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During a global health crisis, a country’s borders are a weak point through which carriers from countries with high morbidity
rates can enter, endangering the health of the local community and undermining the authorities’ efforts to prevent the spread
of the pathogen. Therefore, most countries have adopted some level of border closure policies as one of the first steps in
handling pandemics. However, this step involves a significant economic loss, especially for countries that rely on tourism
as a source of income. We developed a pioneering model to help decision-makers determine the optimal border closure
policies during a health crisis that minimize the magnitude of the outbreak and maximize the revenue of the tourism
industry. This approach is based on a hybrid mathematical model that consists of an epidemiological sub-model with
tourism and a pandemic-focused economic sub-model, which relies on elements from the field of artificial intelligence to
provide policymakers with a data-driven model for a border closure strategy for tourism during a global pandemic.
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1. Introduction

The unprecedented challenge caused by the coronavirus
pandemic has swept across the globe, affecting tourism
flows across all regions. According to the UNWTO World
Tourism Barometer, international tourist arrivals dropped
by 83% in the first quarter of 2021 compared to the
same period in 2020. On an annual basis, international
tourist arrivals increased by a moderate 4% in 2021, but
this rate is still 72% below pre-pandemic levels. That
follows an unprecedented decline of 73% in 2020, the
worst year on record for international tourism. Asia and
the Pacific suffered the sharpest declines in 2020, with a
drop of 84% and 300 million fewer international tourist
arrivals. At the same time, the Middle East and Africa
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both recorded a 75% decline, the Americas saw a 69%
decrease, and Europe recorded a 70% plunge, with the
highest drop in absolute terms—over 500 million fewer
international tourists (UNWTO, 2021). Compared to
2019, in 2021 international tourist arrivals dropped by
94% in Asia and the Pacific, 79% in the Middle East,
74% in Africa, 63% in the Americas, and 62% in Europe.
Moreover, the UNWTO Panel of Experts survey indicates
that international tourism will not return to 2019 levels
until 2024 or later (UNWTO, 2022). Indeed, international
tourist arrivals more than tripled in January–May 2022
compared to 2021. Nonetheless, it still remained 54%
below pre-pandemic levels.

During a pandemic, the successful restart of tourism
depends on a coordinated response among countries
regarding border controls, travel restrictions, and effective
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communication (UNWTO, 2021). Nevertheless, a
one-size-fits-all strategy for all countries does not seem
adequate for the containment of COVID-19. In the wake
of the outbreak, many countries closed their borders
completely to restrict the entry of infected travelers
from countries with higher incidence rates, manage
the translocation of the pathogen from one destination
to another, and preserve the domestic progress made
in the control of the pandemic (Hall et al., 2020).
These measures were applied dynamically depending
on changes in the epidemiological status. Thus,
global surveillance of the outbreak’s dynamics is a key
element for governments to make the best decisions
concerning border closures. These restrictions have major
implications for the economy, especially for countries that
rely on tourism as a source of income (Diseases, 2020).
Indeed, although these drastic measures may have reduced
the importation of some cases and preserved resources,
they came with enormous economic losses (Linka et al.,
2020; Chinazzi et al., 2020; Boyd et al., 2020). The
widespread border closures, travel restrictions, and the
massive drop in demand resulted in an estimated loss of
US$1.3 trillion in export revenues during 2020, which
is more than 11 times the loss recorded during the
2008 global economic crisis. Furthermore, the direct
tourism GDP was estimated at US$1.9 trillion in 2021,
US$0.3 trillion above its value in 2020, but well below its
pre-pandemic value of US$3.5 trillion (UNWTO, 2022).

The investigation into the impact of crises on the
tourism industry began much earlier than the outbreak
of the coronavirus pandemic (Aldao et al., 2021; Khalid
et al., 2020). To understand how crisis management
practices have been adopted in the hospitality and tourism
industry Wut et al. (2021) systematically reviewed 512
articles spanning 36 years between 1985 and 2020,
including 79 papers on COVID-19. They documented
that over the last decade, health-related crises were among
the biggest trends in research areas for crisis management
studies. The authors suggested 10 directions for future
research agendas, including adopting newer analytical
methods and approaches to investigate health-related
crises. Moreover, the authors indicated that the research
methodologies in most of the papers on this theme
appeared to be conceptual papers. A few qualitative
studies used in-depth interviews and some conducted case
studies, while the quantitative studies relied on online
surveys or telephone surveys due to pandemic constraints.

Zhu et al. (2021) proposed a holistic approach to
studying the sustainability of border control policies
against COVID-19 during a reopening phase, in an
ongoing pandemic and in conjunction with domestic
control measures, with a special focus on contact tracing.
The authors showed that the strictness necessary for
border control policies to be sustainable varies greatly
among countries. They identified the necessary conditions

for border controls to avoid future lockdowns given
domestic control policies and limits on incoming traffic
from different risk sources tailored to meet different
government objectives. However, to the best of our
knowledge, these studies have not discussed the decision
of nations as to whether to open their borders. They also
have not assessed the economic losses for the tourism
industry as a result of the closure of the borders and the
loss of revenue from tourists.

To address this gap, we develop a hybrid
mathematical model that consists of an epidemiological
sub-model with tourism and a pandemic-focused
economic sub-model. Mathematical models are known to
be a powerful tool for evaluating and shaping government
policies to tackle epidemiological outbreaks, in general
(Nesteruk, 2020; Tuite et al., 2020) and economic crises,
in particular (Pindyck, 2020; Acemoglu et al., 2020).
Furthermore, tourism policies are often set based on one
or more socio-economic mathematical models (Chui-Hua
et al., 2012; Airey, 2015; Getz, 1986). Our model
describes how countries can manage international tourism
flows during a global pandemic using an applied in silico
tool for evaluating international tourism policies and
approximating an optimal policy for multiple possible
scenarios. Moreover, we seek to develop an optimal
border control policy, one that works in both cooperative
and non-cooperative (selfish) conditions, and when there
is either full or partial observable information accessible
to each country regarding infection and morbidity rates in
other countries.

The rest of the paper is organized as follows. In
Section 2, we provide background about mathematical
models for pandemic outbreaks, followed by
tourism-focused economic models. In Section 3, we
introduce our spatio-temporal epidemiological model
with its economic dynamics. In addition, we provide an
agent-based approach to simulate the model’s dynamics in
silico. The approach simulates the actions and interactions
of autonomous agents (in our case, individuals) to make
predictions about the emerging behavior of the overall
system. In Section 4, we describe a multi-agent
reinforcement learning approach to approximating the
optimal tourism policy of the countries taking part in
international tourism. In Section 5, we present the
implementation of the model for Europe (a detailed list
is provided in Table A1 in Appendix, followed by an
analysis of the results obtained from the simulation.
In Section 6, we discuss the main epidemiological and
economic results arising from the model, and conclude
briefly. Figure 1 presents a schematic view of this
structure.
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Fig. 1. Manuscript’s structure. First, we outline previous works on epidemiological dynamics and economics during pandemic
modeling as well as an overview of the tourism industry during worldwide pandemics. Afterward, we introduce our novel
epidemiological-economic mathematical model. Next, we propose a reinforcement learning approach to obtain optimal border
closure policies by country-states. Afterward, we present an in silico experiment with real-world data and its results. Finally,
an analysis of the results and closing remarks are provided.

2. Related work

Mathematical models are a useful tool for making
data-driven decisions. They have been used in
various situations such as non-pharmaceutical
intervention policies during an outbreak (Lazebnik
and Blumrosen, 2022), school-work duration (Lazebnik
and Bunimovich-Mendrazitsky, 2021), lockdowns (Aglar
et al., 2020), and other intervention policies. These
models provide a controlled approach to assessing
the effects of these decisions on the dynamics of the
pandemic and the economy (Darabi and Scoglio, 2011).
These mathematical models can be divided into two
main groups. The first group includes models designed
to analyze and optimize intervention policies (Zhao
et al., 2020). The second group includes models designed
to predict pandemic and economic-related parameters
such as the total death toll and unemployment due to
the pandemic, given the historical data (Nesteruk, 2020).
While the first group of models depends on the latter to
provide meaningful results, the distinction between them
relies on the differences in their use.

Models that analyze intervention policies usually
focus on populations located in a single, theoretically
isolated, location such as a city (Di Domenico et al., 2020)
or country (Ivorra et al., 2020). As such, they ignore the
in-country and international dynamics that happen during
the pandemic. This phenomenon is increasing because
as the world’s population grows (Ronald, 2011), its
concentration in cities and metropolitan areas increases,
and movement between them becomes more accessible
and inexpensive than ever before (Kingsley, 2015; Gunn,
2001; Peer et al., 2012).

2.1. Epidemiological models. Mathematical models
of epidemiological dynamics usually represent the
movements of individuals in the population between

several epidemiological states (Alalyani and Saber,
2022). In the context of international tourism with a
relatively short time frame, individuals develop immunity
that keeps them safe from re-infection (Masud et al.,
2017; Lazebnik and Blumrosen, 2022). Therefore, the
epidemiological dynamics can be treated as an instance
of a long-term immunity memory disease regardless of
the type of disease itself. Thus, the model takes the
form of the classic Susceptible-Infected-Recovered (SIR)
model (Kermack and McKendrick, 1927), represented
as a system of ordinary differential equations (ODEs).
Susceptible (S) individuals are infected on average at a
rate β relative to the size of the infected individuals’
sub-population. Infected individuals (I) recover at a rate
γ and become recovered (R) individuals who cannot be
infected again. Formally, the SIR model is represented by
the following system of ODEs:

dS(t)

dt
= −βS(t)I(t),

dI(t)

dt
= βS(t)I(t)− γI(t),

dR(t)

dt
= γI(t).

(1)

While the SIR model is widely used due to its
simplicity, it fails to represent the complexity of the
dynamics of the pandemic’s spread (Nesteruk, 2020).
Therefore, many extensions of the SIR model have been
proposed to better represent the spread dynamics. Usually,
these extensions reduce its generalization by introducing
biological, sociological, and economic assumptions that
improve its accuracy and expressiveness in the cases it
represents (Wiratsudakul et al., 2018; Adiga et al., 2020).
One of the more common extensions is the mortality
rate due to the pandemic, defined as a state D. This
state plays a meaningful role in the dynamics of the
model. It removes individuals from the interaction. In
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addition, it also allows the investigation and prediction of
the percentage of people who will die due to the pandemic
(Zhao et al., 2020).

Another extension adds an exposed state (E), which
represents the period between the time a susceptible
individual is infected and the point at which s/he can infect
others (Tuite et al., 2020). The exposed state represents
the biological settings better as many diseases go through
a phase of incubation (Lauer et al., 2020; Virlogeux
et al., 2015).

Individuals experience diseases with varying degrees
of severity (Tuite et al., 2020). Therefore, by
dividing the infected group, I , into two degrees of
severity—symptomatic, Is, and asymptomatic, Ia—it is
possible to obtain a more accurate representation of the
social and epidemiological dynamics. Doing so also
allows us to fine-tune the infection rates because different
degrees of severity have correspondingly different
infection rates.

Data from several epidemiological studies show that
children and adults transmit diseases at different rates and
have different recovery durations (She et al., 2020; Jiehao
et al., 2020). As a result, it is possible to divide the
population into two age groups—adults and children.
Thus, each of the transformation’s values associated with
each epidemiological state and age group are different
(Ram and Schaposnik, 2021).

The places where individuals spend their time during
the day affect the dynamics of the pandemic by changing
the rate of infection. For example, Viguerie et al. (2020)
showed that spatio-temporal SIR-based models predicted
the COVID-19 spread in the Italian region of Lombardy
better than other models. However, their version of the
spatial dynamics assumes the static distribution of the
population over the course of the day. It does not take into
consideration the unique dynamics of people moving to
different locations, which is possible using a graph-based
spatial model.

Thus, extensions are agnostic to the modeling
approach used in a computer simulation. One can divide
the simulation approaches into two groups: ODE-based
and agent-based. A detailed description of each approach
is provided below.

2.1.1. ODE-based modeling. The ODE-based
modeling approach uses numerical algorithms to
approximate the analytical solution of the ODE (and
PDE) based representation of the extended SIR model.
Simply put, the ODE-based modeling describes the
dynamics at the population level and their effect on a
population of identical (symmetrical) individuals.

ODE-based modeling has two advantages. First,
it is relatively easy to solve the model for any size of
the population using ODE numerical solvers (Andersson
et al., 2015). Furthermore, the model is easy to explain,

making it feasible to track a wide range of phenomena that
the model predicts (Selbst and Barocas, 2018). Second,
based on these two properties, there are multiple methods
that are used in a variety of situations with real-world
data. For example, Roberty and de Araujo (2021) used an
extended SIR model and data about the evolution of the
COVID-19 pandemic from the Johns Hopkins University
Center for Systems Science and Engineering. They
utilized the Newton–Raphson optimization algorithm
(Lindstrom and Bates, 1988) with the mean absolute error
between the historical number of recovered individuals
and the one predicted by the model over time.

2.1.2. Agent-based simulation modeling. The
agent-based modeling approach takes a complementary
point of view from that of the ODE-based modeling
approach. It defines a set of interactions between
individuals in the population to match the global
epidemiological dynamics observed in the population.
Thus, the agent-based approach describes the dynamics
from the individual level and their effect on the population
as a whole. The agent-based modeling approach extends
the ODE-based modeling approach by describing the
local interactions between agents in three ways to
determine global behavior: “spontaneous” interactions,
interactions between individuals, and the interactions of
an individual with the environment. The first group
includes time-dependent interactions such as the move
from an infected (I) state to recovery (R) after some
pre-defined amount of time. The second group includes
interactions between two or more individuals that change
the state of at least one of them. One example is when
an infected individual infects a susceptible person. Lastly,
the interactions between individuals and the environment
usually influence the decisions an agent makes such as
whether to visit a location based on the number of infected
individuals in that location (Lazebnik and Alexi, 2022).

This approach has two main advantages: (i) the
relatively easy inclusion of heterogeneous behavior in
individuals and the population, and (ii) the introduction
of the decision-making process. These two capabilities
allow us to simulate complex dynamics that better capture
the real dynamics that happen in nature. On the other
hand, as the size of the population grows, agent-based
simulations become more computationally expensive than
the ODE-based modeling approach (Chumachenko et al.,
2018).

2.2. Bilateral tourism, disasters, and economic mod-
eling. An epidemiological crisis presents countries with
significant challenges to their economies (Shami and
Lazebnik, 2022). The tourism industry is known to
be vulnerable to multiple types of hazards that have
the potential to deter visitors from traveling to affected
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destinations (Li et al., 2021; Rosselló et al., 2020; Becken
et al., 2014). Disasters such as earthquakes, tsunamis,
pandemics, and hurricanes inflict extensive and abrupt
changes in the affected areas, with profound impacts on
individuals and organizations that consequently shock the
economic system in which tourism is embedded.

Since the 1960s, following the pioneering work
of Tinbergen (1962), economists have been using
gravity model frameworks to describe patterns of
international trade and capital movements (Anderson,
2011). Analogous to Newton’s universal law of
gravitation, these models rely on the assumption that
bilateral flows between two countries tend to increase with
per-capita income and decline with transportation costs
and physical distance between them. Consequently, the
level of bilateral tourism flows can be explained by gravity
models with a set of determining variables as in a demand
equation.

Rosselló et al. (2020) developed a gravity model
for international tourism flows to quantify the effects
of different types of natural and man-made disasters on
international tourism movements. The authors integrated
two different global data sets, one on disasters and another
on bilateral international tourist flows, and used three
proxies to measure the impact of disasters—the number of
deaths, affected people, and economic costs. According
to their findings, in general, the impacts of an event are
negative, resulting in fewer tourists.

Gravity models have been also used, albeit to a
small extent, to study the effect of infectious diseases
on bilateral tourism flows. Most studies in this context
examined the impact of disease outbreaks, such as
the SARS and avian flu epidemics, on tourism in a
specific country or region over a short period (Kuo
et al., 2008; Wilder-Smith, 2006). Nevertheless, there
are some studies on a larger scale. For example,
(Cevik, 2022) considered 38,184 pairs of countries from
1995–2017 and the actual number of confirmed infectious
disease cases (Ebola, malaria, SARS, and yellow fever)
scaled by population to estimate the impact of infectious
diseases on international tourism flows. The study
used an augmented gravity framework that controlled
for macroeconomic factors, geographic and cultural
characteristics, and historical ties. According to the
authors, international tourism is adversely affected by the
scale and dynamism of infectious diseases as measured
by the number of confirmed cases in past episodes.
Moreover, partitioning the sample into income groups and
geographical regions highlights variations in how the risk
of infectious diseases affects international tourism flows.
While infectious diseases appear to have a smaller and
statistically insignificant negative effect on tourism flows
to advanced economies, the magnitude and statistical
significance of the impact of infectious diseases are much
greater in developing countries, where such diseases tend

to be more prevalent and healthcare is limited.
Indeed, gravity models have long been one of

the most successful empirical models in economics
(Anderson, 2011). However, as Baggio (2020) stated,
“better simulation tools are to be developed for a
more profound understanding of the whole [tourism]
domain and for providing more accurate scenarios.”
Accomplishing this goal would allow policymakers to
make more informed planning decisions. Our study
responds to this call by presenting a model that describes
how nations can manage international tourism during a
global pandemic. It provides a practical in silico tool
for evaluating bilateral tourism policies and suggesting an
optimal policy for multiple possible scenarios.

Recent trends in tourism require the use of artificial
intelligence methodologies for forecasting. Examples
include feed-forward artificial networks or support vector
machines (Liu et al., 2021; Hassani et al., 2017; Teixeira
and Fernandes, 2012) and machine and deep learning
methods (Law et al., 2019). Sun et al. (2021) used
historical tourist arrival data, economic variable data, and
search intensity index data to forecast tourist arrivals in
Beijing. The authors deployed a novel bagging-based
multivariate ensemble deep learning approach integrating
a stacked autoencoder and kernel-based extreme learning
machine. Their approach outperformed existing models
in terms of the level of accuracy, directional accuracy, and
statistical significance. However, research that confirms or
quantifies the relationship between disasters and tourism
activity is scant. Liu et al. (2021) developed a two-step
scenario-based method to forecast the recovery of the
demand for tourism for 2021 from a global perspective
under uncertainty. The authors utilized 14 alternative
forecasting specifications covering various time series
and artificial intelligence models, and their hybrid and
combined approaches. Polyzos et al. (2020) investigated
the expected effect of the current COVID-19 outbreak on
the arrival of Chinese tourists to the USA and Australia.
The authors used monthly data from the 2003 SARS
epidemic regarding the number of tourist arrivals to
these two countries and employed the Long Short Term
Memory (LSTM) network (deep learning methodology)
to forecast the effect of the current pandemic. Their
findings demonstrate a significant drop in tourist arrivals
from China to the USA and Australia. They also predict
that it will take nearly one year for arrivals to return to
their previous levels. However, their calculations lack a
monetary estimate of the economic loss and ignore the
effect of the decision to close borders in response to the
outbreak. Our study considers these two salient factors.

Since the tourism industry is known to be linked
to many sectors in the economy, computable general
equilibrium (CGE) models are considered suitable for
assessing the impact of external shocks on it, as they
consider retroactive effects (Van Truong and Shimizu,
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2017; Dwyer, 2015). Gopalakrishnan et al. (2020)
focused their research on countries that are economically
dependent on tourism. With the help of the CGE model,
the authors analyzed the short- and medium-term impact
of the COVID-19 pandemic on the tourism sector. The
results indicate strong links and spillover effects between
tourism and other sectors. Pham et al. (2021) incorporated
a full tourism satellite account into a CGE model to assess
the short-term economic impacts of the inbound tourism
sector on the economy in Australia. The authors reported
direct job losses in tourism of around 152,000. They also
indicated that the pandemic affected a range of industries
and occupations beyond the tourism sector—between
423,000 and 456,000 across many industries along the
tourism value chain. Henseler et al. (2022) used the CGE
model to simulate the economic impacts on the tourism
sector and allied sectors resulting from the COVID-19
pandemic in Tanzania. They found that the decline in the
demand for tourism, combined with the associated drop in
transportation and communication services, forced other
sectors to reduce production and lay off workers, which, in
turn, negatively impacted other sectors. However, none of
these studies included an explicit reference to the effect of
the dynamics of the spread of the pandemic on the model
and the economy in their analysis.

3. Model definition
The proposed tourism model consists of three sub-models.
The first is a temporal epidemiological sub-model that
represents the pandemic’s dynamics. The second is a
spatial social sub-model that represents the cities and
countries where the population is located and their
movement between them. The third is an economic
sub-model that describes the country-level and global
revenue from the tourism industry.

We mathematically define the model by a triple
M := (P,G,O), where P is a set of individuals such that
each individual is a citizen of some country-state Ci; G =
(V, L ⊂ V × V ) is a graph of the cities (represented by
the graph’s nodes V ), where each individual p is located
at any given point in time; O is the economic dynamics.

The model is implemented as an agent-based
simulation (Macal, 2010) with two main entities. The first
is the individual agent who operates as an individual in
the population, a citizen of some country-state Ci who
might visit other country-states as a tourist. The second
is the country-state agent that has a set of individuals as
its citizens and aims to maximize its total revenues from
tourism while minimizing the number of infected citizens.

The model has a synchronized clock defining rounds
t ∈ [1, . . . , T ], where T < ∞. In each round (marked by
ti for the i-th round) the following three actions take place.
First, the population P moves on the graph according

to the open LOT and according to some country-state
policies inside the country-state. Second, for each node
(vij ∈ V ∈ G), the epidemiological dynamics occur
in random order. Lastly, for each country-state Ci, the
country-state decides which LOTs it will open and close
with other states. The components of the model are
described in detail below.

3.1. Epidemiological (temporal) sub-model. Our
proposed model is an extension of the SIR model
(Kermack and McKendrick, 1927). The model considers a
constant population,P , with a fixed number of individuals
N := |P |. Each individual in the population belongs
to one of five epidemiological states: susceptible (S),
exposed (E), symptomatic infected (Is), asymptomatic
infected (Ia), recovered (R), and dead (D) such that

N = S + E + Is + Ia +R+D.

Individuals in the susceptible group have no immunity
and can be infected. When an individual in the
susceptible group (S) is exposed to the pathogen, the
individual is transferred to the exposed group (E) at a rate
corresponding to the average interaction between infected
individuals and susceptible individuals. The individuals
stay in the exposed group on average θ days, after which
they are transferred to either the symptomatic infected
group (Is) or the asymptomatic infected group (Ia) with a
probability ρ. Afterward, they remain in the symptomatic
infected group on average γs days, after which they are
transferred to the recovered group (R) or the dead group
(D) with probability ω. Individuals in the asymptomatic
infected group recover on average after γa days, after
which they are transferred to the recovered group (R). The
recovered are again healthy, no longer contagious, and
immune from future infection. We treat the coefficients
as probabilities rather than rates, as they represent the
probabilities for state transfer at the individual level
(Cortés et al., 2020). Figure 2 depicts a schematic view
of the movement between the epidemiological model’s
states.

The epidemiological dynamics are described in
Eqns. (2)–(7).

In Eqn. (2), dS(t)/dt is the dynamic amount of
susceptible individuals over time. It is affected by
the following two terms: each symptomatic infected
individual infects a susceptible individual at a rate βs

and each asymptomatic infected individual infects a
susceptible individual at a rate βa,

dS(t)

dt
= −(βsIs(t) + βaIa(t))S(t). (2)

In Eqn. (3), dE(t)/dt is the dynamic amount of
exposed individuals over time. It is affected by the
following three terms: (i) each symptomatic infected
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Fig. 2. Schematic view of an individual’s transformation between epidemiological country-states.

individual infects susceptible individual at a rate βs; (ii)
each asymptomatic infected individual infects susceptible
individual at a rate βa; (iii) each exposed individual is
transformed into an infected individual at a rate θ.

dEs(t)

dt
= (βsIs(t) + βaIa(t))− θEs(t). (3)

In Eqn. (4), dIs(t)/dt is the dynamic amount of
symptomatic infected individuals over time. It is affected
by the following two terms: symptomatic individuals
recover or die from the disease after period γs and
each exposed individual is transformed into an infected
individual at a rate θ with a probability of ρ.

dIs(t)

dt
= θρE(t)− γsIs(t). (4)

In Eqn. (5), dIa(t)/dt is the dynamic amount of
asymptomatic infected individuals over time. It is affected
by the following two terms: asymptomatic individuals
recover after period γa and each exposed individual is
transformed into an infected individual at a rate θ with
a probability of (1 − ρ).

dIa(t)

dt
= θ(1 − ρ)E(t)− γaIa(t). (5)

In Eqn. (6), dR(t)/dt is the dynamic amount
of recovered individuals over time. It is affected
by the following two terms: a portion ι of the
symptomatic infected individuals recover after period γs

and asymptomatic individuals recover after period γa.

dR(t)

dt
= γsιIs(t) + γaIa(t). (6)

In Eqn. (7), dD(t)/dt is the dynamic amount of dead
individuals over time. It is affected by a portion of the
infected individuals that do not recover after period γs

which is multiplied by the rate of adults that do not recover
from the disease 1− ι.

dD(t)

dt
= γs(1− ι)Is(t). (7)

A summary of Eqns. (2)–(7) is shown in Eqn. (8).

dS(t)

dt
= −(βsIs(t) + βaIa(t))S(t),

dE(t)

dt
= (βsIs(t) + βaIa(t))S(t) − θE(t),

dIs(t)

dt
= θρE(t)− γsIs(t),

dIa(t)

dt
= θ(1− ρ)E(t) − γaIa(t),

dR(t)

dt
= γsωIs(t) + γaIa(t),

dD(t)

dt
= γs(1− ω)Is(t).

(8)

The initial conditions in the beginning of the pandemic are
defined as follows:

S(0) = N − 1,

E(0) = 1,

Is(0) = 0,

Ia(0) = 0,

R(0) = 0,

D(0) = 0,

(9)

where N is the size of the population.
Formally, the population P moves and interacts in

rounds t ∈ [1, . . . , T ], where T < ∞. Each individual
in the population, p ∈ P, is represented by a timed finite
state machine (Alagar and Periyasamy, 2011) such that, in
round i, pi = (li, si) denotes p’s location on the graph
in round i (li ∈ V ) and his/her epidemiological status
si ∈ {S,E, Is, Ia, R,D}.

3.2. Spatial sub-model. The spatial sub-model is a
graph-based model G := (V, L ⊂ V × V × R). The
populationP is allocated in some distribution to the nodes
of an undirected, connected graph G. Each node vij ∈ V
corresponds to a city j in a country-state i. The graph G
is divided into a set of cliques (Ci) such that

⋃
(Ci) = V

and ∀i �= j : Ci ∩ Cj = ∅ (i.e., Ci is a pairwise disjoint).
Each clique represents a country-state and all of the nodes
vij ∈ Ci are cities in this country-state. Each country-state
has lines of tourism (LOT) (via air or ground) with other
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Fig. 3. Example of three country-states, C1, C2 and C3, with
two, three and four cities, respectively. Country-states
C2, C3 have two international flight schedules with an
average mobility of W 23

22 and W 23
14 . Country-states

C1, C2 have one international flight with an average mo-
bility of W 23

12 . Inside each country-state Cz , the average
mobility between two cities x, y is marked by W zz

xy or
W z

xy for short.

country-states represented by edges where the source and
target nodes are from two different country-states, lijkz =
(vik, v

j
z) ∈ L, such that vik ∈ Ci ∧ vjz ∈ Cj ∧ i �= j). Each

edge eijkz ∈ E has an average (positive) mobility capacity
W ij

kz .
For each round, ti, the population on the graph moves

to one of the neighboring nodes, {vij ∈ V | (vik, vjz) ∈
L}, such that the individual is located in node (vjz) on
the graph or stays in the same node, according to an
inner moving policy that each agent has. In addition,
the moving policy is altered by a global policy that
overtakes the decision in the case of a conflict between
the two policies. The transition between any two nodes
is assumed to be immediate and everybody is following
the same clock (i.e., turns). Between each population
movement on the graph, the temporal sub-model is
performed simultaneously on all of the graph’s nodes. A
schematic view of the spatial sub-model is shown in Fig. 3
illustrating the country-states, their cities, and the LOTs
between them.

Since country-states aim to minimize the infection
rate inside their borders, symptomatic infected individuals
who try to cross the border will be blocked and sent
back in the same round to the node from which they
came. In a complementary manner, asymptomatic
infected individuals who try to cross the border as well
as susceptible, exposed, and recovered individuals will be
able to do so.

3.3. Economic sub-model. In Eqn. (10), dOi(t)/dt is
the dynamic amount of revenue country Ci raised from

international tourism and domestic healthcare services.
It is affected by three factors: (i) each individual from
country-state Ci who travels to country-state Cj spends
an average eij per day; each tourist stays for x days
where x ∼ U [0, d(Ci, Cj)] such that d(Ci, Cj) is the
rate between the purchasing power of the origin and
destination countries (e.g., uniformly distributed between
0 and the rate of the purchasing power between the origin
and destination countries); (ii) each symptomatic infected
individual requires rs resources from the country-state;
(iii) each asymptomatic infected individual requires ra

resources from the country-state.

dOi(t)

dt
= Σp∈P (eijvisit(p, S

j, Si)

− rs|{p ∈ P | p citizen of Si ∧ p ∈ Is}|
− ra|{p ∈ P | p citizen of Si ∧ p ∈ Ia}|,

(10)

where visit(p, Si, Sj) → {0, 1} is a binary function,
returning 1 if an individual p who is a citizen of
country-state Ci is currently visiting country-state Cj ,
and 0 otherwise. Note that the resources related to
the asymptomatic and symptomatic infected individuals
take into consideration the loss of productivity from
these individuals who cannot work and the amount the
government must spend on their social and medical needs.

4. Optimal tourism policy
Given the proposed model (see Section 3), each
country-state aims to maximize its revenue from tourism.
We define this goal mathematically and propose a
trial-and-error method to determine the optimal policy.
Formally, in the proposed model, country-states are
active agents that control the course of the pandemic by
changing the LOTs’ level of openness. Individuals in the
country-states’ population are passive agents who follow
a set of pre-defined dynamics according to the conditions
in their environment.

4.1. Learning task definition. As country-states can
choose the LOT they will open or close, or any portion
of it δ ∈ [0, 1], at any point in time, they can manage
the trade-off between the pandemic’s spread and the
economic loss due to the lack of tourism. A LOT between
two country-states (Ci, Cj) will be the maximum level
of openness they both allow. Thus, if the openness of
the LOT of country-states Ci and Cj are δi and δj ,
respectively, the overall openness of the LOT between
them would be min(δi, δj). Therefore, these dynamics
define the action space of each country-state.

Definition 1. (Country-state’s action space (SAS))
Assume that country-state Ci has possible LOTs with the
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set of country-states {Cj}j∈J . At each point in time,
t, the country-state defines its degree of openness δi,j .
For instance, δi,j = 0 means the LOT is completely
closed and δi,j = 1 is completely open. The action of
a country-state can be represented as a real vector of size
|J | that changes per country.

Now, a country-state can make a decision knowing
its domestic epidemiological and economic state

F (Ci)→ (Φi, ζi),

where F is a function getting a country-state Ci and
returns a six-dimensional vector Φi representing the
distribution of the population over the six epidemiological
country-states, and ζi is the revenue from the tourism
the country-state obtained from the beginning of the
pandemic. In addition, a country-state can determine
the epidemiological and economic state of all other
country-states in the world.

A country-state’s epidemiological state can be
determined using one of three options. First, in the
fully observable pandemic option, the country-states
obtain accurate information on the epidemiological state.
Second, in the α-partial observable pandemic option,
each country-state randomly samples a portion of its
population α and estimates the overall epidemiological
state accordingly. Third, in the χ-tested observ-
able pandemic option, each country-state samples the
entire population with a probability χ to determine its
epidemiological state (except for the dead state where
χ = 1). All three options converge in the case where
α = χ = 1. In practice, country-states are not able to
sample all of their population at each point in time or even
the majority of the population. Therefore, 0 < α � 1.
In addition, clinical tests for epidemiological status are
not perfect, resulting in false-negative and true-possible
errors. Hence, 0 < χ < 1. As such, all three options
differ significantly from each other in a pair-wise manner.
Based on these definitions, one is able to define the state
of the world as follows.

Definition 2. (World’s state (WS)) Assume there are
{Ci}ηi=0 states in the world. The world’s state is a vector
of size 6η where each state Ci is mapped to the [6i, 6i+5]
sub-vector containing the epidemiological state (Φi) of the
corresponding state.

Naturally, each country-state is selfish and wants
to maximize its own target function (Eqn. (10)),
which we call the selfish optimizer (SO). Nevertheless,
country-states are aware of the fact that by cooperating
they might all gain more than acting selfishly. Therefore,
they seek to optimize the collective target function, which
we call the collective optimizer (CO). In the latter, the

target function takes the form

dO(t)

dt
=

k∑

i=0

dOi(t)

dt
, (11)

and therefore is identical to all country-states.
A summary of the six options of the agents divided

by the country-states’ vector determining the option and
the target function is presented in Table 1.

4.2. Reinforcement learning-based optimal esti-
mator. Reinforcement learning (RL) is a method that
approximates the classic optimal control method (also
known as dynamic programming) (Bellman, 1957). The
system is modeled as a discrete-time finite-state Markov
decision process. Each action is associated with a reward.
The task of reinforcement learning is to maximize the
long-term discounted reward for each action to obtain the
optimal policy over time.

Simply put, reinforcement learning is designed for
sequential decisions where the output of a given input and
all previous inputs and outputs are known beforehand. RL
models are based on the interactions between an agent and
its environment where the objective is to find a function
(also known as policy) that maps a state to the agent’s
action in order to optimize a given objective (also known
as reward) function over a period of time. Note that
the agent might change its environment and itself, and
therefore its state, by deciding on some action.

In this study, the one-step Q-learning algorithm
(Watkin and Dayan, 1989) is used by each state in order
to learn an optimal policy. In this setting, a policy is
determined by a state-action pair functionQ that estimates
long-term discounted rewards for each state-action pair.
Formally, given a current WS x and a set of possible
actions {aij}|J|j=0 for each country-state Ci, a Q-learning
agent selects each action aij with a probability given by
the Boltzmann distribution (Nagayuki et al., 2000):

p(aik|x) =
eQ(x,ai

k)/σ

∑
ai
j∈J eQ(x,ai

j)/σ
, (12)

where σ operates as a balance parameter that adjusts the
randomness of the decisions. Each country-state then
executes an action randomly according to the probabilities
obtained from Eqn. (12), receives an immediate reward ri
equivalent to dO(ti)/dt, and moves to some state y.

During the training process, at each time step
the agent updates the function Q(x, a) by recursively
discounting future utilities and weighting them by a
predefined positive learning rate λ:

Q(x, a)← Q(x, a) + λ(r + κV (y)−Q(x, a)), (13)
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Table 1. Types of country-states divided by the accuracy of the country-states’ observations about the pandemic (full or partial to
some degree) and the type of optimization the government wants. The selfish optimizer aims to optimize the country-state’s
objective alone while the collective optimizer aims to optimize all country-states.

Fully observable
pandemic country-state
(FOPS)

α-partial observable
pandemic country-state
(POPSα)

χ-tested observable
pandemic country-state
(TOPSχ)

Selfish optimizer (SO) FOPS-SO country-state POPS-SO country-state TOPS-SO country-state

Collective optimizer (CO) FOPS-CO country-state POPS-CO country-state TOPS-CO country-state

where 0 ≤ κ ≤ 1 is a discount parameter (which indicates
if we aim to optimize short-term or long-term events), and

Ξ(x) := max
b∈{ai

j}|J|
j=0

Q(x, b). (14)

Note that while the agent explores the WS space,
its estimate of Q improves. Eventually, each Ξ(x)
approaches the mean value of the following term (Tan,
1993):

∞∑

n=1

(κn−1rt+n),

where ri is the reward received at time ti due to the action
chosen at time ti−1. This Q-learning algorithm converges
to an optimal decision policy for a finite Markov decision
process (Watkin and Dayan, 1992).

5. Simulation
Using the proposed model, we examined the performance
of the simulation on four optimal tourism policies (see
Table 1). First, we obtained data for European countries,
their central cities, and tourism flows among them from
(Khalid et al., 2020) and Google maps. A detailed
description of the country-states, cities, and population
allocated to each city is provided in Table A1 in Appendix.
Second, we evaluated the spread of the pandemic and the
economic loss resulting from the pandemic and tourism
for all of the country-states, divided by the tourism policy
they executed.

5.1. Experiment setup. We chose European countries
for the simulation due to their high degree of connectivity
by air and ground, close physical distance, and diversity
in their sizes. We included 46 country-states with 138
cities in total, hosting 2.258·103 individuals such that each
individual in the simulation represents 105 individuals due
to computation time.

The LOT between country-states is set according to
two rules. First, if two country-states (Ci, Cj) have a
common border, a LOT with an unlimited weight is added
between the capitals of (Ci, Cj). Second, we obtained
the flight schedules of the Lufthansa1 airline company

1https://www.lufthansa.com/il/en/homepage.

between June 1 and 8, 2019. Each flight schedule is set
to be a LOT with a weight corresponding to the average
number of flights in a day between the two cities.

The epidemiological sub-model’s parameter
represents the airborne transmission of a virus with a
long immune system response such as the COVID-19
pandemic. A summary of the parameters appears in
Table 2. 0.2% of the population is chosen randomly
as either asymptomatically exposed or symptomatically
exposed at a rate θ, while the remaining population is set
to susceptible.

Moreover, we defined a round to be a one-hour
duration. Despite its relatively short length, it is possible
for governments to measure it. Thus, it provides a fair
approximation of the pandemic’s dynamics but is realistic
enough for governments to use in order to make a decision
(Liu et al., 2020; Goldenbogen et al., 2022). Nevertheless,
given that governments must make decisions on a time
schedule, we assumed that the country-states act only
once a day at midnight.

The training of the country-states’ policy is
performed by running the same simulation 100 times
(selected manually after showing convergence) before the
evaluation simulation, setting the event horizon parameter
(λ) according to the policy as shown in Table 3. We
picked λ = 1 day to evaluate the performance of an
immediate response (as a classic Markov chain model
(Privault, 2018)). In addition, we chose λ = 14 days
due to the duration of the isolation period commonly used
for the COVID-19 pandemic (Dickens et al., 2020). As a
result, we chose λ = 7 days and λ = 28 days to indicate
half and double the duration, respectively, allowing us to
study the performance around the λ = 14 days.

We also extended the WS definition to be an ordered
union of the hourly world-states of the same day from
midnight to the following midnight (24 states) according
to Definition 2. This process was repeated for each type
of country-state, as described in Table 1.

Of note, while the FOPS is unrealistic in practice,
it provides a baseline for comparison for the POPS and
TOPS measuring methods.

The economic output at the beginning of the
simulation was set toO(0) = 0 to investigate the influence

https://www.lufthansa.com/il/en/homepage
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Table 2. Description of the model’s parameters, symbols, and values. The values are taken from the work of Lazebnik et al. (2021a)
such that each value that is divided into a child and an adult is taken as a weighted average in which children are 20% and
adults are 80% of the population.

Parameter definition Symbol Value
Average rate of transition (transmission) of a symptomatic infected individual to a
recovered state in hours [t−1]

γs 0.0066

Average rate of transition (transmission) of an asymptomatic infected individual to a
recovered state in hours [t−1]

γa 0.021

Average rate at a susceptible individual becomes infected due to direct contact with a
symptomatic infected individual in hours [t−1]

βs 0.0088

Average rate at a susceptible individual becomes infected due to direct contact with
an asymptomatic infected individual in hours [t−1]

βa 0.0088

Average rate at an exposed individual becomes either a symptomatic or asymptomatic
infection individual in hours [t−1]

θ 0.0208

Probability that an individual will be asymptomatic [1] ρ 0.2624

Probability of an infected individual recovering from the disease [1] ω 0.99

Table 3. Description of the tourism policies evaluated in the simulation.
Policy name Description
All open policy (AOP) All the LOT are fully (δ = 1) open all the time.
Total lockdown policy (TLP) If a country-state has a R0 > 1, all the LOTs are closed. Otherwise, all

the LOTs are open.
Optimal policy, event horizon of 1-day Each country-state is trained with a RL algorithm over 100 repetitions

with an event horizon of 1 day ahead.
Optimal policy, event horizon of 7-days Each country-state is trained with a RL algorithm over 100 repetitions

with an event horizon of 7-days ahead.
Optimal policy, event horizon of 14-days Each country-state is trained with a RL algorithm over 100 repetitions

with an event horizon of 14-days ahead.
Optimal policy, event horizon of 28-days Each country-state is trained with a RL algorithm over 100 repetitions

with an event horizon of 28-days ahead.

of these dynamics, regardless of previous economic
processes. In addition, we set the cost of medical care
for symptomatic and asymptomatic infected individuals
(rs, ra) to 0.8/γs, 0.1/γa of the average purchasing
power of each country-state, respectively. In addition,
the parameter cij indicates the amount of money a
tourist from country-state Ci spends in country-state Cj

in each unit of time (e.g., an hour) on average (see
Eqn. (10)), defined by the average purchasing power of
country-state Ci divided by the average purchasing power
of country-state Cj . This approximation works for those
individuals who come from rich countries and can spend
more in poor countries, but is asymmetrical the other
way around. Moreover, if a host country suffers from a
domestic crisis, it usually attracts more visitors from other
countries because of the devaluation of the host country’s
currency (Khalid et al., 2020). The average purchasing
power of individuals in each country-state used in the
simulation is provided in Table A1 in Appendix.

We performed all simulations for 4320 steps in
time. Thus, the simulations encompass one-half year (180
days), regardless of the epidemiological country-state of
the simulation. We adopted this approach to ensure that all
simulations would be for the same duration. The economy
changes as a function of time, with or without a pandemic.
Therefore, we compared the policies in the same time
frame.

5.2. Results. The results of the simulation appear
in Figs. 4–7. The x-axis is the rate of non-infected
individuals out of the total population and the y-axis is the
economic output. In the case before us, the output reflects
the components of the GDP that are directly related to the
subject of the current study: local income from tourists,
expenses for the treatment of sick residents and the loss
of their workdays, and the decline in the GDP resulting
from employees’ illness or the hospitalization of those
infected with the pathogen. The interested reader can
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Fig. 4. Selfish optimizer (SO) with a fully observable pandemic
country-state (FOPS).

Fig. 5. Collective optimizer (CO) with a fully observable pan-
demic country-state (FOPS).

expand the components sheet for future research. The
boxes indicate the mean ± standard deviations of each
policy for n = 100 simulations, as described in Table 1.
One policy is better than another if it is more to the left
and in the upper part of the graph.

6. Discussion
We propose a model for determining optimal border
closures and tourism flows during a global pandemic crisis
and test it using an in silico experiment with European
countries. Intuitively, we show that keeping the borders
of all countries open during the outbreak is an inefficient
policy, from both the epidemiological and economic
perspective. It results in the highest number of infected
individuals and the lowest total revenue from tourism

Fig. 6. Selfish optimizer (SO) with a partial observable pan-
demic country-state (POPS) where α = 0.001.

Fig. 7. Collective optimizer (CO) with a partial observable pan-
demic country-state (POPS) where α = 0.001.

activity, as the box in Figs. 4–7 indicates. Therefore, one
can conclude that governments must take active measures
of some kind.

The optimal policy that takes into consideration the
state of only one day is an approximation of a Markov
chain model (Privault, 2018) for each state separately in
the case of SO, and a single Markov chain model for the
case of CO. While this policy is statistically significantly
better than the naive all open policy (using two-tailed
t-tests, p < 0.001), it is still inferior to other policies that
take into consideration longer periods or some knowledge
of the epidemiological dynamics as shown in Figs. 4–7.
The poor performance of this policy can be associated
with the longer epidemiological dynamics of the current
pandemic. For example, the recovery rate is around 10
days and the exposure to the infection phase is around
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2 days long. As a result, by taking into consideration
only the dynamics of one day, the policy is blind to
these processes and cannot help governments prepare for
upcoming outbreaks.

Indeed, the optimal policy with seven days of the
event horizon is significantly better statistically (using
two-tailed t-tests, p < 0.001) than the policy with only a
one-day event horizon for each one of the four agent types,
as shown in Figs. 4–7. Similarly, the 14-day event horizon
optimal policy is statistically significantly better than the
7-day one for the CO-FOPS and SO-POPS agent types
(p < 0.05) but not for the SO-FOPS and CO-POPS. This
trend continues when comparing the 28-day event horizon
optimal policy with the 14-day one, which exhibits no
statistically significant differences in the four types of
agents. However, the 28-day policy shows a slightly better
consistency. One explanation for this result might be
that the epidemiological dynamics generally occur within
a 14-day long process. Thus, the 14-day event horizon
optimal policy has more opportunity than the 7-day one
to “learn” the dynamics better, because the latter is blind
to these processes. Moreover, there are minor, consistent,
but statistically insignificant dynamics longer than 14 days
and shorter than 28 days that make the 28-day event
horizon optimal policy a bit better than the 14-day one.

In addition, the total lockdown policy performs
well and is even statistically similar to the 7-day event
horizon optimal policy for the FOPS, TOPS, and POPS
country-states. Therefore, without sufficient historical
data, we can conclude that choosing this strategy promises
an initial good policy. While this policy is much stricter
than the all open policy, it is not surprising that it
improves both the number of non-infected individuals
and the tourism industry’s total revenue. Lazebnik et al.
(2021a) showed that aggressive intervention policies at the
beginning of a pandemic result in better outcomes over the
same period.

Unsurprisingly, all of the policies (except the all
open policy, which is independent of the world-state)
perform worse in α-POPS and ξ-TOPS where α = 0.001
and ξ = 0.9, respectively, compared to the FOPS case,
which operates as a baseline for the ideal condition for
decision making. Similarly, SO-type agents perform
worse globally than CO-type agents. This result suggests
that the optimal policy of a given country-state does not
correspond with that of other country-states, which, as
a result, establish policies that improve their economic
and epidemiological state, even if it means inflicting
losses on other country-states that have LOTs with them.
Comparing the α-POPS and ξ-TOPS yields statistically
similar results. This outcome is straightforward as both
approaches approximate the real epidemiological state of
the country-states with some errors. Thus, for every
epidemiological state approximation error, there exist α
and ξ that would result in this error. In such scenarios,

both approaches converge.

Our study is not free of limitations. Accurate
forecasts for the inputs, such as the expenditure of each
tourist in each destination country, broken down by
country of origin, were not available. For future research,
if reliable predictions are made available, an accurate
revenue loss forecast can be calculated. Moreover, a
possible extension of the proposed model is by taking
into consideration political relationships and culturally
driven decisions that are known to have a significant
influence on the tourism policies of country-states. Such
an extension will make the proposed model more realistic
by determining which policies are politically feasible.
One can represent such dynamics by modifying the spatial
dynamics of individuals and including the willingness
of an individual from country-state Ci to travel to
country-state Cj based on some political or cultural
metric.

A strength but also a limitation of the proposed
model is its failure to take epidemiological, biological,
and clinical assumptions into consideration. On one
hand, not including these factors ensures that the model
is generic and can be used for a wide range of pandemics
regardless of their exact biological and clinical properties.
On the other hand, failing to include these factors means
that the model’s outcomes will diverge from real-world
pandemic dynamics over time because it does not capture
fundamental properties of the pathogen(s) causing the
pandemic (Wiratsudakul et al., 2018; Adiga et al., 2020).
In particular, the proposed study assumes that each
country-state is rational and “ideal.” Namely, we assume
that the decisions made by each country-state are based
on pure data and aimed to optimize a clear objective
without handling political or cultural objectives, which we
know that they play a critical role in the decision-making
process (Pappas, 2021; Ntounis et al., 2021; Bhuiyan
et al., 2021).

Future studies can adopt our model and extend it
to specific pathogens in order to obtain a more narrow
but accurate model. In addition, this work does not deal
with epidemiological tests at the borders of country-states.
This approach has been utilized and provided a promising
solution for international traveling during a pandemic
(Chevalier et al., 2022; Burns et al., 2020). One can
remedy this shortcoming by introducing such dynamics
into a future model.

We should also treat our results with caution because
increasing the number of repetitions may cause an
inflection of the statistics and therefore artificially small
p-values (White et al., 2014). We used only 100
samples (e.g., simulation repetitions), which is considered
a relatively small sample size for most statistical tests in
order to avoid the inflection of the statistics and obtain
trustworthy results.
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7. Conclusion
In this study, we sought to determine the optimal policy
regarding border closures and tourism flows during a
global health crisis. This policy should prevent an
outbreak and maximize the revenue generated from
tourism. Our results indicate that the strict border
closure policy that countries followed in the wake of
the COVID-19 pandemic was a fair policy. While this
policy is statistically significantly worse than the optimal
policy (p < 0.0001), as shown in Figs. 4–7, it has
two advantages. First, it is simple to evaluate because
it follows only one rule (e.g., R0 > 1). Second,
it provides an immediate response because it does not
require the length of time involved in the 14-day event
horizon optimal policy. Moreover, the relatively moderate
economic loss is due to the fact that introducing a strict
border closure policy at the beginning of the outbreak
will lead to early control of the spread of the pandemic
and thus allow a faster return to routine, a result that
is consistent with the conclusions of previous studies
(Lazebnik et al., 2021b).

Nevertheless, according to our model, the best policy
is the 14-day event horizon optimal policy. While it
provided slightly worse results than an RL-based policy
that is trained on a longer event horizon, this difference is
not necessarily worth the technical difficulty of sampling,
organizing, and managing linearly growing data sets.

To put our results into practice, governments can
take the following steps. First, in the wake of a health
crisis, start with the total lockdown policy, while obtaining
information on the pandemic’s spread and population’s
epidemiological state along with the biological properties
of the pathogen causing the pandemic. Second, using the
gathered data, determine the optimal policy using an in sil-
ico experiment. Third, act according to the optimal model
for a short period and fine-tune the model’s parameters
so that the difference between the predicted state and
the resulting one is zero. Finally, continue using the
fine-tuned optimal policy while updating it as conditions
change.

In times of crisis, cooperation and information and
knowledge sharing between countries are an important
line of defense in their efforts to return to routine.
The tourism industry is sensitive to sudden changes,
so in times of crisis, decision-makers must determine
the optimal policy that is data-driven to minimize the
economic losses inflicted on this industry. The model
we propose may help decision-makers achieve this goal
effectively.
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Rosselló, J., Becken, S. and Santana-Gallego, M. (2020). The
effects of natural disasters on international tourism: A
global analysis, Tourism Management 79: 104080.

Selbst, A.D. and Barocas, S. (2018). The intuitive
appeal of explainable machines, Fordham Law Review
87(3): 1085–1140.

Shami, L. and Lazebnik, T. (2022). Financing and managing
epidemiological-economic crises: Are we ready to another
outbreak?, Journal of Policy Modeling 45(1): 74–89.

She, J., Liu, L. and Liu, W. (2020). COVID-19 epidemic:
Disease characteristics in children, Journal of Medical Vi-
rology 92(7): 747–754.

Sun, S., Li, J., Guo, J.-E. and Wang, S. (2021). Tourism demand
forecasting: An ensemble deep learning approach, Tourism
Economics 28(8): 2021–2049.

Tan, M. (1993). Multi-agent reinforcement learning:
Independent vs. cooperative agents, In Proceedings of
the 10th International Conference on Machine Learning,
Amherst, USA, pp. 330–337.



A hybrid mathematical model for an optimal border closure policy during a pandemic 599

Teixeira, J.P. and Fernandes, P.O. (2012). Tourism time
series forecast-different ANN architectures with time index
input, Procedia Technology 5: 445–454.

Tinbergen, J. (1962). Shaping the World Economy; Sugges-
tions for an international Economic Policy, The Twentieth
Century Fund, New York.

Tuite, A.R., Fisman, D.N. and Greer, A.L. (2020). Mathematical
modelling of COVID-19 transmission and mitigation
strategies in the population of Ontario, Canada, Canadian
Medical Association Journal 192: E497–E505.

UNWTO (2022). UNWTO World Tourism Barometer
and Statistical Annex, January 2022 20(1), DOI:
10.18111/wtobarometereng.2022.20.1.1, (English ver-
sion).

UNWTO (2021). UNWTO World Tourism Barome-
ter and Statistical Annex, May 2021 19(3), DOI:
10.18111/wtobarometereng.2021.19.1.3, (English ver-
sion).

Van Truong, N. and Shimizu, T. (2017). The effect of
transportation on tourism promotion: Literature review on
application of the computable general equilibrium (CGE)
model, Transportation Research Procedia 25: 3096–3115.

Viguerie, A., Lorenzo, G., Auricchio, F., Baroli, D.,
Hughes, T.J.R., Patton, A., Reali, A., Yankeelov,
T.E. and Veneziani, A. (2020). Simulating the
spread of COVID-19 via a spatially-resolved
susceptible-exposed-infected-recovered-deceased (SEIRD)
model with heterogeneous diffusion, Applied Mathematics
Letters 111: 106617.

Virlogeux, V., Li, M., Tsang, T.K., Feng, L., Fang, V.J., Jiang,
H., Wu, P., Zheng, J., Lau, E.H.Y., Cao, Y., Qin, Y.,
Liao, Q., Yu, H. and Cowling, B.J. (2015). Estimating
the distribution of the incubation periods of human avian
influenza A(H7N9) virus infections, American Journal of
Epidemiology 182(8): 723–729.

Watkin, C.J.C.H. and Dayan, P. (1989). Learning With Delayed
Rewards, PhD thesis, King’s College, Cambridge.

Watkin, C.J.C.H. and Dayan, P. (1992). Technical note:
Q-learning, Machine Learning 8: 279–292.

White, J.W., Rassweiler, A., Samhouri, J.F., Stier, A.C. and
White, C. (2014). Ecologists should not use statistical
significance tests to interpret simulation model results,
Oikos 123(4): 385–388.

Wilder-Smith, A. (2006). The severe acute respiratory
syndrome: Impact on travel and tourism, Travel Medicine
and Infectious Disease 4(2): 53–60.

Wiratsudakul, A., Suparit, P. and Modchang, C. (2018).
Dynamics of Zika virus outbreaks: An overview of
mathematical modeling approaches, PeerJ 6: e4526.

Wut, T.M., Xu, J.B. and Wong, S. (2021). Crisis management
research (1985–2020) in the hospitality and tourism
industry: A review and research agenda, Tourism Manage-
ment 85: 104307.

Zhao, S., Stone, L., Gao, D., Musa, S.S., Chong, M.K.C., He,
D. and Wang, M.H. (2020). Imitation dynamics in the
mitigation of the novel coronavirus disease (COVID-19)
outbreak in Wuhan, China, from 2019 to 2020, Annals of
Transnational Medicine 8(7): 448.

Zhu, Z., Weber, E., Strohsal, T. and Serhan, D. (2021).
Sustainable border control policy in the COVID-19
pandemic: A math modeling study, Travel Medicine and
Infectious Disease 41: 102044.

Teddy Lazebnik received his BCS and MS de-
grees in mathematics from Bar Ilan University in
2016 and 2018, respectively. In addition, he re-
ceived his PhD degree in mathematics from Ariel
University in 2021. During 2021–2023 he was a
post-doctoral fellow in University College Lon-
don. He joined the Department of Mathematics,
Ariel University, in 2023 as an assistant profes-
sor. His research interests include mathemati-
cal and computational modeling for personalized

medicine. He has co-authored more than 75 papers.

Labib Shami is a senior researcher at the Taub
Center, a staff member of the Department of Eco-
nomics at Western Galilee College, and a lec-
turer in the Department of Economics at the Uni-
versity of Haifa. He holds a doctoral degree in
economics from the University of Haifa. His
main research interests lie in the area of macroe-
conomics, monetary policy, and non-observed
economies.

Svetlana Bunimovich-Mendrazitsky is a mathematician with the am-
bition to understand the biological mechanisms of human diseases such
as cancer and autoimmune diseases. She is interested in clinical research
and sustainability in the biological context, based on mathematical mod-
eling and simulation. Since completing her doctoral dissertation in 2007
at Tel-Aviv University, she has been working on a number of projects
in the field of mathematical models of cancer growth and treatment as a
lecturer and researcher at Ariel University, Israel.

Appendix
States and cities used in the simulation

The Europe model’s states and cities are described
in Table A1, where the average purchasing power is
calculated by taking the gross income of each state
divided by the average cost of a McDonald’s burger in
the same state and then multiplied by the average cost of
a McDonald’s burger in Europe.
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Table A1. States and their cities with the size population in each city and the average buying power in euro in 2021.

State index State Cities Population size Pop. size sampled
date

Avg. purchasing
power in euro

1 Albania Tirana 906166 2020 447
1 Albania Durrës 205849 2021
2 Andorra Andorra la Vella 22615 2021 2746
2 Andorra Escaldes-Engordany 14282 2021
3 Armenia Yerevan 1068300 2021 359
3 Armenia Gyumri 119900 2021
4 Austria Vienna 1765649 2021 4451
4 Austria Graz 269997 2021
4 Austria Linz 193814 2021
4 Austria Salzburg 146631 2021
5 Azerbaijan Baku 2293100 2020 355
5 Azerbaijan Ganja 344108 2021
6 Belarus Minsk 2645500 2021 410
7 Belgium City of Brussels 1831742 2021 3627
7 Belgium Antwerp 472526 2018
8 Bosnia & Herzegovina Sarajevo 343000 2020 792
8 Bosnia & Herzegovina Banja Luka 150997 2021
9 Bulgaria Sofia 1196389 2021 767
9 Bulgaria Plovdiv 384156 2020
9 Bulgaria Varna 369632 2020
9 Bulgaria Burgas 210316 2021
10 Croatia Zagreb 688163 2021 1242
10 Croatia Split 167121 2021
10 Croatia Rijeka 128384 2021
11 Cyprus Nicosia 335900 2021 1992
11 Cyprus Limassol 242000 2021
11 Cyprus Larnaca 146500 2021
11 Cyprus Paphos 92300 2021
12 Czech Republic Prague 1272690 2021 1385
12 Czech Republic Brno 382405 2021
12 Czech Republic Ostrava 284982 2021
12 Czech Republic Plzeň 175219 2021
13 Denmark Copenhagen 794023 2021 5607
13 Denmark Aarhus 280534 2020
13 Denmark Odense 180760 2020
13 Denmark Aalborg 142937 2021
14 Estonia Tallinn 445494 2020 1604
14 Estonia Tartu 97171 2021
15 Finland Helsinki 1299541 2020 4728
15 Finland Espoo 241589 2021
15 Finland Tampere 230000 2019
15 Finland Turku 180000 2019
16 France Paris 13024518 2020 3258
16 France Marseille 1760653 2021
16 France Lyon 2323221 2021
16 France Toulouse 1360829 2018
16 France Nice 1006402 2019
16 France Strasbourg 790087 2018
16 France Bordeaux 241287 2021
17 Georgia Tbilisi 1184818 2020 331
17 Georgia Batumi 169095 2020
17 Georgia Kutaisi 135201 2020
18 Germany Berlin 3644826 2019 4035
18 Germany Hamburg 1841179 2019
18 Germany Munich 1471508 2019
18 Germany Cologne 1087863 2021
18 Germany Frankfurt am Main 753056 2019
18 Germany Düsseldorf 645923 2019
18 Germany Dortmund 587010 2019
18 Germany Leipzig 593145 2019
19 Greece Athens 3168846 2021 1466
19 Greece Thessaloniki 806635 2021
19 Hungary Budapest 2965398 2020 1251
20 Hungary Debrecen 201432 2019
21 Iceland Reykjavı́k 129840 2019 4739
22 Ireland Dublin 1024027 2021 3550
23 Italy Rome 4342121 2020 2446
23 Italy Milan 4336121 2020
23 Italy Naples 956183 2019
23 Italy Turin 870456 2020
23 Italy Palermo 676527 2021
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23 Italy Genoa 594254 2021
23 Italy Venice 264919 2021
23 Italy Bologna 385435 2021
23 Italy Florence 379102 2021
24 Latvia Riga 627487 2020 1249
25 Liechtenstein Liechtenstein 38590 2019 5804
26 Lithuania Vilnius 650412 2021 1524
26 Lithuania Kaunas 306700 2019
27 Luxembourg Luxembourg City 124528 2021 5143
28 Malta Valletta 400444 2014 2078
29 Moldova Kishinev 832900 2019 422
30 Monaco Monaco 38100 2019 4218
31 Montenegro Podgorica 185937 2018 787
32 Netherlands Amsterdam 872757 2019 2855
32 Netherlands Rotterdam 631155 2021
32 Netherlands The Hague 501725 2021
32 Netherlands Utrecht 358454 2020
33 North Macedonia Skopje 509900 2018 688
34 Norway Oslo 697010 2020 4690
34 Norway Bergen 283929 2019
35 Poland Warsaw 3100844 2020 1316
35 Poland Kraków 1725894 2019
36 Portugal Lisbon 2854802 2018 1266
36 Portugal Porto 1725300 2018
37 Romania Bucharest 2315173 2020 1211
37 Romania Jassy 500668 2018
38 Russia Moscow 17400000 2021 527
38 Russia Saint Petersburg 6284342 2021
38 Russia Novosibirsk 1620162 2021
38 Russia Yekaterinburg 2211425 2021
38 Russia Kazan 1560000 2021
38 Russia Nizhny Novgorod 2086972 2021
39 San Marino San Marino 33600 2021 2445
40 Serbia Belgrade 1659440 2018 775
41 Slovakia Bratislava 659598 2020 1494
42 Slovenia Ljubljana 537893 2020 2028
43 Spain Madrid 6791667 2019 2603
43 Spain Barcelona 5474482 2019
43 Spain Valencia 2522383 2018
43 Spain Seville 1519639 2018
43 Spain Zaragoza 666880 2018
43 Spain Málaga 967250 2018
44 Sweden Stockholm 2391990 2021 4204
44 Sweden Gothenburg 1025355 2019
44 Sweden Malmö 740840 2019
45 Switzerland Zürich 1333269 2018 5882
45 Switzerland Bern 269356 2016
45 Switzerland Geneva 496450 2017
46 Turkey Ankara 5663322 2020 410
46 Turkey Istanbul 15462452 2020
46 Turkey Izmir 4367251 2019
46 Turkey Antalya 2548308 2020
46 Turkey Bursa 3101833 2020
47 Ukraine Kyiv 3375000 2020 420
47 Ukraine Odessa 1217699 2020
47 Ukraine Kharkiv 2032400 2020
47 Ukraine Dnipro 999725 2020
47 Ukraine Lviv 720383 2020
48 United Kingdom London 14257962 2020 3396
48 United Kingdom Birmingham 3683000 2019
48 United Kingdom Leeds 2638127 2019
48 United Kingdom Glasgow 1861315 2019
48 United Kingdom Belfast 341877 2019
48 United Kingdom Manchester 2705000 2019
48 United Kingdom Edinburgh 901455 2019
48 United Kingdom Liverpool 2241000 2019
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