Generalizations of Lindelöf spaces via hereditary classes

Ahmad Al-omari
Al al-Bayt University Faculty of Sciences Department of Mathematics
P.O. Box 130095, Mafraq 25113, Jordan
email: omarimutah1@yahoo.com

Takashi Noiri
2949-1 Shiokita-cho, Hinagu
Yatsushiro-shi,
Kumamoto-ken 869-5142 Japan
email: t.noiri@nifty.com

Abstract. In this paper by using hereditary classes [6], we define the notion of γ-Lindelöf modulo hereditary classes called γH-Lindelöf and obtain several properties of γH-Lindelöf spaces.

1 Introduction

Let \((X, \tau)\) be a topological space and \(\mathcal{P}(X)\) the power set of \(X\). In 1991, Ogata [13] introduced the notions of γ-operations and γ-open sets and investigated the associated topology \(\tau_\gamma\) and weak separation axioms \(\gamma-T_i\) (i = 0, 1/2, 1, 2). In 2011, Noiri [10] defined an operation on an \(m\)-structure with property \(B\) (the generalized topology in the sense of Lugojan [8]). The operation is defined as a function \(\gamma : \mathcal{M} \to \mathcal{P}(X)\) such that \(U \subseteq \gamma(U)\) for each \(U \in \mathcal{M}\) and is called a γ-operation on \(m\). Then, it turns out that the operation is an unified form of several operations (for example, semi-γ-operation [7], pre-γ-operation [4]) defined on the family of generalized open sets. Moreover, he obtained some characterizations of γ-compactness and suggested some generalizations of compact spaces by using recent modifications of open sets in a topological space.

2010 Mathematics Subject Classification: 4A05, 54A10
Key words and phrases: γ-operation, m-structure, m-open, γ-open, hereditary class, \(H\)-Lindelöf, γ\(H\)-Lindelöf
In this paper by using hereditary classes [6], we define the notion of \(\gamma \)-Lindelöf modulo hereditary classes called \(\gamma \mathcal{H} \)-Lindelöf and obtain several properties of \(\gamma \mathcal{H} \)-Lindelöf spaces. Recently papers [1, 2, 3] have introduced some new classes of sets via hereditary classes.

2 Preliminaries

First we state the following: in [11], a minimal structure \(m \) is defined as follows: \(m \) is called a minima structure if \(\emptyset, X \in m \). However, in this paper, we define as follows:

Definition 1 Let \(X \) be a nonempty set and \(\mathcal{P}(X) \) the power set of \(X \). A subfamily \(m \) of \(\mathcal{P}(X) \) is called a minimal structure (briefly \(m \)-structure) on \(X \) if \(m \) satisfies the following conditions:

1. \(\emptyset, X \in m \).
2. The union of any family of subsets belonging to \(m \) belongs to \(m \).

A set \(X \) with an \(m \)-structure is called an \(m \)-space and denoted by \((X, m)\). Each member of \(m \) is said to be \(m \)-open and the complement of an \(m \)-open set is said to be \(m \)-closed.

Definition 2 [9] Let \(X \) be a nonempty set and \(m \) an \(m \)-structure on \(X \). For a subset \(A \) of \(X \), the \(m \)-closure of \(A \) is defined as follows: \(\text{mcl}(A) = \bigcap \{ F : A \subseteq F, X \setminus F \in m \} \).

Lemma 1 [9] Let \(X \) be a nonempty set and \(m \) an \(m \)-structure on \(X \). For the \(m \)-closure, the following properties hold, where \(A \) and \(B \) are subsets of \(X \):

1. \(A \subseteq \text{mcl}(A) \),
2. \(\text{mcl}(\emptyset) = \emptyset, \text{mcl}(X) = X \),
3. If \(A \subseteq B \), then \(\text{mcl}(A) \subseteq \text{mcl}(B) \),
4. \(\text{mcl}(\text{mcl}(A)) = \text{mcl}(A) \).

Lemma 2 [14] Let \((X, m)\) be an \(m \)-space and \(A \) a subset of \(X \). Then \(x \in \text{mcl}(A) \) if and only if \(U \cap A \neq \emptyset \) for every \(U \in m \) containing \(x \).
Lemma 3 [15] Let \((X, m)\) be an \(m\)-space and \(A\) a subset of \(X\). Then, the following properties hold:

1. \(A\) is \(m\)-closed if and only if \(\text{mcl}(A) = A\),
2. \(\text{mcl}(A)\) is \(m\)-closed.

Definition 3 [10] Let \((X, m)\) be an \(m\)-space and \(\gamma\) an operation on \(m\). A subset \(A\) of \(X\) is said to be \(\gamma\)-open if for each \(x \in A\) there exists \(U \in m\) such that \(x \in U \subseteq \gamma(U) \subseteq A\). The complement of a \(\gamma\)-open set is said to be \(\gamma\)-closed. The family of all \(\gamma\)-open sets of \((X, m)\) is denoted by \(\gamma(X)\).

3 \(\gamma\mathcal{H}\)-Lindelöf spaces

First, we recall the definition of a hereditary class used in the sequel. A subfamily \(H\) of the power set \(P(X)\) is called a hereditary class on \(X\) [6] if it satisfies the following property: \(A \in H\) and \(B \subseteq A\) implies \(B \in H\).

Definition 4 Let \((X, m, H)\) be a hereditary \(m\)-space and \(\gamma\) an operation on \(m\), where \(H\) is a hereditary class on \(X\). Then \(m\)-space \((X, m)\) is said to be \(\gamma\mathcal{H}\)-Lindelöf (resp. \(\mathcal{H}\)-Lindelöf) if every cover \(\{U_\alpha : \alpha \in \Delta\}\) of \(X\) by \(m\)-open sets, there exists a countable subset \(\Delta_0\) of \(\Delta\) such that \(X \setminus \bigcup_{\alpha \in \Delta} \gamma(U_\alpha) \subseteq \mathcal{H}\) (resp. \(X \setminus \bigcup_{\alpha \in \Delta_0} U_\alpha \subseteq \mathcal{H}\)).

Theorem 1 Let \((X, m, \mathcal{H})\) be a hereditary \(m\)-space and \(\gamma\) an operation on \(m\), where \(\mathcal{H}\) is a hereditary class. Then the following properties are equivalent:

1. \((X, \gamma(X))\) is \(\mathcal{H}\)-Lindelöf;
2. For every family \(\{F_\alpha : \alpha \in \Delta\}\) of \(\gamma\)-closed sets such that \(\bigcap \{F_\alpha : \alpha \in \Delta_0\} \notin \mathcal{H}\) for every countable subfamily \(\Delta_0\) of \(\Delta\), \(\bigcap \{F_\alpha : \alpha \in \Delta\} \neq \emptyset\).

Proof. (1) \(\Rightarrow\) (2): Let \((X, \gamma(X))\) be \(\mathcal{H}\)-Lindelöf. Suppose that \(\bigcap \{F_\alpha : \alpha \in \Delta\} = \emptyset\), where \(F_\alpha\) is \(\gamma\)-closed set. Then \(X \setminus F_\alpha\) is \(\gamma\)-open for each \(\alpha \in \Delta\) and \(\bigcup_{\alpha \in \Delta} (X \setminus F_\alpha) = X \setminus \bigcap_{\alpha \in \Delta} F_\alpha = X\). By (1), there exists a countable subfamily \(\Delta_0\) of \(\Delta\) such that \(X \setminus \bigcup_{\alpha \in \Delta_0} (X \setminus F_\alpha) = \bigcap \{F_\alpha : \alpha \in \Delta_0\} \in \mathcal{H}\). This is a contradiction.

(2) \(\Rightarrow\) (1): Suppose that \((X, \gamma(X))\) is not \(\mathcal{H}\)-Lindelöf. There exists a cover \(\{U_\alpha : \alpha \in \Delta\}\) of \(X\) by \(\gamma\)-open sets such that \(X \setminus \bigcup \{U_\alpha : \alpha \in \Delta_0\} \notin \mathcal{H}\) for
every countable subset Δ_0 of Δ. Since $X \setminus U_\alpha$ is γ-closed for each $\alpha \in \Delta$ and
$\bigcap \{(X \setminus U_\alpha) : \alpha \in \Delta_0\} \not\in \mathcal{H}$ for every countable subset Δ_0 of Δ. By (2), we have
$\bigcap \{(X \setminus U_\alpha) : \alpha \in \Delta\} \not= \emptyset$. Therefore, $X \setminus \bigcup \{U_\alpha : \alpha \in \Delta\} \not= \emptyset$. This is contrary
that $\{U_\alpha : \alpha \in \Delta\}$ is a γ-open cover of X.

\[\Box \]

Lemma 4 \[10\] Let (X, m) be an m-space. For $\gamma(X)$, the following properties hold:

1. $\emptyset, X \in \gamma(X)$,
2. If $\Lambda_\alpha \in \gamma(X)$ for each $\alpha \in \Lambda$, then $\bigcup_{\alpha \in \Lambda} \Lambda_\alpha \in \gamma(X)$,
3. $\gamma(X) \subseteq m$.

Definition 5 \[10\] An m-space (X, m) is said to be γ-regular if for each $x \in X$ and each $U \in m$ containing x, there exists $V \in m$ such that $x \in V \subseteq \gamma(V) \subseteq U$.

Lemma 5 \[10\] For an m-space (X, m), the following properties are equivalent:

1. $m = \gamma(X)$;
2. (X, m) is γ-regular;
3. For each $x \in X$ and each $U \in m$ containing x, there exists $W \in \gamma(X)$
 such that $x \in W \subseteq \gamma(W) \subseteq U$.

Theorem 2 Let (X, m, \mathcal{H}) be a hereditary m-space and γ an operation on m,
where \mathcal{H} is a hereditary class. The implications (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) hold.
If (X, m) is γ-regular, then the following properties are equivalent:

1. (X, m) is \mathcal{H}-Lindelöf;
2. (X, m) is $\gamma\mathcal{H}$-Lindelöf;
3. $(X, \gamma(X))$ is \mathcal{H}-Lindelöf;
4. $(X, \gamma(X))$ is $\gamma\mathcal{H}$-Lindelöf.

Proof. (1) \Rightarrow (2): Let (X, m) be \mathcal{H}-Lindelöf. For any cover $\{U_\alpha : \alpha \in \Delta\}$ of X
by m-open sets, there exists a countable subset Δ_0 of Δ such that $X \setminus \bigcup \{\gamma(U_\alpha) : \alpha \in \Delta_0\} \subseteq X \setminus \bigcup \{U_\alpha : \alpha \in \Delta_0\} \in \mathcal{H}$. Therefore, (X, m) is $\gamma\mathcal{H}$-Lindelöf.
(2) ⇒ (3): Let \((X, m)\) be a \(\gamma\)-\(H\)-Lindelöf and \(\{U_\alpha : \alpha \in \Delta\}\) a cover of \(X\) by \(\gamma\)-open sets. For each \(x \in X\) there exists \(\alpha(x) \in \Delta\) such that \(x \in U_{\alpha(x)}\). Since \(U_{\alpha(x)}\) is \(\gamma\)-open, there exists \(V_{\alpha(x)} \in m\) such that \(x \in V_{\alpha(x)} \subseteq \gamma(V_{\alpha(x)}) \subseteq U_{\alpha(x)}\). Since the family \(\{V_{\alpha(x)} : x \in X\}\) is a cover of \(X\) by \(m\)-open sets and \((X, m)\) is \(\gamma\)-\(H\)-Lindelöf, there exists a countable number of points, say, \(x_1, x_2, x_3, \ldots \in X\) such that \(X \setminus \bigcup_{i=1}^{\infty} \gamma(V_{\alpha(x_i)}) \in \mathcal{H}\) and hence \(X \setminus \bigcup_{i=1}^{\infty} U_{\alpha(x_i)} \in \mathcal{H}\). This shows that \((X, \gamma(X))\) is \(\mathcal{H}\)-Lindelöf.

(3) ⇒ (4): By Lemma 4, \(\gamma(X)\) is an \(m\)-structure and it follows that the same argument as (1) ⇒ (2) that \((X, \gamma(X))\) is \(\gamma\)-\(H\)-Lindelöf.

(4) ⇒ (1): Suppose that \((X, m)\) is \(\gamma\)-regular. Let \((X, \gamma(X))\) be \(\gamma\)-\(H\)-Lindelöf. Let \(\{U_\alpha : \alpha \in \Delta\}\) be any cover of \(X\) by \(m\)-open sets. For each \(x \in X\), there exists \(\alpha(x) \in \Delta\) such that \(x \in U_{\alpha(x)}\). Since \((X, m)\) is \(\gamma\)-regular, by Lemma 5 there exists \(V_{\alpha(x)} \in \gamma(X)\) such that \(x \in V_{\alpha(x)} \subseteq \gamma(V_{\alpha(x)}) \subseteq U_{\alpha(x)}\). Since \(\{V_{\alpha(x)} : x \in X\}\) is a cover of \(X\) by \(\gamma\)-open sets and \((X, \gamma(X))\) is \(\gamma\)-\(H\)-Lindelöf, there exist a countable number of points, say, \(x_1, x_2, x_3, \ldots \in X\) such that \(X \setminus \bigcup_{i=1}^{\infty} \gamma(V_{\alpha(x_i)}) \in \mathcal{H}\); and hence \(X \setminus \bigcup_{i=1}^{\infty} U_{\alpha(x_i)} \in \mathcal{H}\). This shows that \((X, m)\) is \(\mathcal{H}\)-Lindelöf.

Definition 6 Let \((X, m, \mathcal{H})\) be a hereditary \(m\)-space. A subset \(A\) of \(X\) is said to be \(\gamma\)-\(H\)-Lindelöf relative to \(X\) if for every cover \(\{U_\alpha : \alpha \in \Delta\}\) of \(A\) by \(m\)-open sets of \(X\), there exists a countable subset \(\Delta_0\) of \(\Delta\) such that \(A \setminus \bigcup_{\alpha \in \Delta_0} \gamma(U_\alpha) \subseteq \mathcal{H}\).

Theorem 3 Let \((X, m, \mathcal{H})\) be a hereditary \(m\)-space. If \(A\) is \(\gamma\)-closed and \(B\) is \(\gamma\)-\(H\)-Lindelöf relative to \(X\), then \(A \cap B\) is \(\gamma\)-\(H\)-Lindelöf relative to \(X\).

Proof. Let \(\{V_\alpha : \alpha \in \Delta\}\) be a cover of \(A \cap B\) by \(m\)-open subsets of \(X\). Then \(\{V_\alpha : \alpha \in \Delta\} \cup \{X \setminus A\}\) is a cover of \(B\) by \(m\)-open sets. Since \(X \setminus A\) is \(\gamma\)-open, for each \(x \in X \setminus A\), there exists an \(m\)-open set \(V_x\) such that \(x \in V_x \subseteq \gamma(V_x) \subseteq X \setminus A\). Thus \(\{V_\alpha : \alpha \in \Delta\} \cup \{V_x : x \in X \setminus A\}\) is a cover of \(B\) by \(m\)-open sets of \(X\) since \(B\) is \(\gamma\)-\(H\)-Lindelöf relative to \(X\), there exist a countable subset \(\Delta_0\) of \(\Delta\) and a countable points, say \(x_1, x_2, x_3, \ldots \in X \setminus A\) such that \(B \subseteq \bigcup_{\alpha \in \Delta_0} \gamma(V_\alpha) \cup \bigcup_{i=1}^{\infty} \gamma(V_{x_i}) \cup H_0 \subseteq \mathcal{H}\), where \(H_0 \in \mathcal{H}\). Hence \(A \cap B \subseteq \bigcup_{\alpha \in \Delta_0} \gamma(V_\alpha) \cap A \cup \bigcup_{i=1}^{\infty} \gamma(V_{x_i}) \cap A\) \cup (A \cap H_0) \subseteq \bigcup_{\alpha \in \Delta_0} \gamma(V_\alpha) \cup H_0\). Therefore, \(A \cap B \subseteq (\bigcup_{\alpha \in \Delta_0} \gamma(V_\alpha)) \subseteq H_0 \subseteq \mathcal{H}\). Hence \(A \cap B\) is \(\gamma\)-\(H\)-Lindelöf relative to \(X\).

Corollary 1 If a hereditary \(m\)-space \((X, m, \mathcal{H})\) is \(\gamma\)-\(H\)-Lindelöf space, then every \(\gamma\)-closed subset of \(X\) is \(\gamma\)-\(H\)-Lindelöf relative to \(X\).
Proof. The proof is obvious by Theorem 3.

Lemma 6 [12] For a hereditary m-space \((X, m, \mathcal{H})\), the following properties hold:

1. \(m^*_H\) is an m-structure on \(X\) such that \(m^*_H\) has property B and \(m \subseteq m^*_H\).

2. \(\beta(m, \mathcal{H}) = \{U \setminus H : U \in m, H \in \mathcal{H}\}\) is a basis for \(m^*_H\) such that \(m \subseteq \beta(m, \mathcal{H})\).

Theorem 4 Let \((X, m, \mathcal{H})\) be a hereditary m-space. Then the following properties hold:

1. If \((X, m^*_H, \mathcal{H})\) is \(\mathcal{H}\)-Lindelöf, then \((X, m, \mathcal{H})\) is \(\mathcal{H}\)-Lindelöf.

2. If \((X, m, \mathcal{H})\) is \(\mathcal{H}\)-Lindelöf and \(\mathcal{H}\) is closed under countable union, then \((X, m^*_H, \mathcal{H})\) is \(\mathcal{H}\)-Lindelöf.

Proof. (1): The proof follows directly from the fact that every m-closed set is \(m^*_H\)-closed.

(2): Suppose that \(\mathcal{H}\) is closed under countable union and \(X\) is \(\mathcal{H}\)-Lindelöf. Let \(\{U_\alpha : \alpha \in \Delta\}\) be an \(m^*_H\)-open cover of \(X\), then for each \(x \in X\), \(x \in U_{\alpha(x)}(x)\) for some \(\alpha(x) \in \Delta\). By Lemma 6 there exist \(V_{\alpha(x)}(x) \subseteq m\) and \(H_{\alpha(x)}(x) \subseteq \mathcal{H}\) such that \(x \in V_{\alpha(x)}(x) \setminus H_{\alpha(x)}(x) \subseteq U_{\alpha(x)}(x)\). Since \(\{V_{\alpha(x)}(x) : \alpha(x) \in \Delta\}\) is a m-open cover of \(X\), there exists a countable subset \(\Delta_0\) of \(\Delta\) such that \(X \setminus \bigcup\{V_{\alpha(x)} : \alpha(x) \in \Delta_0\} = H \in \mathcal{H}\).

Since \(\mathcal{H}\) is closed under countable union, then \(\bigcup\{H_{\alpha(x)} : \alpha(x) \in \Delta_0\} \subseteq \mathcal{H}\). Hence, \(H \cup [\bigcup\{H_{\alpha(x)} : \alpha(x) \in \Delta_0\}] \subseteq \mathcal{H}\). Observe that \(X \setminus \bigcup\{U_\alpha : \alpha \in \Delta_0\} \subseteq H \cup [\bigcup\{H_{\alpha(x)} : \alpha(x) \in \Delta_0\}] \subseteq \mathcal{H}\). By the heredity property of \(\mathcal{H}\) we have \(X \setminus \bigcup\{U_\alpha : \alpha \in \Delta_0\} \subseteq \mathcal{H}\) and therefore, \((X, m^*_H, \mathcal{H})\) is \(\mathcal{H}\)-Lindelöf.

4 Strongly \(\mathcal{H}\)-Lindelöf spaces

Definition 7 A subset \(A\) of a hereditary m-space \((X, m, \mathcal{H})\) is said to be:

1. Strongly \(\mathcal{H}\)-Lindelöf relative to \(X\) if for every family \(\{V_\alpha : \alpha \in \Delta\}\) of m-open sets such that \(A \setminus \bigcup_{\alpha \in \Delta} V_\alpha \in \mathcal{H}\), there exists a countable subset \(\Delta_0\) of \(\Delta\) such that \(A \setminus \bigcup_{\alpha \in \Delta_0} V_\alpha \in \mathcal{H}\). If \(A = X\), then \((X, m, \mathcal{H})\) is said to be Strongly \(\mathcal{H}\)-Lindelöf.
2. Strongly \(\gamma \mathcal{H} \)-Lindelöf relative to \(X \) if for every family \(\{V_\alpha : \alpha \in \Delta\} \) of \(m \)-open sets such that \(A \setminus \bigcup_{\alpha \in \Delta} V_\alpha \in \mathcal{H} \), there exists a countable subset \(\Delta_0 \) of \(\Delta \) such that \(A \setminus \bigcup_{\alpha \in \Delta_0} \gamma(V_\alpha) \in \mathcal{H} \). If \(A = X \), then \((X, m, \mathcal{H}) \) is said to be Strongly \(\gamma \mathcal{H} \)-Lindelöf.

Theorem 5 Let \((X, m, \mathcal{H}) \) be a hereditary \(m \)-space. Then the following properties hold:

1. If \((X, m^*_H, \mathcal{H}) \) is Strongly \(\mathcal{H} \)-Lindelöf, then \((X, m, \mathcal{H}) \) is Strongly \(\mathcal{H} \)-Lindelöf.

2. If \((X, m, \mathcal{H}) \) is Strongly \(\mathcal{H} \)-Lindelöf and \(\mathcal{H} \) is closed under countable union, then \((X, m^*_H, \mathcal{H}) \) is Strongly \(\mathcal{H} \)-Lindelöf.

Theorem 6 Let \((X, m, \mathcal{H}) \) be a hereditary \(m \)-space. Then the following properties are equivalent:

1. \((X, m, \mathcal{H}) \) is Strongly \(\mathcal{H} \)-Lindelöf;

2. If \(\{F_\alpha : \alpha \in \Delta\} \) is a family of \(m \)-closed sets such that \(\bigcap \{F_\alpha : \alpha \in \Delta\} \in \mathcal{H} \), then there exists a countable subfamily \(\Delta_0 \) of \(\Delta \) such that \(\bigcap \{F_\alpha : \alpha \in \Delta_0\} \in \mathcal{H} \).

Proof. Suppose that \((X, m, \mathcal{H}) \) is Strongly \(\mathcal{H} \)-Lindelöf. Let \(\{F_\alpha : \alpha \in \Delta\} \) be a family of \(m \)-closed sets such that \(\bigcap \{F_\alpha : \alpha \in \Delta\} \in \mathcal{H} \). Then \(\{X \setminus F_\alpha : \alpha \in \Delta\} \) is a family of \(m \)-open sets of \(X \). Let \(\mathcal{H} = \bigcap \{F_\alpha : \alpha \in \Delta\} \in \mathcal{H} \). Let \(X \setminus \mathcal{H} = X \setminus \bigcap \{F_\alpha : \alpha \in \Delta\} = \bigcup \{X \setminus F_\alpha : \alpha \in \Delta\} \). Since \((X, m, \mathcal{H}) \) is Strongly \(\mathcal{H} \)-Lindelöf, there exists a countable \(\Delta_0 \) of \(\Delta \) such that \(X \setminus \bigcup \{X \setminus F_\alpha : \alpha \in \Delta_0\} \in \mathcal{H} \). This implies that \(\bigcap \{F_\alpha : \alpha \in \Delta\} \in \mathcal{H} \).

Conversely, let \(\{V_\alpha : \alpha \in \Delta\} \) be any family of \(m \)-open sets of \(X \) such that \(X \setminus \bigcup_{\alpha \in \Delta} V_\alpha \in \mathcal{H} \). Then \(\{X \setminus V_\alpha : \alpha \in \Delta\} \) is a family of \(m \)-closed sets of \(X \). By assumption we have \(\bigcap \{X \setminus V_\alpha : \alpha \in \Delta\} \in \mathcal{H} \) and there exists a countable subset \(\Delta_0 \) of \(\Delta \) such that \(\bigcap \{X \setminus V_\alpha : \alpha \in \Delta_0\} \in \mathcal{H} \). This implies that \(X \setminus \bigcup \{V_\alpha : \alpha \in \Delta_0\} \in \mathcal{H} \). This shows that \((X, m, \mathcal{H}) \) is Strongly \(\mathcal{H} \)-Lindelöf. \(\square \)

Definition 8 A subset \(A \) of a hereditary \(m \)-space \((X, m, \mathcal{H}) \) is said to be \(m \mathcal{H}_\delta \)-closed if for every \(U \in m \) with \(A \setminus U \in \mathcal{H} \), \(\text{mcl}(A) \subseteq U \).

Proposition 1 Let \((X, m, \mathcal{H}) \) be a hereditary \(m \)-space. If \((X, m, \mathcal{H}) \) is Strongly \(\mathcal{H} \)-Lindelöf and \(A \subseteq X \) is \(m \mathcal{H}_\delta \)-closed, then \(A \) is Strongly \(\mathcal{H} \)-Lindelöf relative to \(X \).
Proof. Let \(\{V_\alpha : \alpha \in \Delta\} \) be a family of \(m \)-open subsets of \(X \) such that \(\bigcup_{\alpha \in \Delta} V_\alpha \in \mathcal{H} \). Since \(A \) is \(m\mathcal{H}_g \)-closed, \(\text{mcl}(A) \subseteq \bigcup_{\alpha \in \Delta} V_\alpha \). Then \(\big(X \setminus \text{mcl}(A)\big) \cup \bigcup_{\alpha \in \Delta} V_\alpha \) is an \(m \)-open cover of \(X \) and so \(X \setminus \big(\big(X \setminus \text{mcl}(A)\big) \cup \bigcup_{\alpha \in \Delta} V_\alpha\big) \in \mathcal{H} \). Since \(X \) is Strongly \(\mathcal{H} \)-Lindelöf, there exists a countable subset \(\Delta_0 \) of \(\Delta \) such that \(X \setminus \big(\big(X \setminus \text{mcl}(A)\big) \cup \bigcup_{\alpha \in \Delta_0} V_\alpha\big) \in \mathcal{H} \). Thus, \(A \setminus \bigcup_{\alpha \in \Delta_0} V_\alpha \in \mathcal{H} \). Hence \(A \) is Strongly \(\mathcal{H} \)-Lindelöf relative to \(X \).

\[\square \]

Theorem 7 Let \((X,m,\mathcal{H})\) be a hereditary \(m \)-space. Let \(A \) be an \(m\mathcal{H}_g \)-closed set such that \(A \subseteq B \subseteq \text{mcl}(A) \). Then \(A \) is Strongly \(\mathcal{H} \)-Lindelöf relative to \(X \) if and only if \(B \) is Strongly \(\mathcal{H} \)-Lindelöf relative to \(X \).

Proof.

Suppose that \(A \) is Strongly \(\mathcal{H} \)-Lindelöf relative to \(X \) and \(\{V_\alpha : \alpha \in \Delta\} \) is a family of \(m \)-open sets of \(X \) such that \(B \setminus \bigcup_{\alpha \in \Delta} V_\alpha \in \mathcal{H} \). By the heredity property, \(A \setminus \bigcup_{\alpha \in \Delta} V_\alpha \in \mathcal{H} \) and \(A \) is Strongly \(\mathcal{H} \)-Lindelöf relative to \(X \) and hence there exists a countable subset \(\Delta_0 \) of \(\Delta \) such that \(A \setminus \bigcup_{\alpha \in \Delta_0} V_\alpha \in \mathcal{H} \). Since \(A \) is \(m\mathcal{H}_g \)-closed, \(\text{mcl}(A) \subseteq \bigcup_{\alpha \in \Delta_0} V_\alpha \) and so \(\text{mcl}(A) \setminus \bigcup_{\alpha \in \Delta_0} V_\alpha \in \mathcal{H} \). This implies that \(B \setminus \bigcup_{\alpha \in \Delta_0} V_\alpha \in \mathcal{H} \).

Conversely, suppose that \(B \) is Strongly \(\mathcal{H} \)-Lindelöf relative to \(X \) and \(\{V_\alpha : \alpha \in \Delta\} \) is a family of \(m \)-open subsets of \(X \) such that \(A \setminus \bigcup_{\alpha \in \Delta} V_\alpha \in \mathcal{H} \). Given that \(A \) is \(m\mathcal{H}_g \)-closed, \(\text{mcl}(A) \setminus \bigcup_{\alpha \in \Delta} V_\alpha = \emptyset \in \mathcal{H} \) and this implies \(B \subseteq \bigcup_{\alpha \in \Delta} V_\alpha \). Since \(B \) is Strongly \(\mathcal{H} \)-Lindelöf relative to \(X \), there exists a countable subset \(\Delta_0 \) of \(\Delta \) such that \(B \setminus \bigcup_{\alpha \in \Delta_0} V_\alpha \in \mathcal{H} \). Hence \(A \setminus \bigcup_{\alpha \in \Delta_0} V_\alpha \in \mathcal{H} \).

\[\square \]

5 \((\gamma, \delta) \)-continuous functions

Definition 9 Let \((X,m)\) and \((Y,n)\) be minimal spaces and \(\gamma \) (resp. \(\delta \)) be an operation on \(m \) (resp. \(n \)). Then a function \(f : (X,m) \to (Y,n) \) is said to be \((\gamma, \delta) \)-continuous if for each \(x \in X \) and each \(V \in n \) containing \(f(x) \), there exists \(U \in m \) containing \(x \) such that \(f(\gamma(U)) \subseteq \delta(V) \).

Lemma 7 Let \(f : X \to Y \) be a function.

1. If \(\mathcal{H} \) is a hereditary class on \(X \), then \(f(\mathcal{H}) \) is a hereditary class on \(Y \).

2. If \(\mathcal{H} \) is a hereditary class on \(Y \), then \(f^{-1}(\mathcal{H}) \) is a hereditary class on \(X \).

Proof. (1): This is due to Lemma 3.8 of [5].

(2): Let \(A \subseteq f^{-1}(\mathcal{H}) \), where \(\mathcal{H} \in \mathcal{H} \). Then \(f(A) \subseteq f(f^{-1}(\mathcal{H})) \subseteq \mathcal{H} \). Hence \(f(A) \in \mathcal{H} \) and \(A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\mathcal{H}) \) and hence \(A \in f^{-1}(\mathcal{H}) \).

\[\square \]
Theorem 8 Let (X, m) and (Y, n) be minimal spaces and γ (resp. δ) be an operation on m (resp. n) and \mathcal{H} be a hereditary class on X. If (X, m, \mathcal{H}) is $\gamma\mathcal{H}$-Lindelöf and $f : (X, m, \mathcal{H}) \to (Y, n, f(\mathcal{H}))$ is a (γ, δ)-continuous surjection, then $(Y, n, f(\mathcal{H}))$ is $\delta f(\mathcal{H})$-Lindelöf.

Proof. Let $\{V_\alpha : \alpha \in \Delta\}$ be any cover of Y by n-open sets. For each $x \in X$, there exists $\alpha(x) \in \Delta$ such that $f(x) \in V_{\alpha(x)}$. Since f is (γ, δ)-continuous, there exists $U_{\alpha(x)} \in m$ containing x such that $f(\gamma(U_{\alpha(x)})) \subseteq \delta(V_{\alpha(x)})$. Since $\{U_{\alpha(x)} : x \in X\}$ is a cover of X by m-open sets and (X, m, \mathcal{H}) is $\gamma\mathcal{H}$-Lindelöf, there exists a countable points $x_1, x_2, x_3, \ldots \in X$ such that $X \setminus \bigcup_{i=1}^{\infty} \gamma(U_{\alpha(x_i)}) = H_0$, where $H_0 \in \mathcal{H}$. Therefore, we have $Y \subseteq f(\bigcup_{i=1}^{\infty} \gamma(U_{\alpha(x_i)})) \cup f(H_0) \subseteq \bigcup_{i=1}^{\infty} \delta(V_{\alpha(x_i)}) \cup f(H_0)$. Hence $(Y, n, f(\mathcal{H}))$ is $\delta f(\mathcal{H})$-Lindelöf. \qed

Definition 10 [11] A function $f : (X, m) \to (Y, n)$ is said to be M-closed if for each m-closed set F of X, $f(F)$ is n-closed in Y.

Theorem 9 Let $f : (X, m) \to (Y, n, \mathcal{H})$ be an M-closed surjective function. If for every $y \in Y$, $f^{-1}(y)$ is $\text{Strongly } f^{-1}(\mathcal{H})$-Lindelöf in X, then $f^{-1}(A)$ is $\text{Strongly } f^{-1}(\mathcal{H})$-Lindelöf relative to X whenever A is $\text{Strongly } \mathcal{H}$-Lindelöf relative to Y and $A \setminus \bigcup U \in \mathcal{H}$ for every $U \in n$.

Proof. Let $\{V_\alpha : \alpha \in \Delta\}$ be a family of m-open subsets of X such that $f^{-1}(A) \setminus \bigcup(U_{\alpha} : \alpha \in \Delta) \in f^{-1}(\mathcal{H})$. For each $y \in A$ there exists a countable subset $\Delta_0(y)$ of A such that $f^{-1}(y) \setminus \bigcup(V_\alpha : \alpha \in \Delta_0(y)) \in f^{-1}(\mathcal{H})$. Let $V_y = \bigcup(V_\alpha : \alpha \in \Delta_0(y))$. Each V_y is an m-open set in (X, m) and $f^{-1}(y) \setminus V_y \in f^{-1}(\mathcal{H})$.

Now each set $f(X \setminus V_y)$ is n-open in Y and hence, $U(y) = Y - f(X \setminus V_y)$ is n-open in Y. Note that $f^{-1}(\bigcup(y)) \subseteq V_y$. Thus, $\{U(y) : y \in A\}$ is a family of n-open subsets of Y such that $A \setminus \bigcup(U(y) : y \in A) \in \mathcal{H}$. Since A is $\text{Strongly } \mathcal{H}$-Lindelöf relative to Y, there exists a countable subset $\{U_{y_i} : i \in \mathbb{N}\}$ such that $A \setminus \bigcup(U_{y_i} : i \in \mathbb{N}) \in \mathcal{H}$ and hence $f^{-1}[A \setminus \bigcup(U_{y_i} : i \in \mathbb{N})] = f^{-1}(A) \setminus \bigcup(f^{-1}(U_{y_i})) : i \in \mathbb{N}] \subseteq f^{-1}(\mathcal{H})$. Since $f^{-1}(A) \setminus \bigcup(U_{y_i} : i \in \mathbb{N}) \subseteq f^{-1}(A) \setminus \bigcup(f^{-1}(U_{y_i})) : i \in \mathbb{N}$, then $f^{-1}(A) \setminus \bigcup(U_{y_i} : i \in \mathbb{N}) = f^{-1}(A) \setminus \bigcup(V_\alpha : \alpha \in \Delta_0(y_i), i \in \mathbb{N}) \in f^{-1}(\mathcal{H})$. Hence, $f^{-1}(A)$ is $\text{Strongly } f^{-1}(\mathcal{H})$-Lindelöf relative to X. \qed

A subset K of an m-space is said to be m-compact [14] if every cover of K by m-open sets of X has a finite subcover.

Theorem 10 Let $f : (X, m) \to (Y, n, \mathcal{H})$ be an M-closed surjective function. If for every $y \in Y$, $f^{-1}(y)$ is m-compact in X, then $f^{-1}(A)$ is $f^{-1}(\mathcal{H})$-Lindelöf relative to X whenever A is \mathcal{H}-Lindelöf relative to Y.

Proof. Let \(\{V_\alpha : \alpha \in \Delta \} \) be a cover of \(f^{-1}(A) \) by \(m \)-open sets of \(X \). For each \(y \in A \) there exists a finite subset \(\Delta_0(y) \) of \(\Delta \) such that \(f^{-1}(y) \subseteq \bigcup \{V_\alpha : \alpha \in \Delta_0(y)\} \). Let \(V_y = \bigcup \{V_\alpha : \alpha \in \Delta_0(y)\} \). Each \(V_y \) is an \(m \)-open set in \((X, m) \) and \(f^{-1}(y) \subseteq V_y \). Since \(f \) is \(M \)-closed, by Theorem 3.1 of [11] there exists an \(n \)-open set \(U_y \) containing \(y \) such that \(f^{-1}(U_y) \subseteq V_y \). The collection \(\{U_y : y \in A\} \) is a cover of \(A \) by \(n \)-open sets of \(Y \). Hence, there exists a countable subcollection \(\{U_{y(i)} : i \in \mathbb{N}\} \) such that \(A \setminus \bigcup \{U_{y(i)} : i \in \mathbb{N}\} \in \mathcal{H} \).

Then \(f^{-1}(A \setminus \bigcup \{U_{y(i)} : i \in \mathbb{N}\}) = f^{-1}(A) \setminus \bigcup \{f^{-1}(U_{y(i)}) : i \in \mathbb{N}\} \in f^{-1}(\mathcal{H}) \). Since \(f^{-1}(A) \setminus \bigcup \{V_{y(i)} : i \in \mathbb{N}\} \subseteq f^{-1}(A) \setminus \bigcup \{f^{-1}(U_{y(i)}) : i \in \mathbb{N}\} \), then \(f^{-1}(A) \setminus \bigcup \{V_{y(i)} : i \in \mathbb{N}\} \in f^{-1}(\mathcal{H}) \). Thus, \(f^{-1}(A) \) is \(f^{-1}(\mathcal{H}) \)-Lindelöf relative to \(X \). □

References

