional
integral control actions (such as GPI control (Fliess
et al., 2002)). The control input synthesis includes an
implicit control structure (compensation network) which
leads to a filtering realization of the control that is
capable of rejecting a wide variety of disturbances for
differentially flat systems. Since this scheme avoids
using state observers, some aspects such as sensitivity
to measurement noise are improved in the closed loop
control while achieving the robustness aspects of the
extended state disturbance mitigation.

This article intends to design a control scheme
based on flat filtering that allows to compensate for
unmodeled dynamics and the attenuation of time-varying
disturbances, in particular the periodic ones, which can
be considered as part of the flight transition stage of
a hybrid aircraft. For this, a model of a two degrees
of freedom helicopter with a mechanism to generate
disturbances in the tail rotor is presented. This model
is used to analyse the performance of control schemes
subjected to disturbances in the tail rotor, which could be
considered as disturbances due to wind gusts, structural
failures, aerodynamic effects, and hybrid flight mode
transitions (Tavoosi, 2021), among others. Likewise, the
mathematical model that takes account of the disturbances
in the tail rotor and the non-linear characteristics was
developed. The flatness property of the system and the
synthesis of a flat filtering control scheme designed to
track, compensate and attenuate the induced disturbances
are also presented.

Besides, in this article, the stability test of the
proposed control system is given in terms of Lyapunov’s
second method as well as some Bode tests to illustrate
the disturbance attenuation, in contrast to the former
flat filtering contributions whose stability test is purely
based on linearly dominant dynamics, leading to a BIBO
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behavior. Likewise, the control scheme was tested
experimentally and the results prove the robustness of
the flat filtering scheme against a set of different tail
rotor perturbations, while achieving competitive tracking
results on rest-to-rest trajectory tracking tasks.

The organization of this work is as follows. In
Section 2, the dynamic model of the TDFH is developed,
taking into account the variations in the tail rotor; also,
the differential flatness property of the system is obtained.
Section 3 presents the problem formulation and the flat
filtering control design. Section 4 shows the experimental
test bed and the results of the control test set under
different disturbance inputs, as well as a comparison with
a popular control scheme for this class of systems. Finally,
some final considerations of the presented work are given.

2. Mathematical modelling
The TDFH recreates a behaviour subset of the
conventional helicopter’s actual dynamics on the
pitch and yaw rotations. These rotations represent the two
degrees of freedom of its centre of mass. In particular, the
proposed TDFH consists of a main rotor and a tail rotor
attached to a rotational axis for pitch (see Fig. 1(a)).

The TDFH model used in this work was inspired by
the prototypes presented by Ahmed et al. (2010) Lynn
et al. (1970) or Tanner and Geering (2003), but with some
modifications in the structure to integrate rotating rings in
the yaw rotation, a mechanism to generate perturbations in
the TR rotation and the incorporation of a mass to generate
a displacement of the centre of gravity. This model
is illustrated in Fig. 1(a), while the electromechanical
system dedicated to generating disturbances in the tail
rotor is shown in Fig. 1(b); it is important to indicate that
this mechanism does not increase the degrees of freedom,
but it only alters the incidence of action of the TR on
the system. The disturbances generated in the TR can
be considered as effects of transition stages of hybrid
systems, aerodynamic phenomena such as wind gusts or
the flutter effect, structural damages, among others. This
allows an analysis of the system behaviour, generating
different types of disturbances in a controlled way that can
resemble the required phenomena.

Analogously, the free body diagrams that indicate
the parameters and variables of interest of the TDFH
are shown in Fig. 2, where the angles of rotation about
the ‘yaw’ and ‘pitch’ axes are defined by ψ and θ,
respectively, the force of gravity is represented by Fg ,
while the thrust forces exerted by the rotors TR and MR
are denoted by Fy and Fp, respectively; the distance of the
centre of mass from the axis of rotation of the pitch and
about the X coordinate is denoted by Lcm; the distances
from the TR and MR to the pitch axis are given by ry and
rp, respectively. Also, the angle of incidence of the TR
thrust force is φ and its axis of rotation projects through

(a) TDFH scheme.

(b) coupling for the generation of disturbances in the TR.

Fig. 1. Proposed design.

the X axis. Finally, the inertial coordinate frame is given
by O0X0Y0Z0.

In this work, the calculation of the dynamic model
of the THDF was based on the methodology reported by
Kumar et al. (2016). The kinematics of the TDFH is
obtained starting from Fig. 2. Thus, the homogeneous
matrix H that represents the translation and rotation of
the TDFH with respect to the reference frame (centre of
gravity) is described by

H =

⎡
⎢⎢⎣

cψcθ sψ −cψsθ Lcmcψcθ
−sψcθ cψ sψsθ −Lcmsψcθ
sθ 0 cθ Lcmsθ
0 0 0 1

⎤
⎥⎥⎦ , (1)

where H is a function of the rotation variables ψ and θ,
and the following notation is adopted: for an argument α,
sα := sin(α), cα := cos(α) (this notation will be used
in the rest of the document). The position of the centre of
mass on the axes X , Y and Z is expressed by

X = Lcmcψcθ,

Y = −Lcmsψcθ, (2)
Z = Lcmsθ.

The dynamic model of the system is obtained from
the Euler–Lagrange approach (Siciliano et al., 2010):

τ =
d

dt

∂L
∂q̇

− ∂L
∂q

+Bq̇, (3)
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Fig. 2. Diagrams of the TDFH.

where L = T − U is the Lagrangian with T and U
denoting the kinetic and potential energies, respectively,
τ is the force associated to the generalized coordinates
q =

[
θ ψ

]ᵀ, and B is the viscous friction coefficient
matrix.

Subsequently, the kinetic and potential energies are
defined by

T = Trθ + Trψ + Tt,

U = mhLcmḡsθ, (4)

where the mobile mass of the TDFH is denoted bymh, the
gravity constant is ḡ; the kinetic energies of rotation on the
components ψ and θ are Trθ and Trψ respectively; on the
other hand, the kinetic energy of translation is represented
by Tt. The energies are calculated as

Trθ =
1

2
Jθ θ̇

2,

Trψ =
1

2
Jψψ̇

2, (5)

Tt =
1

2
mh

(
V 2
x + V 2

y + V 2
z

)
,

where Jθ is the moment of inertia about the coordinate
θ; analogously, Jψ is the moment of inertia about ψ. In
addition, the speeds on the axes X , Y and Z are obtained
from the time derivative of (2). In this way, the rotational

kinetic energy is expressed in the form

Tt =
1

2
mhL

2
cm

(
θ̇2 + (ψ̇cθ)

2
)
. (6)

Finally, the resulting kinetic energy is

T =
1

2
Jθ θ̇

2 +
1

2
Jψψ̇

2 +
1

2
mhL

2
cm

(
θ̇2 + (ψ̇cθ)

2
)
. (7)

The Lagrangian is calculated by

L =
1

2
Jθ θ̇

2 +
1

2
Jψψ̇

2 +
1

2
mhL

2
cm

(
θ̇2 + (ψ̇cθ)

2
)

−mhḡsθLcm. (8)

Additionally, the generalized forces τ =
[
τθ τψ

]ᵀ,
undergo modifications to the torques applied to the
TDFH with respect to Kumar et al. (2016), derived from
disturbances in the angle φ (see Fig. 1(b)) which directly
affect the TR push force. Thus, the pairs are defined by

[
τθ
τψ

]
=

[
kθθ kψψsφ + kθψcφ
kψθ kψψcφ + kθψsφ

] [
Uθ
Uψ

]
−
[
Bθθ̇

Bψψ̇

]
, (9)

where τθ and τψ are the torques applied to each
axis of rotation generated by the ratio of the control
actions defined as Uθ and Uψ (depending on the pulse
width modulation technique, PWM) and the thrust force
constants kij [Nm/% pwm], where i establishes the i-th
rotor impinging on the j-th axis due to the direct thrust
force of the rotor and by the propeller torque.

Substituting (8) and (9) in (3), the following dynamic
equations are obtained:

[
Jθ +mhL

2
cm 0

0 Jψ +mh(cθLcm)
2

] [
θ̈

ψ̈

]

+mhL
2
cmsθcθ

[
0 ψ̇

−ψ̇ −θ̇
] [

θ̇

ψ̇

]
+

[
Bθ 0
0 Bψ

] [
θ̇

ψ̇

]

+

[
mhḡLcmcθ

0

]
=

[
kθθ kψψsφ + kθψcφ
kψθ kψψcφ + kθψsφ

] [
Uθ
Uψ

]
.

(10)

Let us define u :=
[
Uθ Uψ

]ᵀ. Using the
generalized coordinates, (10) can be rewritten as

D(q)q̈ + C(q, q̇)q̇ +Bq̇ + g(q) = Ku, (11)

where D(q) is the inertia matrix, C(q, q̇) stands for the
Coriolis matrix, B is the viscous friction matrix, g(q)
denotes the gravity vector, K represents the control gain
matrix including the disturbance term φ, due to the tail
rotor disturbances, which is assumed piecewise constant,
and u is the control vector.
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2.1. Differential flatness of the system. Consider the
disturbance-free system (that is, φ = 0). Then the gain
matrix becomes

K =

[
kθθ kθψ
kψθ kψψ

]
. (12)

If dk := det(K) = kθθkψψ − kθψkψθ �= 0,
the system is differentially flat (Fliess et al., 1995),
where each variable of the system can be expressed in
terms of the flat outputs q1 := θ, q2 := ψ, their
finite time derivatives, and their algebraic combination as
represented in the following differential parametrization:

θ̇ = q̇1,

ψ̇ = q̇2,

Uθ =
1

dk

[
kψψ(Jθ +mhL

2
cm)q̈1

−kθψ(mh(cq1Lcm)2 + Jψ)q̈2

+mhL
2
cmsq1cq1(kψψ q̇

2
2 + kθψq̇1q̇2)

+kψψBθq̇1 − kθψ q̇2

+kψψmhḡLcmcq1 ] ,

Uψ =
1

dk

[−kψθ(Jθ +mhL
2
cm)q̈1

+kθθ(mh(cq1Lcm)
2 + Jψ)q̈2

+mhL
2
cmsq1cq1(−kψθ q̇22 − 2kθθq̇1q̇2)

−kψθBθq̇1 + kθθBψ q̇2

−kψθmhḡLcmcq1 ] . (13)

It is clear that the flat outputs coincide with the
generalized coordinates of the system q. Moreover,
it should be noted that the invertibility of the matrix
K depends on the system parameters and a set of
admissible values of φ (obtained from the calculation of
the determinant of K). In this case, the parameters are
given in Table 1, for which the range −1.808 rad < φ <
1.333 rad ensures the invertibility of K .

3. Control design
System (10) can be rewritten as

q̈ = D−1(q) [Ku+ g(q)]

−D−1(q) [C(q, q̇)q̇ +Bq̇] , (14)

Let us lump the dynamics of the viscous friction
and Coriolis as well as possible arising additive external
disturbances of uniformly bounded nature (not explicitly
considered in the original model and represented by the
variable η(t) ∈ R

2) into a generalized disturbance input
denoted as ξ(t, q, q̇). That is,

ξ = −D−1(q) [C(q, q̇)q̇ +Bq̇ + η(t)] . (15)

Furthermore, the effect of gravity g(q) does not need
to be considered as part of the disturbances, since it is a
known and limited phenomenon depending on measurable
variables in which g(q) can be directly compensated by
the feedforward control action such as the one carried out
in traditional multivariable PD with gravity compensation
control actions for robotic systems (Spong et al., 2006).
Also, substituting the generalized disturbance into the
system, the following simplified system is obtained:

q̈ = D−1(q) [Ku+ g(q)] + ξ(t, q, q̇). (16)

Taking advantage of the invertibility property of
both D(q) and K , and the bounds of the inertia matrix
property (Spong et al., 2006), without loss of generality
the following auxiliary input can be defined:

v = D−1(q) [Ku+ g(q)] . (17)

Using (17), the following perturbed system is
obtained:

q̈ = v + ξ(t, q, q̇). (18)

From the nature of the generalized disturbance
inputs ξ(t, q, q̇), it can be assumed that ξ(t, q, q̇) is
ultimately uniformly bounded with some finite bounded
time derivatives.

3.1. Problem formulation. Consider the simplified
representation of a disturbed TDFH system (18). It
is desired to track a reference trajectory denoted by
q∗ through a robust output feedback control, despite
the disturbance dynamics of external and internal nature
lumped as a generalized function ξ.

3.2. Flat filtering control (FFC). The flatness
property of the system along with the nature of the
generalized disturbance input allow to implement an
active disturbance rejection based control approach (see
the work of Han (2009), Fareh et al. (2021), Ahi and
Haeri (2018) or Madoński and Herman (2015) for a
comprehensive review of the control approach and the
use of extended state observers in disturbance estimation
tasks) to compensate the disturbance input for a further
application of a linear control on an integrator chain-like
system. A classic relation between flatness-based
disturbance rejection approaches involving extended state
observers (classic active disturbance rejection) or flat
filters (implicit disturbance estimation and cancellation
through integral control actions) can be found in the
work of Sira-Ramı́rez (2018). Among the considered
pioneering contributions, the most recently introduced
one consists of idealized exact compensation actions of
a family of polynomials (algebraic phenomenological
analysis), which contrasts with the presented stability
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analysis, which is a contribution of this study and
consists in applying the Lyapunov second method
for the approximated disturbance compensation of the
closed-loop error dynamics. In this manuscript the
proposal is based on a flat filtering controller (hereinafter
FFC) to be described as follows.

Consider the sub-index i as the i-th component of
(18). Let us define the output tracking error as eqi :=
qi(t)−q∗i (t), i = 1, 2. From (18), the feedforward control
input for the unperturbed system is computed as v∗i = q̈∗i
(Sira-Ramı́rez et al., 2017). Then, the difference between
the control vi and the feedforward input (typically known
as the feedback part of the control) is defined as

evi := vi(t)− v∗i (t). (19)

Then the tracking error dynamics is governed by the
following equation:

ëqi = evi + ξi. (20)

The generalized disturbance input ξi(t) is locally
modelled by means of the following extended state
approximation (ultra-local model (Fliess and Join, 2013;
Pereira das Neves and Augusto Angélico, 2022)):

ëqi = evi + ρ1i,

ρ̇ji = ρ(j+1)i, j = 1, 2, . . . ,m− 1, (21)
ρ̇mi = 0.

In order to avoid an asymptotic observer for ėq , the
following integral re-constructor is proposed

ˆ̇eqi =

∫ t

0

evi(τ) dτ. (22)

For the unperturbed case, the relation between ėqi
and ˆ̇eqi is ėqi(t) = ˆ̇eqi(t) + ˆ̇eqi(0). However, this relation
is affected by the external disturbance ξi. To correct that
effect, some iterative integral compensations of the output
tracking error are given (Fliess et al., 2002; Ramı́rez-Neria
et al., 2014). Taking the ultra-local model representation
(21), the following GPI control is proposed:

evi = −k(m+2)i(

∫
evi)− k(m+1)ieqi

− k(m)i(

∫
eqi)− k(m−1)i(

∫ (2)

eqi)

− . . .− k(0)i(

∫ (m+1)

eqi), (23)

where the notation
∫ (n)

f denotes the n-times iterated
integral

∫ (n)

f =

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

f(τn−1) dτn · · · dτ1.
(24)

The disturbance approximation by the ultra-local
model leads to the following relation:

ξ(t, q, q̇)i = aᵀκ(t) + ξ̃i, (25)

where a ∈ R
m is a vector formed by a set of constant

parameters such that the disturbance approximation is
improved (Sira-Ramı́rez et al., 2017; Ramı́rez-Neria
et al., 2016). From the family of time polynomial
approximations, κ =

[
1 t · · · tm−1

]ᵀ. The
differential form of last approximation is 1

aᵀκ(t) = ρ1i,

ρ̇(j+1)i = ρ(j+1)i, j = 1, . . . ,m− 1, (26)
ρ̇mi = 0,

which coincides with (21).
From the nature of the system uncertainties and

tail disturbances, the disturbance approximation error is
absolutely bounded, that is, |ξ̃i(·)| ≤ ξi,max ∈ R

+ < ∞.
Applying the control (23) in the ultra-local model (18)
leads to the following tracking error dynamics:

e
(m+3)
qi + k(m+2)ie

(m+2)
qi + . . .

+ k(1)iėqi + k(0)ieqi = ξ̃i. (27)

By choosing the design control parameters such that
the closed loop characteristic polynomial

sm+3 + k(m+2)is
m+2 + · · ·+ k1(i)s+ k(0)i (28)

is Hurwitz (Ramı́rez-Neria et al., 2014; 2016), the
controller forces the tracking error to converge into a
vicinity of the origin on the error phase plane, whose size
is related to the gain control choice and the disturbance
estimation error ξ̃i. This can be proven using the
following Lyapunov candidate function:

Vi(z) = zᵀi Pizi, zi ∈ R
m+3, (29)

Pi = P ᵀ
i > 0, Pi ∈ R

(m+3)×(m+3),

z =
[
eqi ėqi · · · e

(m+2)
qi

]
.

The state space realization of zi is given by

żi = Aizi + biξi (30)

1Notice that this approximation is purely phenomenological, imply-
ing that the m-th time derivative of the ultra-local model is not a feature
of the actual disturbance signal but a polynomial approximation. The
disturbance approximation error term ξ̃ compensates for the approximate
model scheme.
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with

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .
0 0 0 · · ·
0 0 0 · · ·

−k(0)i −k(1)i −k(2)i · · ·
0 0
0 0
...

...
1 0
0 1

−k(m+1)i −k(m+2)i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

bi =
[
0 0 · · · 0 1

]ᵀ
.

The time derivative of V (z) is given by

dV (z)

dt
= 2zᵀPiż

= zᵀ(Aᵀ
i Pi + PiAi)z + 2zᵀPiξ̃i. (31)

From the choice of (28) and the construction of Ai,
Ai is Hurwitz. Then for any positive definite matrix Pi,
there exists Qi = Qᵀ

i > 0, Qi ∈ R
(m+3)×(m+3) such that

Aᵀ
i Pi + PiAi = −Qi (Sira-Ramı́rez et al., 2017). The

time derivative of V (z) becomes

dV (z)

dt
= −zᵀQiż + 2zᵀPiξ̃i. (32)

Since |ξi| ≤ ξi,max,

dV (z)

dt
≤ −zᵀQiż + 2‖z‖‖Pi‖‖ξ̃i‖
≤ −zᵀQiż + 2ξi,max‖z‖‖Pi‖. (33)

Using the Rayleigh inequality in the last relation and
simplifying, we get

dV (z)

dt
≤ λmin(Qi)‖z‖

[
−‖z‖+ 2ξi,max

λmax(Pi)

λmin(Qi)

]
.

(34)

Thus, the time derivative of V (z) is negative definite
outside the set

‖z‖ ≤ 2ξi,max
λmax(Pi)

λmin(Qi)
,

forcing the tracking error vector z to be uniformly
ultimately bounded, ensuring a ultimate bounded
behaviour of the closed loop tracking error.

3.2.1. Flat filtering control synthesis as a compen-
sation network. Transforming (23) into the Laplace
domain, the compensation network representation of the
controller is

evi(s)

= −k(m+1)is
m+1 + · · ·+ k(1)is+ k(0)i

sm(s+ k(m+2)i)
eqi(s). (35)

Defining ηi := eqi/s
m(s + k(m+2)i), the following

representation in state variables is obtained:

η1i = ηi,

η̇1i = η2i,

... (36)
η̇mi = ηm+1i,

η̇m+1i = −k(m+2)iηm+1i + eqi.

Finally, the time domain flat filter-based controller
with m-th order ultra-local model approximation is

vi = q̈∗i − k(m+1)eqi

− (k(m+1)ik(m+2)i − k(m)i)ηm+1i

− k(m−1)iηmi − · · · − k(1)iη2i − k(0)iη1i, (37)
i = 1, 2.

Furthermore, the closed-loop system with respect to
the disturbance input results in a tracking error ruled by
the attenuating features of the transfer function acting on
the disturbance ξ(s)qi (Sira-Ramı́rez et al., 2019)

eqi(s)

=
sm(s+ k(m+2)i)

sm+3 + k(m+2)ism+2 + · · ·+ k(1)is+ k(0)i

× ξqi(s). (38)

The last representation allows us to implement the
controller as a compensation network. Besides, Eqn. (38)
allows obtaining Bode’s diagrams for disturbance
attenuation analysis, which is important for periodic
disturbances such as the possible arising ones for the
TDFH system.

4. Numerical and experimental results
The detailed characterization of the system parameters is
provided in Table 1.

The FFC and the well-known LQR control scheme
were implemented for comparison purposes. The LQR
gains were tuned through the optimization algorithm
developed by Kumar et al. (2016). The used FFC
consisted of two extended states; that is to say, the
structure described in (23) with m = 1 was used.
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Table 1. TDFH parameters.

Parameter Variable Value Unit
Distance between RP and the rotation axis rp 0.432 m
Distance between RC and the rotation axis ry 0.233 m
Distance from the centre of mass on the rotation axis Lcm 0.164 m
Helicopter body mass mh 1.03 kg
Moment of inertia in pitch Jθ 0.09359 kg m2

Moment of inertia in yaw Jψ 0.0947 kg m2

Viscous friction in pitch Bθ 0.01 Nms
Viscous friction in yaw Bψ 1 Nms
RP force constant over pitch kθθ 0.7901 Nm/%pwm
RP force constant over yaw kψθ 0.1426 Nm/%pwm
RC force constant over yaw kψψ -0.5078 Nm/%pwm
RC force constant over pitch kθψ 0.0329 Nm/%pwm

This structure makes it possible to compensate for ξ̃i
disturbances of the step and ramp type. Table 2 shows
the poles used to tune the auxiliary controllers, proposed
from the characteristic polynomial (28) describing the
closed-loop error dynamics.

Now, the perturbation-driven closed-loop transfer
function exhibits a large attenuation at both very low
and high frequencies with a maximum amplitude at
the bandwidth frequency (Sira-Ramı́rez et al., 2019).
Therefore, a Bode plot analysis of the perturbation-driven
closed-loop transfer function introduces a high gain factor
into the transfer function coefficients in terms of a small
parameter ε, in the form

eqi(s)

=

⎛
⎜⎜⎝

s

(
s+

k(3)i

ε

)

s4 +
k(3)i

ε
s3 +

k(2)i

ε
s2 +

k(1)i

ε
s+

k(0)i

ε

⎞
⎟⎟⎠ (39)

× ξqi(s).

with ε taking the values of 1, 0.5, 0.1, 0.05 and 0.01.
Figures 3(a) and (b) show the Bode diagrams for i =
1, 2, respectively. In both the cases it can be observed
that the controllers generate disturbance attenuation at
low and high frequencies. Furthermore, the use of high
gain factors does not generate significant changes in the
attenuation of disturbances.

On the other hand, the state feedback gains for
the LQR were obtained using an optimization method
developed by Kumar et al. (2016) which was used to
control a TDFH. To perform the task, the system was
linearized with the equilibrium point θ = 0, θ̇, ψ =
0, ψ̇, while the matrices Q and R resulting from the

Table 2. Poles for the auxiliary controls.

γ s1 s2 s3 s4
V1 −43.28 −0.74 −0.48 + 2.17i −0.48− 2.17i
V2 −5.01 −0.55 −1.06 + 1.79i −1.06− 1.79i

Table 3. Parameters of the Bézier polynomial.

γ∗ γ∗i γ∗f ti tf
θ∗ −0.8 rad 0.2 rad 46 s 66 s
ψ∗ −0.3 rad −0.3 rad 76 s 120 s

optimization are

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

469.99 0 0 0
0 340.27 0 0
0 0 58.36 0
0 0 0 0.062
0 0 0 0
0 0 0 0

0 0
0 0
0 0
0 0

218.05 0
0 12.99

⎤
⎥⎥⎥⎥⎥⎥⎦
,

R =

[
12.99 0
0 476.69

]
. (40)

From the above, the resulting feedback gains K are

K =

[
0.95 0.219 0.62 0.025 0.9 0
2.9 −9.19 1.412 −0.9 1.1 0.5

]
.

(41)
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(b) i = 2

Fig. 3. Bode diagram of the closed-loop transfer function with
disturbance input ξ for different values of the ε factor.

The desired trajectories were Bézier polynomials, for
which the parameters of initial position γ∗i , final position
γ∗f , initial time ti and final time tf are described in Table 3.
Initially, the system is at rest, then the initial position in
pitch is 0.9 [rad], the position of yaw is 0 rad and its speed
is 0 rad/s. Moreover, the sampling frequency is 1 KHz.

In addition, both control schemes were assessed in
five different cases related to the applied disturbances
(φ) in TR, illustrated by Fig. 4. In one hand, for the
first case the disturbance in φ is zero, so there is no
disturbance in TR. On the other hand, Case 2 presents a
series of step-type disturbances in φ of different values,
alternating the incidence in TR on the rotation axes.
Cases 3 and 4 include sinusoidal disturbances in φ, which
have an amplitude of 0.6 and 0.2 [rad] respectively with a
frequency of 1 [rad/s]; Cases 3 and 4 contain the same
frequency but different amplitudes to validate that the
FFC control scheme can attenuate periodic disturbances.
These disturbances generate a regular variation in the
incidence and TR on the rotation axes. On the other
hand, Case 5 is sinusoidal with a variable frequency
of the form 0.6 sin((t + 6) sin(0.05(t + 6))0.2) which
allows submitting to the system under irregularities in the
incidence and TR on the rotation axes.

4.1. Simulation and experimental results. The
simulation results of both the control schemes are
presented in Figs. 5 and 6, where the dynamics in pitch
exposed to the five disturbance cases is presented in Fig. 5
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Fig. 4. Disturbances (φ).

Table 4. Integral of the simulated squared error.

FFC LQR

Case ISEθ ISEψ ISEθ ISEψ

Case 1 0.004 0.036 0.14 0.045
Case 2 0.066 0.039 0.244 0.075
Case 3 0.848 0.115 5.319 0.545
Case 4 0.081 0.037 0.61 0.089
Case 5 0.887 0.118 6.362 0.709

and the dynamics in yaw is shown in Fig. 6. In these
figures, it can be verified that the four disturbance cases
affect both coordinates and, apart from this, both schemes
are capable of tracking the desired trajectories. However,
there is a larger attenuation of the disturbances by the
FFC. In addition, Table 4 shows the integral of the squared
error (ISE) for each control scheme with respect to each
coordinate, where it can be verified that the FFC scheme
has better performance against the LQR by having a lower
magnitude of the ISE for each case. Therefore, Case 5
generates more effort for the control schemes since it
generates the highest ISE values.

4.2. Experimental results. Figure 7 shows the pitch
angle (θ) in response to the five disturbance cases.
Notice that both control schemes manage to stabilize the
pitch angle trying to follow the reference trajectory and
compensate the disturbances as well. In addition, it is
evident that the pitch response of the LQR presents a faster
response time; however, this results in a larger overshoot
in the first seconds of path tracking and, in turn, larger
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Fig. 5. Simulation results for the pitch angle (θ).

oscillations around the desired path compared with the
response of the FFC control.

Likewise, when comparing the unperturbed TR case
of Fig. 7(a) with Fig. 7(b) of Case 2, a similar behaviour
can be observed between both the cases for each control
scheme, both the schemes being capable of compensating
the disturbances of Fig. 4(b). However, the FFC has better
performance than the LQR as it has smaller amplitude
oscillations.

Besides, Figs. 7(c) and (d) of Cases 3 and 4
respectively, also show a similar behaviour to that of the
unperturbed case of Fig. 7(a); Figs. 7(c) and (d) show
oscillations on the desired path with a similar frequency
to the disturbance in TR. In addition, Case 3, having a
larger amplitude in the disturbance in TR, generates a
larger oscillation in the pitch angle, unlike Case 4. On the
other hand, the pitch response to Case 5 (Fig. 7(e)) shows
the FFC scheme exhibits a similar response to Case 3;
thus, the scheme can attenuate the disturbance, achieving
robustness to the frequency of the disturbance. However,
the LQR generates larger oscillations around the trajectory
compared with the previous cases. Also, like the previous
cases, the FFC yields a better tracking performance with
respect to the LQR.

In the same manner, the behaviour in yaw (ψ) in the
four test cases can be observed in Fig. 8(e), where the
control schemes are also capable of stabilizing the axis
of rotation trying to follow the trajectory. However, the
LQR control presents instability after 120 s presumably
generated by the disturbance in φ of Case 2. In the
same way, in Case 5, the yaw stability is lost after 80 s,
which is the moment in which the Bezier polynomial
starts and perturbation of φ reaches a higher frequency.
Furthermore, using the FFC the yaw behaviour is quite
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Fig. 6. Simulation results for the yaw angle (ψ).

similar in all five cases; therefore, the control scheme
manages to compensate the disturbances that arise in TR.

Also, the yaw response of the LQR control is
more aggressive at the beginning of the follow-up; this
generates a larger effort in the controller to achieve
stability since, in both the cases, it starts with a desired
position of the step type.

On the other hand, Fig. 9(e) shows the control
actions Uθ and Uψ of both the control schemes in the four
cases; the these control actions are given in percentage
of PWM. It is worth mentioning that the rotor drivers
are configured in a PWM percentage range of 4 to 10
units at a frequency of 50 Hz, so that the values shown
in the graphs of Fig. 9(e) are such that the zero value of
the controller configuration has to be included. That is,
the PWM signal emitted to the controllers turns out to be
Uθ + 4 or, likewise, Uψ + 4.

Finally, Table 5 shows the value of the integral of
the squared error of pitch (ISEθ), yaw (ISEψ) and their
sum (ISEθ+ψ) for each case. In this manner, it is possible
to corroborate the performance of the control schemes
on each global y coordinate, where in each case the
FFC generates lower ISE values compared with the LQR,
so that the flat filtering shows a higher overall tracking
performance compared with the LQR. In addition, Fig. 10
shows the evolution of the global squared error integral
of each control scheme of Case 1 (top panel) and Case 5
(bottom panel).

5. Conclusions
The obtained mathematical model describes the TDFH
dynamics regarding any type of disturbance in TR. In this
way, the analysis and prediction of the behaviour of its
rotation axes in the presence of disturbances can be carried
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Fig. 7. Experimental results for the pitch angle (θ).
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Fig. 8. Experimental results for the yaw angle (ψ).
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Fig. 9. Control action (U ).
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Table 5. Integral of the squared error (ISE).

FFC LQR

Case ISEθ ISEψ ISE(θ+ψ) ISEθ ISEψ ISE(θ+ψ)

Case 1 0.48 0.51 0.98 3.67 3.93 7.6
Case 2 0.49 2.34 2.84 6.83 26.15 32.98
Case 3 0.52 3.3 3.82 4.68 4.9 9.58
Case 4 0.45 1.28 1.74 4.46 4.05 8.82
Case 5 1.21 2.71 3.93 12.02 124.34 136.36

out in a controlled manner in φ. Furthermore, this model
converges to the one reported in the literature for the case
when the disturbance φ is zero.

The simulation results show that both the control
schemes manage to stabilize the system although they
present oscillations around the trajectory in Cases 3, 4 and
5, where the FFC yields better robustness by having lower
magnitude of oscillations caused by the disturbances and
presenting lower accumulated magnitude of the ISE than
the LQR scheme.

Concerning the tracking results, the FFC has better
performance compared with the LQR control, as it yields
smaller values in the ISE for all the reported tests. In
addition, from Table 5 it can be observed that the values of
the ISE of the FFC are quite similar, which is an indicator
that this control scheme has higher robustness with respect
to the popular LQR control.

Accordingly, step type disturbances in TR when
varying φ can be compensated by the FFC by stabilizing
and following the trajectory in both the axes. In addition,
tracking control tasks can be executed in the case of
sinusoidal disturbances. However, these perturbations
maintain oscillations around the desired path with the
same frequency as the φ perturbations in the pitch
behaviour. The control scheme achieves yaw stabilization
and tracking, compensating for the periodic sinusoidal
perturbations unlike those originating in TR.

Moreover, it can be seen that the amplitude of the
pitch oscillations around the desired trajectory is related
to the amplitude of the disturbances in φ, since in Cases 3
and 5, these oscillations are displayed with a larger
amplitude where the sinusoidal perturbation amplitude is
0.6 rad unlike Case 4 where the perturbation amplitude is
0.2 rad.

In addition, it is possible to observe that the
behaviour of the simulated and experimental results of
the FFC scheme are similar, especially in Cases 3, 4
and 5, maintaining the oscillations around the trajectory
with the same frequency and amplitude ratio of the
disturbances. On the other hand, contrary to what
is presented in simulation, the LQR scheme presents
complications in stability in Cases 2 and 5. This may
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Fig. 10. Evolution of the integral of the squared error.

be due to non-modelled dynamics of the TDFH. These
comparisons show that the FFC is more robust against
generated disturbances and non-modelled dynamics.

The proposed FFC scheme showed relevant results
for rejecting of disturbances that frequently affect the
TR, which usually cause stability problems during the
flight and limit the manoeuvring space (Sánchez-Meza
et al., 2020). These perturbations include aerodynamic
interference between the MR and the TR (Fletcher and
Brown, 2008), aerodynamic forces, and the tail shake
phenomenon (Schäferlein et al., 2018), among others.

In addition, the disturbance analyzed usually occurs
in hybrid UAVs, e.g., the tiltrotor-type aircraft, where its
inertia tensor and dynamic parameters change depending
on the inclination of the nacelle (Cerezo-Pacheco
et al., 2021). Adjusting the tilt angle of the rotor
causes significant changes in the aircraft’s structural
and mechanical properties, directly affecting its stability.
Thus, our proposal could be modified to incorporate this
type of vehicle, where the transition stage from one
flight mode to another is usually the most critical (Ta
et al., 2012).
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