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White blood cells (WBCs) are essential for immune and inflammatory responses, and their precise classification is crucial
for diagnosing and managing diseases. Although convolutional neural networks (CNNs) are effective for image classifica-
tion, their high computational demands necessitate feature selection to enhance efficiency and interpretability. This study
utilizes transfer learning with EfficientNet-B0 and DenseNet201 to extract features, along with a Bayesian-based feature
selection method with a novel optimization mechanism to improve convergence. The reduced feature set is classified us-
ing soft voting across multiple classifiers. Tests on benchmark datasets achieved over 99% accuracy with fewer features,
surpassing or matching existing methods.
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1. Introduction
White blood cells, also called leukocytes, play a crucial
role in maintaining the human immune system. They
serve as the first line of defense against foreign agents,
including bacteria, viruses, and parasites (Farag and
Alagawany, 2018). Their versatile functions include
detecting pathogens, orchestrating immune responses,
aiding in tissue regeneration, and monitoring for diseases.
These functions collectively improve the body’s ability to
defend itself and recover from injuries and ailments.

*Corresponding author

Leukocytes are primarily classified into two types
of cells: granulocytes and agranulocytes. This
classification depends on whether they possess minute
membrane-bound vesicles, known as granules, within
their cytoplasm. These granules contain several enzymes
that play an important role in immune responses.
Granulocytes are further divided into three types, namely
neutrophils, basophils and eosinophils. Neutrophils are
the most prevalent type of white blood cells (WBCs) that
respond first to infections. They show strong phagocytic
capabilities, enabling them to engulf and digest bacteria
and other foreign substances effectively. Eosinophils
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serve to regulate the immune response and combat specific
allergens as well as parasites. Basophils release histamine
and other compounds that participate in allergic reactions
and the inflammatory process. Agranulocytes are the cells
without the presence of granules inside their cytoplasm.
They are further divided into lymphocytes and monocytes
(Weatherspoon, 2024). Lymphocytes further include B
cells and T cells which respectively produce antibodies
and attack infected cells. Monocytes have the ability to
migrate to tissue and turn into macrophages which are
crucial for immunological monitoring and tissue healing
(Mathur et al., 2013).

An essential step in the detection of various medical
disorders is the analysis of WBCs. A traditional
method for analyzing white blood cells, referred to as
the WBC differential, involves the creation of blood
smears. This procedure entails the application and
coloring of a tiny layer of blood onto a glass slide,
which is subsequently examined under a microscope. It
involves an experienced haematologist or a laboratory
expert who manually classifies and counts various types
of WBCs in a given blood sample. This manual
technique of WBC analysis is not only arduous and
time-consuming, but it also has inaccuracies that are
caused by a number of external factors. Flow cytometry, a
sophisticated technique for WBC measurement, employs
lasers to distinguish between various cell types. Image
flow cytometry is a hybrid approach that combines high
resolution image technology with flow cytometry. It
can recognize and count individual cells based on their
physical characteristics. Mass spectroscopy is another
technique which used to identify specific proteins present
on the surface of WBCs. More advanced biomedical
analysis technologies such as lab-on-a-chip have been
recently being investigated (Sakaguchi et al., 2022).
While promising for accurate analysis, these methods
have very high cost and still require specialized human
intervention.

In recent years, image assisted technologies have
brought a remarkable breakthrough in biomedical
diagnostics (Zhang et al., 2021; He et al., 2020; Huang
et al., 2022). Scientists have become more interested in
using advanced computer vision and machine learning
techniques for effective diagnosis of several medical
conditions (Sun et al., 2023; Zhu, 2024; Lu et al., 2023).
A breakthrough in this domain is made by convolutional
neural networks (CNNs) that have emerged as a valuable
tool in a wide variety of biomedical classification tasks.
These networks have the capability to identify complex
and subtle features in images. Several pre-trained deep
CNN models have been introduced at the forefront of
research, boasting high Top-1 accuracy across a spectrum
of image object classes. GoogleNet (Szegedy et al., 2015),
DenseNet (Howard et al., 2017), EfficientNet (Tan and
Le, 2019), ResNet (He et al., 2016) and DarkNet (Redmon

and Farhadi, 2018) are among the few names to mention.
However, these networks require an extensive dataset for
training from scratch to achieve an optimal accuracy for
a particular task. In circumstances where such a dataset
is not readily available, transfer learning emerges as a
preferred technique, wherein a CNN model previously
developed and pre-trained for one task is adapted for
another task.

Transfer learning is typically executed in two
manners: fine-tuning and feature extraction. Fine tuning
involves adjustment of weights of the pre-trained model
in accordance with the task-specific dataset. Conversely,
feature extraction uses the pre-trained model to obtain a
rich set of features from the input data, which are then
employed to train outer classifiers for a particular task.
An inherent limitation in employing deep CNNs as feature
extractors is the high dimensionality of the resulting
feature set, often marked by redundancy. Consequently,
this imposes substantial storage and computational
burdens on subsequent classifiers (Zhang et al., 2024).
Furthermore, a classification model may lose accuracy
due to overfitting caused by excessive redundant features.
Feature selection is an important step in machine learning
workflows. It improves the performance, efficiency
and interpretability of machine learning models by
selecting a manageable number of most discriminating
features. The aim of the present research activities is to
maximize the classification performance while reducing
the computational and memory requirements with the help
of smaller and more streamlined feature sets.

2. Literature review
In the published literature, machine learning methods
for WBC classification consist of two categories of
works. The first category includes the methods which
involve extraction of handcrafted features from blood
smear images and their classification using traditional
classifiers. Some considerable contributions in this
categories are the following. Tavakoli et al. (2021)
proposed a method to segment the cytoplasm and nucleus
of blood smear images. Segmentation of the nucleus
is performed using Otsu’s thresholding applied to the
softmap of the image represented in CMYK and HLS
color space. The cytoplasm is segmented by obtaining
the convex hull of the nucleus. From the segmented
nucleus and cytoplasm, multiple color and shape features
are obtained and classified with the help of an SVM
classifier. A 94.65% accuracy is achieved with the
Raabin-WBC dataset. A clustering method is suggested
by Sarrafzadeh et al. (2014) for separation of nucleus
from the cytoplasm of WBCs. The work extracts
color, shape, geometric, statistical and moment invariant
features from nucleus and cytoplasm of leukocytes and
classifies them with an SVM classifier with a one-to-one
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architecture. The methodology achieves an accuracy of
93% on a dataset of 10 patients including 149 WBC
blood smear images. Ko et al. (2011) suggested an image
segmentation technique based on mean-shift clustering.
This technique extracts a collection of geometrical,
textural and shape features and their classification using
a random forest classifier. Abdullah and Turan (2019)
examined the effectiveness of six different machine
learning methods on various statistical and geometric
features. The multinomial logistic regression technique
showcases improved performance.

In the work by Alruwaili (2021), a sequential
linear discriminant analysis method designed to pinpoint
distinct traits within blood smear images is used. These
traits are then classified utilizing regression values,
including partial F-values. Similarly, Su et al. (2014)
proposed a method to locate a specific region of
interest in HSI domain images of WBCs. Distinct
colored pixels representing white blood cell nuclei
and cytoplasmic granules were identified within the
elliptical discriminating zone. Geometrical features, color
attributes, and data based on local difference patterns
(LDP) are additionally extracted and fed into multiple
neural networks for WBC subtype classification. In the
work of Sajjad et al. (2017), a framework is presented
that relies on color K-means clustering in order to
segment WBC’s nucliei from microscopic blood smear
images. Next, the segmented image is transformed to
frequency domain to extract several statistical and texture
features. Later a multi-class ensemble classifier is used
for leukocyte classification at a mobile cloud.

The second category consists of feature extraction
and classification techniques that make use of deep neural
networks. Here, a few noteworthy contributions are
mentioned. Sharma et al. (2022) utilized DenseNet121
CNN along with image normalization and augmentation
to classify several types of WBCs. The methodology is
validated with different batch sizes and Adam optimizer.
A maximum accuracy of 98.84% is reported for a Kaggle
dataset. Yao et al. (2021) proposed a method which
increases the model robustness using two-module transfer
learning and deformable convolution. The proposed
method is then compared with several classical CNN
models on the proprietary dataset of the authors as well
as BCCD dataset. In the work of Almezhghwi and
Serte (2020), the process involves dataset augmentation
through generative adversarial networks, followed by the
utilization of transfer learning with the DenseNet169
network for WBC classification.

An important aspect of supervised learning based
classification methods is the dimensionality reduction
of the feature space (Yu et al., 2024). This is done
by selecting the most dominant set of features. Most
existing works on feature selection employ a filter-based
approach, which overlooks the relationship between the

classification algorithm and the feature subset (Kandukuri
et al., 2023). In contrast, the wrapper approach takes into
account the close relationship between the selected feature
subset and accuracy. Population based and probabilistic
methods have been extensively applied to solve a wide
variety of combinatorial optimization problems (Iqbal
et al., 2018; Malik et al., 2023).

In recent years, there has been lively interest in using
iterative and evolutionary methods for feature selection.
Several nature inspired evolutionary meta-heuristics have
been applied to solve the feature optimization problem
(Gupta et al., 2020; Liu et al., 2018; Ahmad et al., 2023a;
2023b; Shahzad et al., 2022). Improved (search space
exploration and exploitation as well as algorithm design
to avoid local optima are major challenges that must be
addressed in order to attain improved accuracy utilizing
these approaches.

2.1. Contributions. This work presents a refined
methodology for WBC sub-type classification using deep
transfer learning. In this work, the following contributions
are made;

1. Transfer learning is employed for deep feature
extraction using two prominent deep CNN models,
i.e., DenseNet201 and EfficientNet-B0. An ensemble
of feature vectors extracted from both the networks is
then created.

2. A novel feature selection method is proposed
that models the process as a binary combinatorial
optimization problem with an objective to obtain the
best feature set that can minimize the classification
error rate. This difficulty is tackled by employing
a probabilistic Bayesian approach that utilizes the
estimation of distribution algorithm (EDA). In order
to reduce the likelihood of reaching a sub-optimal
solution, a custom EDA incorporates an efficient
thresholding of probabilities of each variable of
candidate solutions. The method effectively removes
redundant and less powerful features, keeping only
the most relevant set of deep features.

3. The set of selected features is subsequently utilized
to train multiple outer classifiers with different kernel
configurations.

4. The proposed method is validated on multiple
standard datasets containing blood smear images
of WBCs. Our method showcases superior
or comparable performance, accompanied by a
substantial reduction in the feature vector size, when
compared with several existing approaches.

In the rest of the paper, Section 3 discusses
all steps of proposed methodology for WBC sub-type
classification. The experimental setup and results are
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presented in Section 4 along with quantitative and
statistical analysis. In Section 5, the main conclusions
drawn from this study are discussed.

3. Materials and methods
3.1. Datasets. This study is performed on three
publicly available datasets of WBC images, namely LISC,
RABIN-WBC, and CUK.

LISC dataset. The LISC dataset (Rezatofighi and
Soltanian-Zadeh, 2011) is composed of blood smear
images belonging to 8 healthy subjects and sampled from
100 microscopic slides. The blood smear images were
subjected to Gismo-Right staining prior to their analysis
using an Axioskope 40 light microscope with a 100×
magnification lens. Images were captured with a Sony
SSCDC50AP digital camera and saved as BMP files with
dimensions 720×560. The dataset consists of 180 training
images and 170 testing images.

Raabin-WBC dataset. The Raabin-WBC dataset
(Kouzehkanan et al., 2022) is a publicly available large
dataset of WBCs images with cropped region of interest.
This dataset comprises two labeled image sets, Train
and Test-A, acquired from 56 normal peripheral blood
smears. These sets capture four distinct white blood
cell (WBC) types: lymphocytes, monocytes, neutrophils,
and eosinophils. To enrich WBC diversity, an additional
case of chronic myeloid leukemia (CML) was included
for representation of basophils. The total image count
is 14,514 across Train and Test-A. All smears were
Giemsa-stained. Standard peripheral blood smears were
captured using a Samsung Galaxy S5 camera and an
Olympus CX18 microscope. Additionally, the CML slide
was imaged using an LG G3 camera phone in conjunction
with a Zeiss microscope with 100× magnification lens.

CUK dataset. This synthetic dataset was created by Jung
et al. (2022) from the original dataset collected by the
Catholic University of Korea. The dataset consists of 5000
images with equal distribution across all five classes of
WBCs.

The distribution of cell classes within each dataset
is comprehensively summarized in Table 1, whereas
selected samples of images belonging to all WBC
classes of these datasets is shown in Fig. 1. Table 2
summarizes key properties of WBCs in blood smear
images, including nuclear and cytoplasmic morphology,
along with nucleus-to-cytoplasm ratio (NCR).

3.2. Deep learning pipeline for WBC classification.
The intricate process of classifying WBCs from images
unfolds in a series of computational steps, visualized in
Fig. 2. Each step plays a crucial role, as detailed in the
following sections.
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Fig. 1. Several samples of the Raabin-WBC, LISC and CUK datasets used in this study.

3.2.1. Preprocessing. The initial phase performs
the contrast enhancement of both training and testing
datasets. In most of the classical methods, contrast
enhancement is accomplished by applying traditional
histogram equalization of gray-scale images. However,
when working with microscopic images, solely applying
histogram equalization on RGB components may increase
the intensity of regions with low intensity values, leading
to challenges in discerning pertinent features from noise
artifacts. With the goal of addressing this challenge,
this work introduces contrast enhancement to the HSI
image, taking into account the fact that in HSI, the
intensity information is separated from hue and saturation.
The partitioning is used to reduce the sensitivity of the
RGB channels to changes caused by unfavorable lighting
circumstances. This segmentation allows for the separate
examination or combination of each channel, thereby
permitting the extraction of subtle information relevant to
the task of recognition.

The following are the preprocessing steps performed
in this work:

(i) transformation from RGB to HSI color space,

(ii) intensity matrix generation,

(iii) equalizing the computed intensity matrix using a
histogram,

(iv) substitution of the current intensity values with the
revised values,

(v) mapping back from HSI to RGB color space.

3.2.2. Feature extraction. An effective extraction of
features is of paramount importance in classification tasks.
This study utilizes feature extraction through transfer
learning with two well-established deep convolutional
neural networks: EfficientNetB0 and DenseNet201, as
elaborated below.

EfficientNet. It was proposed by Google AI (Tan and
Le, 2019). It distinguishes itself by achieving high
accuracy in image recognition tasks while also being
efficient in terms of memory and processing power.
In contrast to traditional CNNs, which indiscriminately
increase depth, width, or resolution in pursuit of higher
accuracy, EfficientNet employs a unique compound
scaling approach which scales all three dimensions of the
network in a balanced manner, thus optimizing efficiency
and performance. EfficientNet is family of models
(B0-B7), where larger models (B1-B7) achieve higher
accuracy at the cost of more parameters. This study adopts
the EfficientNetB0 CNN model, characterized by three
primary types of building blocks: the stem layer, mobile
inverted bottleneck convolution (MBConv) blocks, and
squeeze-and-excitation (SE) blocks. The stem layer is the
initial stage, which processes the input image. Typically,
it employs a combination of convolutional and pooling
layers in order to compute basic features of the input
image. Table 3 lists the details about the dimensions
of the kernel used in convolution operations, as well
as the resolution, channels, and number of layers in
EfficientNetB0.

MBConv blocks are pivotal in EfficientNet’s
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Table 2. Some important visual properties of the microscopic images of WBCs.
Cell type Visual properties Nucleus NCR
Neutrophils Multi-lobed nucleus 3-5 lobes

connected by thin threads
Pale pink with fine lilac
granules

Low NCR, with the nucleus
often appearing smaller than
the cytoplasm

Lymphocytes Round or slightly indented nucleus Scant, clear to pale blue,
with few or no visible
granules

High NCR, with the nucleus
occupying a large portion of
the cell

Monocytes Horseshoe-shaped or kidney-
-shaped nucleus

Abundant, pale grey
to light blue, with fine
azurophilic granules
scattered throughout

Variable, but generally
higher than neutrophils

Eosinophils Bilobed nucleus: Connected by a
thin thread, resembling spectacles
or glasses

Abundant, light orange to
red, with large, coarse,
eosinophilic granules

Low to moderate, depending
on the maturity of the cell

Basophils Lobulated nucleus: Usually 2–4
lobes, often obscured by large
basophilic granules

Scant, clear to pale blue,
with large, dark blue to
purple basophilic granules
masking the nucleus

Very low, with the nucleus
often barely visible

Table 3. Kernel size, resolution, channels, and number of layers of EfficientNetB0.

Input ize No. of hannels ayers

1 Conv 3× 3 224× 224 32 1

2 MBConv1, k3× 3 112× 112 16 1

3 MBConv5, k3× 3 112× 112 24 2

4 MBConv6, k5× 5 56× 56 40 2

5 MBConv6, k3× 3 28× 28 80 3

6 MBConv6, k5× 5 14× 14 112 3

7 MBConv6, k5× 5 14× 14 192 4

8 MBConv6, k3× 3 7× 7 320 4

9 Conv 1× 1 & Pooling & FC 7× 7 1280 1

architecture, facilitating efficient and potent feature
extraction. They leverage an inverted residual connection,
diverging from the standard residual connection, which
typically involves adding input to output for residual
mapping learning. In MBConv, this connection begins
by expanding channel numbers via a lightweight layer,
followed by depth-wise separable convolutions for feature
extraction, and concludes with channel compression
to reduce dimensionality. This approach significantly
reduces computational complexity while preserving
representational capacity.

At the heart of the MBConv block lies the depth-wise
separable convolution, comprising two consecutive
convolutions: depth-wise convolution, which applies
distinct filters to each input channel independently, and
point-wise convolution, merging output channels with a
1× 1 convolution. Additionally, SE blocks are embedded

within MBConv blocks. These blocks take feature maps
from the MBConv block as input, where each channel
denotes a specific feature. Global average pooling
across width and height dimensions condenses spatial
information into single values, effectively capturing
overall channel activation. This yields a vector
representing the importance of the features based on the
activations on the map. SE blocks dynamically adjust the
channel weights, helping the model distinguish between
informative and less relevant features.

The methodology involved utilizing the pretrained
EfficientNetB0 model to extract features, which had
previously undergone training on the ImageNet dataset
(ImageNet, 2024). In order to match the input layer
requirements of EfficentNetB0, the input images are first
resized to (224 × 224 × 3) using the nearest neighbor
interpolation method. Subsequently, augmentation of
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Fig. 2. Proposed system for WBC sub-type classification.

images is applied through random rotation of images in
the range from 0 to 360 degrees and rescaling with a
random factor in the range from 0.5 to 1. An alternative
fully connected (FC) layer replaced the existing FC
layer in the network to ensure that the output dimension
matches the classes of WBC dataset under examination.
New softmax and classification layers are added in the
network replacing the existing corresponding layers. A
total of 1280 deep features per training and testing image
are obtained from the global-average pool layer of the
network.

DenseNet201. The DenseNet architecture, comprising
201 layers, is trained using the ImageNet dataset
(ImageNet, 2024). This architecture is carefully tailored
to address the vanishing gradients problem. Layers are
concatenated such that each layer leverages the collective
knowledge gained from previous layers. As a result, the
resulting network is small yet computationally efficient.
The layerwise details of the DenseNet201 network are
summarized in Table 4.

For the transfer learning of DenseNet201, a new
fully connected layer (FC5) is embedded in the network
to replace the “fc1000” layer, corresponding to five
WBC subtypes. Additionally, a new softmax layer is
incorporated into the classification layer, which does not
contain any class identifiers. Before the initiation of
training, the dimensions of input images are changed

to 224 × 224 and enhanced using operations such as
rotation and inverting. Through the utilization of the
global average pooling layer within the trained network,
features are extracted, resulting in the generation of a
feature vector consisting of 1920 features per image.

3.2.3. Feature fusion. In the next step, a serial
concatenation is performed of the extracted feature
vectors from both networks. Let A and B represent
the feature vectors generated by the two deep CNNs,
respectively, with sizes of 1 × a and 1 × b. The fused
feature vector Z has dimensions of 1× (a+ b) and can be
mathematically represented as

Z = [A,B]. (1)

The above feature fusion step obtains a joint feature vector
of size 1× 3200 per training/testing image.

3.2.4. Feature selection using the estimation of the
distribution algorithm. As a core contribution, this
study endeavours to model the feature selection as a
binary combinatorial optimization problem and solve
it using a meta-heuristic technique. The optimization
is aimed at reducing the number of features while
maintaining a high level of classification accuracy. We
propose a probabilistic Bayesian method for feature
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Table 4. Layer-wise details of the DenseNet201 network.
Type of layer Composition Repeat factor   Output size

Input – – 224× 224
Convolution Conv(7× 7), stride 2 112× 112

MaxPool (3× 3), stride 2 56× 56

Dense Block 1
Conv(1× 1)

6
Conv(3× 3 ) 56× 56

Transition Layer 1
Conv(1× 1)

1
56× 56

Avg Pool(2× 2), Stride 2 28× 28

Dense Block 2
Conv(1× 1)

12
Conv(3× 3 ) 28× 28

Transition Layer 2
Conv(1× 1)

1
28× 28

Avg Pool(2× 2), Stride 2 14× 14

Dense Block 3
Conv(1× 1)

48
Conv(3× 3 ) 14× 14

Transition Layer 3
Conv(1× 1)

1
14× 14

Avg Pool(2× 2), Stride 2 7× 7

Dense Block 4
Conv(1× 1)

32
Conv(3× 3 ) 7× 7

Classification Layer
7× 7 Global Avg. Pool

1000D fully Connected, softmax 1× 1

selection that employs a customized algorithm for
estimating distribution.

The estimation of distribution algorithm (EDAs)
belongs to a category of stochastic optimization methods.
These methods are based on probabilistic modeling
of candidate solutions to a problem and progressively
improving them. In contrast to standard evolutionary
algorithms like genetic algorithms, which utilize mutation
or crossover procedures to generate new populations,
EDAs adopt a distinct method. Instead, new individuals
in the population are formed by sampling from the
probability distribution of the most highly picked
candidates from the preceding population.

Furthermore, while other evolutionary algorithms
rely on implicit distributions defined by variation
variables to generate new candidates, EDAs express
the relationships between candidates through an explicit
probability distribution. This distribution is typically
encoded by a model class such as a multivariate normal
distribution, Bayesian network, or another suitable model.

To solve the feature selection combinatorial
optimization problem, a binary EDA is applied in this
work. Formally, the binary EDA starts with an initial
population matrix represented as

P =

⎛
⎜⎜⎜⎝

�X1

�X2

...
�XN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x1
1 x1

2 · · · x1
M

x2
1 x2

2 · · · x2
M

...
...

...
...

xN
1 xN

2 · · · xN
M

⎞
⎟⎟⎟⎠ , (2)

where N and M respectively denote the number of
individual solutions of population and the number of
variables in each individual. A candidate individual
�X i is a binary row vector represented as �X i =
(x1, x2, . . . , xM ). The initial population is randomly
generated from a uniform probability distribution.

Subsequently, the best individuals from the
population are selected. The number of selected solutions
is determined as Nb = pb × N , where pb represents
the best selection probability, an input parameter to
the algorithm. Following selection, the probability
distribution P (α1, α2, . . . , αM ) is estimated for each best
individual. This probability signifies the likelihood of ‘1’
in each variable of the solution and represented as

P1 = P (α1, α2, . . . , αM |Nb) (3)

Utilizing the probability distribution P1, the remaining
N − Nb individuals are generated and merged with
the previously selected best individuals to form a new
population for the next iteration.

This work proposes a customized binary EDA for
feature selection whose computational steps are outlined
in Algorithm 1. In this algorithm, matrices are represented
by boldface letters (e.g., F), vectors are represented
with an arrow above (e.g., �X) and scalar quantities are
represented by normal or special characters (e.g., Γ). A
list of symbols used in Algorithm 1 is described in Table 5.

The approach requires multiple key parameters as
inputs which include the matrix F containing fused
features, the vector �L containing the labels of images, the
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Table 5. List of symbols and functions of Algorithm 1.
Variable Details Variable Details

F Matrix containing the fused features �L Vector of training labels

G No. of EDA iterations N Size of population

M No. of variables per individual Pb Probability of best selected
individuals

Put, Plt Upper and lower threshold limits of
probability

Pu, Pl Upper and lower saturated
values of probability

Nth No. of iterations after which thresholding
is applied

P Population matrix of size
N ×M

�X∗ Global best individual vector of size 1×M Γ∗ Global best fitness

�Xp Population best individual vector of size
1×M

Γp Population best fitness

Nb No. of best selected features random(1 : N, 1 : M) Returns a matrix of size N×
M , of uniformly generated
random numbers in [0,1]

sort(Γ) Sorts the vector Γ in ascending order and
returns the sorted values and their indexes

�I Vector of sorted indexes

�Γs Vector of sorted values Rep(N, �P ) Repeats N copies of �P
along the rows

total count of algorithm iterations (generations) denoted
as G, the population size represented by N , and the
size of each candidate solution vector denoted as M .
The population size, N , is determined by the number
of training or testing images utilized in the feature
extraction step. Additionally, M represents the number
of fused features, which in this case is equal to 3200.
The initialization of main parameters is performed in
Phase 1 of the algorithm including the probability of
best selection Pb, upper and lower probability thresholds
Put, Plt, upper and lower probability values Pu, Pl, the
number of iterations after which thresholding is applied
Nth and several intermediate variables.

In Steps 4–10, an initial binary population is
randomly generated in P by sampling a uniform
distribution. Phase 3 includes the main execution of
the algorithm that repeats for G iterations. For every
iteration, the fitness value of each member of a population
is calculated using the CostFunction routine, Steps
15–18. In Step 20, the function routine sort is called,
which returns the fitness values sorted in ascending order
and their corresponding indexes. These sorted values
and their indexes are stored in column vectors �Γs and
�I respectively. In Steps 21 and 22, the best population
fitness Γp and individual �Xp are obtained. In Steps 24–27,
the best global fitness Γ∗ is compared with the best
population fitness Γp; if Γ∗ is greater than Γp, then
the best global individual Γ∗ is replaced by the best
population individual Γp. In Steps 29–32, the first Nb

best individuals of population are retained in P, whereas

the remaining individuals are discarded. In Steps 33–35,
the joint probability distribution of the best individuals is
obtained. Each point l ∈ {1, . . . ,M} of the distribution
is computed by adding the values of the l-th column of P
and dividing the sum by Nb. The probability distribution
vector is stored in �P1.

EDA with thresholding. In this work, we proposed
an efficient thresholding of probabilities to avoid the
local-optima convergence of the algorithm. The
Threshold routine of Algorithm 1 receives as inputs the
joint probability distribution vector �P1, the global best
fitness, the number of iterations after which thresholding
is applied, i.e., Nth, the upper and lower threshold
limits of probability, i.e., Put and Plt and maximum and
minimum probability values Pu and Pl. In Steps 73–88,
the best global fitness Γ∗ is monitored in each iteration; if
it remains unchanged for a predefined number of iterations
Nth, then all values of probability vector �P1 are clipped
to Pu if they are greater than Put. In a similar manner,
all values of �P1, which are less than Plt are made equal
to Pl. The threshold values as well as the maximum and
minimum probability values are experimentally obtained
through several runs of the feature extraction pipeline.
After updating the probabilities, in Steps 40–49, the new
binary population matrix for next iteration is generated.
The function Rep in Step 40 generates N copies of the
updated probability vector �P1 cascaded vertically. Finally,
in Steps 51 and 52, the nonzero indexes of the best global
individuals are obtained, which correspond to the features
selected from F and returned by the algorithm.
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Algorithm 1. EDA for deep feature selection.
1: Inputs: F, �L,G,N,M
2: Phase 1: Parameter Initialization

Pb ← 0.4, Put ← 0.85, Plt ← 0.15 Pu ← 0.75, Pl ← 0.25
Nth ← 5, i← 1, Γtemp ← 0, Nc ← 0
P(1 : N, 1 : M)← 1

Γ∗ ← inf, �X∗(1 : M)← 0,

Γp ← inf, �Xp(1 : M)← 0.
Nb ← �N × Pb�

3: Phase 2: Generate Initial Random Population

4: R(1 : N, 1 : M)← random(1 : N, 1 : M)
5: for x = 1 : N do

6: for y = 1 : M do

7: if R(x, y) ≤ 0.5 then

8: P(x, y)← 1
9: else

10: P(x, y)← 0
11: end if

12: end for

13: end for

14: Phase 3: Execution

15: while i < G do

16: Calculate Fitness of all solutions

17: for j = 1 : N do

18: �X ← P(j, 1 : M)

19: X
20:
21:

22:

23:

24:
25:
26:
27:

28:
29:
30:

31:

32:
33:

34:
35:
36: P1(1, l)←

Γ(j) ← CostF unction(F, �L, � ) 
end for

obtain the population best solution

[I�, Γ�s] ← sort(Γ)
Γp ← Γ�s(1)
X�p ← P(I�(1), 1 : M)
update global best solution

if Γ∗ > Γp then

Γ∗ ← Γp

X�∗ ← X�p
end if
Compute the joint probability 
distribution of Nb best solutions

I�b ← I�(1 : Nb)

P(1 : Nb, 1 : M) ← P(I�b, 1 : M) 
P(Nb + 1 : N, 1 : M) ← 0
P�1(1, 1 : M) ← 0
for l

�
= 1 : M do∑ 

P(1:Nb,l)

Nb

37: end for

38: apply the thresholding to update probabilities

39: Γtemp ← Γp

40: �P1 ← Threshold( �P1,Γtemp,Γ
∗, Nc, Nth, Put, Plt, Pu, pl)

41: generate new population for next iteration

42: P2 ← Rep(N, �P1)
43: R← random(1 : N, 1 : M)
44: for x = 1 : N do

45: for y = 1 : M do

46: if R(x, y) < P2(x, y) then

47: P(x, y)← 1
48: else

49: P(x, y)← 0
50: end if

51: end for

52: end for

53: end while

54: extract Index of Best Features

55: �I ← 1 : M
56: �S ← �I( �X∗ == 1))

57: OUTPUT: �S
——————————————————————————-

58: Function: CostFunction
59: Inputs: F, �L, �X
60: Parameters: α1 = 0.99, α2 = 0.01, k = 5, ho = 0.2

61: if (sum( �X == 1) == 0) then

62: cost = inf
63: else

64: F2 ← F(:, (�F == 1))

65: Ftrain, �Ltrain, Ftest, �Ltest ← partition(F2, �L, ho)

66: Model← trainKNN(Ftrain, �Ltrain, k)

67: �Lpred ← predict(Model, Ftest)

68: acc← sum( �Lpred == �Ltest)/length( �Ltest)
69: err ← 1− acc
70: fs ← sum( �X == 1)

71: ft ← length( �X)

72: cost← α1 × err + α2 × ( fsft )
73: end if

74: Return: cost
——————————————————————————-

75: Function: Threshold
76: Inputs: �P1,Γtemp,Γ

∗, Nc, Nth, Put, Plt, Pu, pl

77: if �Γtemp �= �Γ∗ then

78: �Γtemp = �Γ∗
79: Nc ← 0
80: else

81: Nc ← Nc + 1
82: end if

83: if Nc > Nth then

84: Nc ← 0
85: for m=1:M do

86: if �P1(m) ≥ Put then

87: �P1(m)← Pu

88: else if �P1(m) < Plt then

89: �P1(m)← Pl

90: end if

91: end for

92: end if

93: Return: �P1

The CostFunction routine, for the whole
population, calculates the fitness value. The individual
binary solution vector �X is passed as an input to this
function along with matrix F and vector �L. In Step
60, the indexes of nonzero elements of �x are used to
extract the corresponding features from F. The extracted
features are kept in the field F2. In Step 61, matrix
F2 along with the vector �L are partitioned into two
parts, i.e., training and testing with a ratio h0. Next, the
training features are applied to train a KNN classifier
with k = 5 neighbors. After training, the testing
feature set Ftrain is applied to KNN and predicted
labels are obtained in �Lpred. The fitness is calculated as

ac =
npred

ntest
× 100(%), (4)

Γ = α1 × (1− ac) + α2 × qs
qt
. (5)

The variables npred and ntest represent the total number
of correctly predicted and tested samples, respectively, by
the KNN classifier. The weight coefficients α1 and α2

satisfy the equationα1+α2 = 1; qs represents the number
of features selected out of qt features of �X.
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3.2.5. Classification. The selected features of the
fused feature matrix F, identified by the proposed EDA in
Algorithm 1, are subsequently employed for supervised
learning with various outer classifiers. In this study,
several classifiers are utilized, including random forest
classifiers, K-nearest neighbor (K-NN), support vector
machines (SVMs), and decision trees (DTs), each with
various kernel settings. The models provided individual
predictions, and their performance was evaluated using
test data.

3.2.6. Soft voting. In this work, the individual
class-wise predictions of all classifiers are combined using
a soft voting technique to obtain the final predictions.
Although each classifier might have different levels of
confidence in their predictions, soft voting takes into
account the collective knowledge of all classifiers to make
a more informed decision. In the proposed soft-voting, a
simple averaging of probabilities for each class across all
classifiers is calculated. Finally, we choose the class with
the highest average probability as the final prediction.

4. Performance results
4.1. Experimental setup. The WBC classification
pipeline illustrated in Fig. 2 was developed using Matlab
2023, operating on a Core i7 CPU with 8 GB of RAM
and a 64-bit operating system. The proposed pipelined
was trained and validated separately for the three datasets
mentioned in Section 3.1. To mitigate the issue of class
imbalance, following the contrast enhancement step, the
preprocessed images from selected datasets underwent
an augmentation phase, involving random rotation within
the range from 0 to 360 degrees and resizing within the
interval [0.5, 1]. Table 6 shows the class distribution after
performing the augmentation on the selected datasets.

Following augmentation, the datasets were randomly
partitioned into training and validation sets with a
ratio of 70:30. Subsequently, all images were resized
to dimensions of 224 × 224 × 3 to meet the input
layer specifications of EfficientNetB0 and DenseNet201.
The training part was then used for transfer learning
of both deep CNNs. The parameters setting for
training of networks is shown in Table 7. We
investigated different parameter settings in numerous
training iterations and selected the one that yielded the
best training performance. The training segments of each
dataset are individually utilized for transfer learning with
deep CNNs.

After performing transfer learning of networks using
training datasets, the fused feature vector of size 3200
is obtained and subjected to customized EDA for feature
selection.

Figure 3 displays the error rate performance of
three algorithms: the classical genetic algorithm (GA),

the standard estimation of distribution algorithm (EDA),
and our proposed EDA with thresholding. The plotted
error rate for each algorithm is an average of multiple
Monte Carlo iterations of the algorithm on the same fused
feature vector. During each Monte Carlo iteration, the
algorithms run for G = 100 iterations (generations).
The plots demonstrate that our proposed EDA with
thresholding not only attains a lower error rate, but
also exhibits rapid convergence, reaching the minimum
error rate with fewer iterations. In Fig. 4, the error
rates achieved by the customized EDA and classical GA
are plotted as a function of population size N with a
fixed value of G = 50 iterations. The plots indicate
that the error rates of both algorithms improve as the
population size increases from 5 to 10. However, beyond
this range, the error rates of both algorithms remain
relatively stable. Figures 3 and 4 collectively reveal
that for all values of N and G, the proposed EDA with
efficient thresholding scheme shows better convergence
and feature optimization in comparison with classical
population based meta-heuristics.

4.2. Classification results. Table 8 displays the
WBC classification results obtained by various individual
classifiers employing different kernel settings on the
LISC dataset. The table quantifies the classification
performance using a number of key metrics which include
accuracy, precision, recall, F1 score, and sensitivity.
The reported classification results are achieved through
the proposed EDA, which performs approximately 90%
feature reduction, selecting a reduced set of 326 optimal
features per image from an initial set of 3200 fused
features. Although the original images of LISC are
relatively blurred and exhibit a high similarity between
the WBC regions of interest and other blood entities, as
shown in Figure 1, all chosen classifiers demonstrate a
notable classification performance. Among the classifiers
evaluated, the random forest classifier demonstrates
comparatively superior performance, attaining a peak
accuracy of 98.8%, a precision of 0.982, a recall of 0.991,
an F1 score of 0.941, and a sensitivity of 0.996.

Table 9 presents the classification results obtained
by the proposed pipeline using the CUK-WBC dataset.
The table illustrates that both the random forest and
KNN coarse classifiers perform well, achieving accuracy
rates exceeding 99%, along with high values for other
performance metrics. Similarly, in Table 10, the
classification performance results are showcased for the
Raabin-WBC dataset. Among these, the KNN classifier
with a coarse kernel stands out, achieving an accuracy of
99.3%, a precision of 0.99, a recall of 0.992, an F1 score
of 0.996, and a sensitivity of 0.995.

In Table 11, the comprehensive outcomes of the
proposed WBC-classification pipeline are showcased.
These results are derived through soft voting, wherein
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Table 6. Class-wise distribution of images in augmented LISC, RAABIN-WBC and CUK datasets used in this study.

Dataset Number of WBC images
Basophil Neutrophil Lymphocyte Eosinophil Monocyte

LISC Original training set 39 39 41 28 33
Augmented training set 361 361 359 372 367

RAABIN-WBC
Original training set 212 6231 2427 744 561
Augmented training set 3180 6231 7304 6680 6083

CUK Original training set 800 800 800 800 800
Augmented training set 800 800 800 800 800

Table 7. Parameter settings for training of EfficientNetB0 and DenseNet201.

Kernel sdgm Learning ate 1 x 10−4
Environment Auto MiniBatch ize 20
MaxEpochs 5 Validation requency 30

Dropout ate 0.1 Stride ize 1
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Fig. 3. Error rate comparison of feature selection using a classi-
cal genetic algorithm, standard EDA and proposed EDA
with thresholding.

the probability distributions of all classifiers are averaged.
This approach allows for the incorporation of diverse
confidence levels from individual classifiers. The results
clearly highlight that soft voting leverages the collective
knowledge of all classifiers, leading to more informed
decisions. Notably, the proposed pipeline employing soft
voting achieves outstanding classification performance
with the Raabin-WBC dataset, attaining a maximum
accuracy of 99.6%, a precision of 0.992, a recall of
0.995, an F1-score of 0.997, and a sensitivity of 0.994.
Remarkable performance is also observed across other
datasets.

Table 12 displays a comparison between the accuracy
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Fig. 4. Error rate of the genetic algorithm and proposed EDA
with G = 50 iterations and different population sizes N .

of our proposed method and that of previous studies on
WBC classification employing deep learning networks
and comparable datasets. Our method demonstrates
comparable or superior accuracy performance compared
with prior works, despite utilizing fewer features. This
reinforces the viability and effectiveness of our approach.

4.3. Statistical analysis. The statistical analysis
of performance results of our classification system is
performed using the analysis of variance (ANOVA)
(Turner and Thayer, 2001). ANOVA compares the means
of several distributions to determine if there are any
statistically significant differences between them. In
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Table 8. Performance results of the proposed WBC classification system on the LISC dataset.
Classifier No. of selected Accuracy Precision Recall F1 Sensitivity

features % score
Decision tree (medium) 78.6 0.83 0.826 0.82 0.84
KNN (coarse)

326

98.7 0.97 0.94 0.94 0.942
KNN (cosine) 98.6 0.99 0.995 0.996 0.994
Random forest 98.8 0.982 0.991 0.996 0.996
SVM (Gaussian) 96.2 0.972 0.94 0.941 0.98
SVM (regression) 86.2 0.869 0.876 0.872 0.867

Table 9. Performance results of the proposed WBC classification system on the CUK dataset.
Classifier No. of selected Accuracy Precision Recall F1 Sensitivity

features % score
Decision tree (medium) 80.6 0.851 0.842 0.852 0.85
KNN (coarse)

326

99.1 0.987 0.98 0.986 0.992
KNN (cosine) 98.9 0.98 0.985 0.986 0.984
Random forest 99.2 0.992 0.981 0.996 0.986
SVM (Gaussian) 97.8 0.976 0.964 0.981 0.981
SVM (regression) 94.2 0.969 0.976 0.942 0.947

our framework, we performed statistical analysis on the
classification accuracy of SVM (Gaussian), KNN (coarse)
and random forest classifiers on all the selected datasets.

Before performing ANOVA, we conducted the
Shapiro–Wilk test (Shapiro and Wilk, 1965) to ensure
the assumption of normality, and Bartlett’s test (Bartlett,
1937) to verify the homogeneity of variances. We used a
significance level of 1% for these tests, which corresponds
to α = 0.01. The means of the accuracy values for
the SVM (Gaussian), KNN (coarse), and random forest
classifiers are denoted as μ1, μ2, and μ3, respectively.

The null hypothesis assumes that the data are
normally distributed if the Shapiro–Wilk p-values are
greater than α; otherwise, the alternative hypothesis is
accepted. The computed Shapiro–Wilk p-values for the
SVM, KNN, and random forest classifiers are p1 = 0.684,
p2 = 0.723, and p3 = 0.7123, respectively. Additionally,
Bartlett’s test yielded a chi-squared probability pch =
0.823. These p-values indicate that the values of accuracy
are normally distributed having homogeneous variances.

Table 13 presents the key metrics results of ANOVA
which include degrees of freedom (df), sum of squared
deviations (SS), mean squared error (MSE), F -statistic
and the obtained p-value of 0.685, which is greater than
α. Therefore, we conclude that there are no significant
differences between the means of the three classifiers,
suggesting that the classification accuracy values of these
classifiers are statistically identical.

As an example, Fig. 5 shows the accuracy confidence
interval plots for three selected classifiers for the LISC
dataset. The lighter bars represent the average accuracy,
while the black bars indicate the 99% confidence limits for
each classifier. Additionally, the medium bars illustrate

the lower and upper quantile points derived from the
statistical tests mentioned earlier. Similar plots were
obtained for other datasets but not shown here due to space
reasons.

The data indicate that the SVM Gaussian and random
forest classifiers provide superior average accuracy, along
with broader confidence interval sizes, in comparison
with the coarse KNN classifier. In addition, the quartile
points for each classifier are inside their corresponding
confidence ranges. The elevated p-values linked to
these quantile points lead to the acceptance of the
null hypothesis, suggesting that there are no substantial
disparities in the accuracy distributions of the classifiers.
This indicates that although there may be changes in
the average accuracy, these variations do not have a
substantial statistical impact, confirming the strength and
dependability of the classifiers’ performance under the
conditions that were tested.

5. Conclusions
White blood cell (WBC) identification and classification
are indispensable for the diagnosis of numerous blood
disorders, particularly leukemia. In the pursuit of
accuracy, modern methodologies for leukemia detection
that utilize transfer learning on deep neural networks
heavily depend on feature extraction to surmount the
obstacle posed by high-dimensional data.

This study details the revised pipeline for WBC
classification. Initially, deep transfer learning serves
as the primary feature extractor. Following this,
a highly effective probabilistic deep feature selection
algorithm is applied. This algorithm incorporates an
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Table 10. Performance results of the proposed WBC classification system on the Raabin-WBC dataset.
Classifier No. of selected Accuracy Precision Recall F1 Sensitivity

features % score
Decision tree (medium) 90.3 0.901 0.922 0.914 0.905
KNN (coarse)

326

99.3 0.990 0.992 0.996 0.995
KNN (cosine) 99.1 0.99 0.99 0.992 0.989
Random forest 99.1 0.992 0.991 0.995 0.996
SVM (Gaussian) 98.8 0.986 0.984 0.989 0.991
SVM (regression) 97.2 0.989 0.979 0.982 0.987

Table 11. Overall results of the proposed WBC-classification pipeline after performing soft-voting of individual predictions of classi-
fiers.

Data set Accuracy Precision Recall F1 score Sensitivity
CUK 98.9 0.986 0.991 0.984 0.98
LISC 99.4 0.991 0.993 0.994 0.991
Raabin-WBC 99.6 0.992 0.995 0.997 0.994

KNN(Coarse) SVM(Gaussian) Random Forest
Classifiers
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Fig. 5. Confidence interval for selected classifiers on the LISC
dataset.

advanced thresholding mechanism within an estimation
of distribution framework, successfully avoiding local
optima and significantly reducing the size of the feature
vector while maintaining classification accuracy.

Comparative analysis shows that the proposed
algorithm performs better in terms of the error
rate in feature selection compared with traditional
population-based metaheuristics. Additionally, the
proposed pipeline for WBC classification can be
integrated into advanced clinical-grade systems, such
as automated image flow cytometry. This integration
provides a valuable tool for both scientific research and
medical diagnostics.
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