rss_2.0General Mathematics FeedSciendo RSS Feed for General Mathematicshttps://sciendo.com/journal/GMhttps://www.sciendo.comGeneral Mathematics Feedhttps://sciendo-parsed.s3.eu-central-1.amazonaws.com/65617d4fc4f7d26fa6b5540d/cover-image.jpghttps://sciendo.com/journal/GM140216Coincidence and Common Fixed Points of Infinite Family of Mappings under Weaker Conditionshttps://sciendo.com/article/10.2478/gm-2022-0002<abstract> <title style='display:none'>Abstract</title> <p>In this paper, some common fixed point theorems for pairs of subcompatible and reciprocally continuous mappings or compatible and subsequentially continuous mappings satisfying integral type are obtained. Our results improve several results especially the results of [<xref ref-type="bibr" rid="j_gm-2022-0002_ref_003">3</xref>], Pathak et al. [<xref ref-type="bibr" rid="j_gm-2022-0002_ref_013">13</xref>], Djoudi and Aliouche [<xref ref-type="bibr" rid="j_gm-2022-0002_ref_006">6</xref>], Mbarki [<xref ref-type="bibr" rid="j_gm-2022-0002_ref_010">10</xref>] and others.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00022023-11-24T00:00:00.000+00:00Some Properties of a Family of Univalent Functions Defined by a Generalized Opoola Differential Operatorhttps://sciendo.com/article/10.2478/gm-2022-0001<abstract> <title style='display:none'>Abstract</title> <p>In this investigation, we introduce a new <italic>q</italic>-differential operator that generalizes the well-known Opoola differential operator. Using the operator, we define a family of <italic>q</italic>-bounded turning functions. The new class is denoted by ℛ<italic><sub>q</sub><sup>n</sup></italic> (<italic>µ, β, τ </italic>; <italic>λ</italic>). Afterwards, inclusion, characterisation, growth, distortion, covering, linear combination and neighborhood properties of functions <italic>f ∈ </italic>ℛ<italic><sub>q</sub><sup>n</sup></italic> (<italic>µ, β, τ </italic>; <italic>λ</italic>) are presented.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00012023-11-24T00:00:00.000+00:00Generalizations of Hermite-Hadamard, Bullen and Simpson inequalities via convexityhttps://sciendo.com/article/10.2478/gm-2022-0006<abstract> <title style='display:none'>Abstract</title> <p>In this paper, the authors established a new identity for differentiable functions, afterward, they obtained some new general inequalities for functions whose first derivatives in absolute value at certain powers are <italic>h</italic>-convex by using the identity. On the other hand, a general inequality is studied, which gives Hermite-Hadamard, Bullen and Simpson inequalities. Also, they gave some applications for special means for arbitrary positive numbers.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00062023-11-24T00:00:00.000+00:00An extension of the class of set-valued ratios of affine functionshttps://sciendo.com/article/10.2478/gm-2022-0004<abstract> <title style='display:none'>Abstract</title> <p>The aim of this paper is to generalize the convexity preserving properties of sets by direct and inverse images initially stated for set-valued ratios of affine functions to a broader class of fractional type set-valued functions which strictly includes the first one.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00042023-11-24T00:00:00.000+00:00Hermite-Hadamard’s inequalities for ()-preinvex functionshttps://sciendo.com/article/10.2478/gm-2022-0003<abstract> <title style='display:none'>Abstract</title> <p>In this paper, we introduce a new class of generalized convex functions called (<italic>h, r</italic>)-preinvex functions, and establish some new Hermite-Hadamard type inequalities under (<italic>h, r</italic>)-preinvexity.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00032023-11-24T00:00:00.000+00:00Results of Hankel Semigroup of Linear Operator as Eventually Uniform Continuous Semigrouphttps://sciendo.com/article/10.2478/gm-2022-0005<abstract> <title style='display:none'>Abstract</title> <p>This paper consists of Hankel results of <italic>ω</italic>-order reversing partial contraction as a semigroup of linear operator. Spectral mapping theorem was investigated and it was established that <italic>ω</italic>-order reversing partial contraction mapping is an eventually uniform continuous semigroup in which we showed that the proof of the extension of <italic>T </italic>(<italic>t</italic>) to a <italic>C</italic><sub>0</sub>-semigroup ̂<italic>T</italic>(<italic>t</italic>) on a space ̂<italic>X </italic>containing <italic>X </italic>isometrically bounded. The space is constructed in such a way that the spectrum of the generator <italic>A </italic>of <italic>T </italic>(<italic>t</italic>) coincides with the spectrum of the generator <italic>Â </italic>of ̂<italic>T</italic>(<italic>t</italic>) and the approximate point spectrum of <italic>A </italic>coincides with the point spectrum of <italic>Â</italic>.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00052023-11-24T00:00:00.000+00:00A new fixed point technique for equilibrium problem with a finite family of multivalued quasi-nonexpansive mappingshttps://sciendo.com/article/10.2478/gm-2022-0009<abstract> <title style='display:none'>Abstract</title> <p>We introduce a new iterative scheme by viscosity approximation method for finding a common point of the set of solutions of an equilibrium problem and the set of common fixed points of a finite family of multivalued quasi-nonexpansive mapping in a Hilbert space. It is proved that the sequence generated by the iterative scheme converges strongly to a common point of the set of solutions of an equilibrium problem and the set of common fixed points of a finite family of multivalued quasi-nonexpansive. Futhermore, we applied our main result for finding a common solution of convex minimization problem and fixed points problem. Essentially a new approach for finding solutions of equilibrium problems and fixed point problems whith set-valued operators is provided.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00092023-11-24T00:00:00.000+00:00A Unique Common Fixed Point under a Weak Altering Distance Functionhttps://sciendo.com/article/10.2478/gm-2022-0008<abstract> <title style='display:none'>Abstract</title> <p>In this paper, unique common fixed point theorems for pairs of subcompatible and reciprocally continuous mappings or compatible and subsequentially continuous mappings are obtained. This unique common fixed point is guaranteed under a new concept named a weak altering distance function. Our theorems improve some results especially the ones of [<xref ref-type="bibr" rid="j_gm-2022-0008_ref_002">2</xref>].</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00082023-11-24T00:00:00.000+00:00Simple Operator Asynchronicity of an Integral Transform with Applicationshttps://sciendo.com/article/10.2478/gm-2022-0007<abstract> <title style='display:none'>Abstract</title> <p>For a continuous and positive function <italic>w </italic>(<italic>λ</italic>), <italic>λ &gt; </italic>0 and <italic>µ </italic>a positive measure on (0, <italic><bold>∞</bold></italic>) we consider the following <italic>integral transform</italic> <disp-formula> <alternatives> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_gm-2022-0007_eq_001.png"/> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mi>𝒟</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>w</mml:mi><mml:mo>,</mml:mo><mml:mi>μ</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>T</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>:</mml:mo><mml:mo>=</mml:mo><mml:mstyle><mml:mrow><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mi>∞</mml:mi></mml:msubsup><mml:mrow><mml:mi>w</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>λ</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>λ</mml:mi><mml:mo>+</mml:mo><mml:mi>T</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mi>d</mml:mi><mml:mi>μ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>λ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mstyle><mml:mo>,</mml:mo></mml:mrow></mml:math> <tex-math>\mathcal{D}\left( {w,\mu } \right)\left( T \right): = \int_0^\infty {w\left( \lambda \right){{\left( {\lambda + T} \right)}^{ - 1}}d\mu \left( \lambda \right)} ,</tex-math> </alternatives> </disp-formula> where the integral is assumed to exist for <italic>T </italic>a positive operator on a complex Hilbert space <italic>H</italic>.</p> <p>We show among others that, if <italic>B, A &gt; </italic>0, then <disp-formula> <alternatives> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_gm-2022-0007_eq_002.png"/> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mtable><mml:mtr><mml:mtd><mml:mrow><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mi>𝒟</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>w</mml:mi><mml:mo>,</mml:mo><mml:mi>μ</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>A</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>−</mml:mo><mml:mi>𝒟</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>w</mml:mi><mml:mo>,</mml:mo><mml:mi>μ</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>B</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>]</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>B</mml:mi><mml:mo>−</mml:mo><mml:mi>A</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mrow><mml:mo>=</mml:mo><mml:mstyle><mml:mrow><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mi>∞</mml:mi></mml:msubsup><mml:mrow><mml:mi>w</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>λ</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mstyle><mml:mrow><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mn>1</mml:mn></mml:msubsup><mml:mrow><mml:msup><mml:mrow><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mi>λ</mml:mi><mml:mo>+</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>t</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mi>B</mml:mi><mml:mo>+</mml:mo><mml:mi>t</mml:mi><mml:mi>A</mml:mi><mml:msup><mml:mo>)</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>B</mml:mi><mml:mo>−</mml:mo><mml:mi>A</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>]</mml:mo></mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msup><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:mrow></mml:mstyle></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mi>d</mml:mi><mml:mi>μ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>λ</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:mrow></mml:mstyle></mml:mrow></mml:mtd></mml:mtr></mml:mtable></mml:mrow></mml:math> <tex-math>\matrix{{\left[{\mathcal{D}\left({w,\mu}\right)\left(A\right)-\mathcal{D}\left({w,\mu}\right)\left(B\right)}\right]\left({B-A}\right)}\cr{=\int_0^\infty{w\left(\lambda\right)\left({\int_0^1{{{\left[{\lambda+\left({1-t}\right)B+tA{)^{-1}}\left({B-A}\right)}\right]}^2}dt}}\right)d\mu\left(\lambda\right).}}\cr}</tex-math> </alternatives> </disp-formula> We also provide some sufficient conditions for the operators <italic>A, B &gt; </italic>0 such that the inequality <disp-formula> <alternatives> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_gm-2022-0007_eq_003.png"/> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mi>𝒟</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>w</mml:mi><mml:mo>,</mml:mo><mml:mi>μ</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>A</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>B</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒟</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>w</mml:mi><mml:mo>,</mml:mo><mml:mi>μ</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>B</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>A</mml:mi><mml:mo>≥</mml:mo><mml:mi>A</mml:mi><mml:mi>𝒟</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>w</mml:mi><mml:mo>,</mml:mo><mml:mi>μ</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>A</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>+</mml:mo><mml:mi>B</mml:mi><mml:mi>𝒟</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>w</mml:mi><mml:mo>,</mml:mo><mml:mi>μ</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>B</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> <tex-math>\mathcal{D}\left({w,\mu}\right)\left(A\right)B+\mathcal{D}\left({w,\mu}\right)\left(B\right)A{\ge}A\mathcal{D}\left({w,\mu}\right)\left(A\right)+B\mathcal{D}\left({w,\mu}\right)\left(B\right)</tex-math> </alternatives> </disp-formula> holds. Some examples for power and logarithmic functions are also provided.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00072023-11-24T00:00:00.000+00:00Fixed Point Theorems for Integral-type Weak-Contraction Mappings in Modular Metric Spaceshttps://sciendo.com/article/10.2478/gm-2023-0003<abstract> <title style='display:none'>Abstract</title> <p>In 2013, Azadifar et al. [<xref ref-type="bibr" rid="j_gm-2023-0003_ref_003">3</xref>] established fixed point result in integral type contraction in modular metric space and 2020, Chaira et al.[<xref ref-type="bibr" rid="j_gm-2023-0003_ref_011">11</xref>] established some extensions of Fixed Point Theorems for Weak-Contraction Mapping in Partially Ordered Modular Metric Spaces.</p> <p>In this paper we have established some common fixed point results in integral type contractions in modular and convex modular metric spaces.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2023-00032023-11-24T00:00:00.000+00:00Various fractional-order type operators and some of their implications to certain normalized functions analytic in the open unit dischttps://sciendo.com/article/10.2478/gm-2023-0002<abstract> <title style='display:none'>Abstract</title> <p>In this scientific research note, certain necessary-basic information in relation to some types of the operators specified by fractional calculus of arbitrary order will be firstly introduced, various argument properties of certain analytic functions specified by those fractional-order type operators will be then determined, and a number of special consequences of those extensive properties will be also pointed out.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2023-00022023-11-24T00:00:00.000+00:00Some bounds for the elliptical integral of the first kindhttps://sciendo.com/article/10.2478/gm-2023-0006<abstract> <title style='display:none'>Abstract</title> <p>In this article we present a method to get upper bound for some integrals. The method is in connection with on a generalized trapezoidal quadrature formula. Applications for upper bounds of the elliptical integral of the first kind are presented. We compare these bounds with some previous results from the literature.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2023-00062023-11-24T00:00:00.000+00:00Coincidence and Common Fixed Point Theorems for Hybrid Mappingshttps://sciendo.com/article/10.2478/gm-2023-0005<abstract> <title style='display:none'>Abstract</title> <p>In this paper, we prove a new coincidence and common fixed point theorem of hybrid mappings using the <italic>C</italic>-class function and <italic>T </italic>-weak commutativity. Finally, we give an example to illustrate our result.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2023-00052023-11-24T00:00:00.000+00:00Stability and convergence of Jungck-modified three-step iteration scheme using contractive conditionhttps://sciendo.com/article/10.2478/gm-2023-0004<abstract> <title style='display:none'>Abstract</title> <p>The purpose of this paper is to establish convergence and stability of Jungck -modified three-step iterations for three nonself mappings in a Banach space. The results obtained in this paper extend and improve the recent ones announced by Khan et al., Olatinwo, Hussain et al. and many papers.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2023-00042023-11-24T00:00:00.000+00:00Properties of the coefficients of an integral operatorhttps://sciendo.com/article/10.2478/gm-2023-0001<abstract> <title style='display:none'>Abstract</title> <p>In this paper, we determine properties of the coefficients of the integral operator <italic>G<sub>α</sub></italic><sub>1, <italic>α</italic>2</sub>,...,<italic>αn</italic>,<italic>β</italic> . We want to see if some results obtained on the interior unit disk can be extended on the exterior unit disk, so we make use of the usual transformation <inline-formula> <alternatives> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_gm-2023-0001_eq_001.png"/> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>g</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>z</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mi>z</mml:mi></mml:mfrac></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:mfrac></mml:mrow></mml:math> <tex-math>g\left( z \right) = {1 \over {f\left( {{1 \over z}} \right)}}</tex-math> </alternatives> </inline-formula>.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2023-00012023-11-24T00:00:00.000+00:00About uniform continuous functions which are not Lipschitzhttps://sciendo.com/article/10.2478/gm-2023-0007<abstract> <title style='display:none'>Abstract</title> <p>To approximate a function, some simpler functions are used: simpler as definitory structure (formula) and also as regularity, continuity and/or smoothness.</p> <p>Any Lipschitz function is a uniformly continuous function, but conversely it not always true. We add to the usual examples some other, especially of the class of differentiable functions.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2023-00072023-11-24T00:00:00.000+00:00On Rathore type operatorshttps://sciendo.com/article/10.2478/gm-2022-0013<abstract> <title style='display:none'>Abstract</title> <p>V. Gupta introduced recently the Rathore type operators <italic>R<sub>n,c</sub></italic>. For them we obtain Voronovskaja type results. We extend the classical Szász-Mirakjan operator and compare the extension with <italic>R<sub>n,c</sub></italic>.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00132023-11-24T00:00:00.000+00:00Extension of the generalized Bézier operators by waveletshttps://sciendo.com/article/10.2478/gm-2022-0010<abstract> <title style='display:none'>Abstract</title> <p>In this paper we introduce a novel extension of generalized Bézier operators by replacing the sample values <inline-formula> <alternatives> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_gm-2022-0010_eq_001.png"/> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mfrac><mml:mi>k</mml:mi><mml:mi>n</mml:mi></mml:mfrac></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> <tex-math>f\left({{k\overn}}\right)</tex-math> </alternatives> </inline-formula> with the wavelet expansion of the function <italic>f. </italic>Using the compactly supported Daubechies wavelets, we construct a wavelet type extension of the generalized Bézier operators defined by Gupta [<xref ref-type="bibr" rid="j_gm-2022-0010_ref_007">7</xref>]. Moreover, we investigate some properties of these operators in some function spaces.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00102023-11-24T00:00:00.000+00:00Unique common fixed points in metric-like spacehttps://sciendo.com/article/10.2478/gm-2022-0011<abstract> <title style='display:none'>Abstract</title> <p>In this article, two unique common fixed point theorems for four self-maps on a metric-like space by using the concept of occasionally weakly biased maps of type (𝒜) are proved. Our results represent an improvement and extension of some fixed point findings. We justify our results by giving two appropriate examples.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00112023-11-24T00:00:00.000+00:00Eigenstructure and Voronovskaja type formula for a sequence of integral operatorshttps://sciendo.com/article/10.2478/gm-2022-0012<abstract> <title style='display:none'>Abstract</title> <p>The composition ℱ<sub><italic>n </italic></sub>of Rathore and Gamma operators was considered in the literature. We introduce a generalization of ℱ<sub><italic>n</italic></sub>. For it we determine the eigenstructure and establish the corresponding Voronovskaja type formula.</p> </abstract>ARTICLEtruehttps://sciendo.com/article/10.2478/gm-2022-00122023-11-24T00:00:00.000+00:00en-us-1