Susceptibility in vitro of clinical Candida albicans isolates to the selected azoles

Bartlomiej Pawlicki*, Anna Biernasiuk, Monika Jonczyk, Anna Malm

ARTICLE INFO
Received 14 February 2021
Accepted 15 May 2021

Keywords: Candida albicans, hematopoietic patients, azoles, resistance.

ABSTRACT
Candida spp. is the most prevalent cause of fungal infection worldwide, and their increasing resistance to antifungal agents, especially to azoles, has become problematic. The aim of this work was to establish the susceptibility to fluconazole, itraconazole, voriconazole and posaconazole of 50 clinical C. albicans isolates from hematopoietic patients. This has been evaluated using the following parameters: MIC (Minimum Inhibitory Concentration), MIC \(_{50}\) (MIC required to inhibit the growth of 50% of organisms), as well as MIC \(_{90}\) (MIC required to inhibit the growth of 90% of organisms). Susceptibility of the studied clinical isolates to all azoles was high, being 86% for itraconazole, 90% for fluconazole and posaconazole and 92% for voriconazole. The resistance rates ranged from 8% (voriconazole), to 12% (itraconazole). The emergence of azole-resistant yeast strains creates a necessity to determine and monitor the sensitivity of the isolated Candida spp., including C. albicans, especially in patients predisposed to life-threatening fungal invasive disease.

INTRODUCTION
Candida, a genus of yeasts that belongs to the Saccharomycetales, is considered to be the most common cause of fungal infections worldwide [1]. A few hundred Candida species have been identified. Dozens of them are opportunistic pathogens, causing fungal infections named as ‘candidiasis’, especially in patients with impaired immune systems, e.g. oncological and hematopoietic patients. These infections include superficial lesions, affecting the skin or mucous membrane, or invasive, life-threatening diseases [2]. They have mainly an endogenic character because human microbiota can be regarded as the reservoir of Candida spp. [3]. The most commonly isolated pathogenic species is Candida albicans [4]. Although the diagnostic and treatment options have been improved, fungal infections, including candidiasis, remain a problem, especially those being invasive diseases with high mortality [5].

Polyenes, fluoropyrimidines, echinocandins and azoles are antifungal agents used in Candida infections treatment [4]. Azoles are antifungals used globally to treat Candida spp. infections, as well as for preventive purposes [2]. These agents belong to the family of imidazole derivatives (e.g. clotrimazole, ketoconazole, miconazole) and triazole derivatives such as itraconazole, fluconazole, posaconazole and voriconazole [4,6]. Antifungal activity of azoles results from inhibition of the enzyme encoded by gene ERG11, i.e. sterol 14alpha-demethylase, which takes part in the transformation of lanosterol into ergosterol. Therefore, these agents interrupt the biosynthesis of ergosterol – an important Candida spp. cell membrane compound, leading to inhibition of fungal growth. In addition, 14α-methyl-3,6-diol, being a fungistatic compound, is accumulated inside the yeast cell [4].

Increasing resistance and multiresistance to antifungal agents has become more and more serious. The most predominant among Candida spp. is resistance to azoles, caused by the wide use of these medicines in the last decades in clinical practice – both for prophylactic and therapeutic purposes [1]. Candida spp. has evolved several resistance mechanisms against azoles. Among these are: point mutations in the gene ERG11 (interference in azoles binding), gene ERG11 up regulation (influence on ergosterol production), reduced azoles affinity to cell membrane, overexpression or amplification of multiple classes of drug efflux pumps (rapidazole extrusion from fungal cells), regulation of cellular stress response pathways and biofilm creation [1,3].

The overall goal of this work was to determine the susceptibility to fluconazole, itraconazole, voriconazole and posaconazole of clinical C. albicans isolates from...
hematooncological patients in order to assess the prevalence of resistance to these azoles.

MATERIALS AND METHODS

The yeast population used in these studies included 50 *C. albicans* isolates. These microorganisms were from the collection of the Department of Pharmaceutical Microbiology, Medical University of Lublin, and were primarily isolated from clinical specimens obtained from hematooncological patients such as swabs from oral cavity, upper respiratory tract, cervix, vagina, urethra and ears, as well as sputum, blood, stool and urine. The isolates were identified by standard diagnostic methods. The Ethical Committee of the Medical University of Lublin approved the study protocol (No. KE-0254/75/2011).

The assay of sensitivity of clinical *C. albicans* isolates to fluconazole, itraconazole, voriconazole and posaconazole was performed using the commercial Sensititre YeastOne Y09 AST antifungal panel (Thermo Fisher Scientific) based on the broth microdilution method, allowing for the determination of minimal inhibitory concentration (MIC). This method enables the qualitative and quantitative evaluation of the MIC (Minimum Inhibitory Concentration).

All the used yeast isolates were stored at -75°C in Sabouraud broth (bioMerieux) with the addition of 50% glycerol. They were first subcultured on Sabouraud agar (bioMerieux) and incubated at 35°C for 24 h. The yeast suspensions were then prepared in sterile water according to the manufacturer’s instruction to obtain optical density corresponding to 0.5 Mc Farland standard. The final inocula were prepared by adding 20 μL of a given suspension into 11 mL of OneYeast broth to obtain a density of approximately 1.5–8 × 10³ CFU (Colony Forming Units)/mL. The 96-well plates with antifungal agents at serial two-fold concentrations (fluconazole: 0.12 to 256 mg/L, itraconazole: 0.015 to 16 mg/L, posaconazole: 0.008 to 8 mg/L and voriconazole: 0.008 to 8 mg/L) were filled up by 100 μL of the final inoculum and then incubated at 35°C for 24 h. After incubation, a visual reading was made on the basis of changing the yeast growth indicator color from blue (negative) to red (positive). MIC was defined as the lowest concentration of the compound showing complete fungal growth inhibition. The experiments were performed in triplicate. The representative data are presented.

In these studies, MIC interpretative criteria (mg/L) for *C. albicans*, according to CLSI M27 (Clinical and Laboratory Standards Institute standard M27) were as follows: fluconazole – susceptible (≤ 8), dose-dependent susceptible (16–32), resistant (≥ 64); itraconazole – susceptible (≤ 0.125), dose-dependent susceptible (0.25–0.5), resistant (≥ 1); posaconazole and voriconazole – susceptible (≤ 1), dose-dependent susceptible (2) and resistant (≥ 4) [7].

RESULTS

The susceptibility of clinical *C. albicans* isolates was first determined to fluconazole, itraconazole, voriconazole and posaconazole. Table 1 presents the obtained data. The majority of these isolates were sensitive to all azoles within the range 86-92%. The resistance rates ranged from 8 to 12%. We identified one isolate (2%) as susceptible to itraconazole, depending on dose.

Table 1. The rate of susceptibility of clinical *C. albicans* isolates to the selected azoles assessed by MIC determination

<table>
<thead>
<tr>
<th>Category of sensitivity</th>
<th>Fluconazole (number, percentage)</th>
<th>Itraconazole (number, percentage)</th>
<th>Voriconazole (number, percentage)</th>
<th>Posaconazole (number, percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>46 (92%)</td>
<td>43 (86%)</td>
<td>46 (92%)</td>
<td>45 (90%)</td>
</tr>
<tr>
<td>Resistance</td>
<td>0 (0%)</td>
<td>4 (8%)</td>
<td>0 (0%)</td>
<td>5 (10%)</td>
</tr>
</tbody>
</table>

Subsequently, we established the range of MIC of eachazole for both sensitive and resistant *C. albicans* isolates (Fig. 1). We found that the MIC of fluconazole for susceptible strains ranged from ≤ 0.12 to 4 mg/L, and about one-third of isolates was characterized by MIC = 0.5 mg/L. MIC for fluconazole-resistant isolates was estimated at ≥ 64 mg/L (Fig. 1a). According to the obtained data (Fig. 1b), MIC of itraconazole ranged within ≤ 0.015–0.5 mg/L. In the case of this drug, we noted that for 50% of the isolates, MIC = 0.03 mg/L. In turn, MIC for strains with sensitivity depending on itraconazole dose amounted to be 1 mg/L, while for resistant isolates, MIC ≥ 16 mg/L. Furthermore, we saw that the MIC of voriconazole against sensitive isolates was within the range ≤ 0.008-0.12 mg/L (Fig. 1c). Moreover, the most frequent MIC value was MIC ≤ 0.015 mg/L found for 72% isolates. Voriconazole-resistant strains were characterized by MIC = 16 mg/L. In addition, our work revealed that the MIC of posaconazole for susceptible isolates were in the range of ≤ 0.008–0.06 mg/L, and most isolates (56%) were characterized by MIC = 0.015 mg/L. We also established that posaconazole-resistant strains possessed MIC ≥ 8 mg/L (Fig. 1d).
DISCUSSION

In recent years, the number of fungal infections, both superficial and life-threatening invasive diseases, has increased. Candida spp., mainly C. albicans, is the major etiological agent of fungal infections [8]. However, it should be noted that excessive use of antifungals may lead to the growing resistance of Candida species, including C. albicans. The consequence of resistance may be therapeutic failure. Therefore, the susceptibility of clinical isolates to antifungal agents should be identified, allowing more appropriate drugs to be introduced to the treatment course. Literature data shows that sensitivity and affirming the “60-90 rule” may help in the results of therapy prediction. This rule suggests that infections caused by susceptible pathogens respond to suitable therapy approximately to 90%, while infections caused by resistant pathogens respond to suitable therapy only to 60% [9].

We found that the sensitivity of clinical C. albicans isolates from hematooncological patients to fluconazole, itraconazole, voriconazole and posaconazole was assessed at the high level, i.e. 86-92% with MIC$_{90}$ being 4 mg/L, 0.06 mg/L, 1 mg/L and 0.06 mg/L, respectively. The high sensitivity of clinical C. albicans isolates to azoles reported in this paper is in agreement with data presented by Lei et al. [10]. They found that fluconazole, itraconazole and voriconazole were highly active against clinical isolates of C. albicans, with MIC$_{90}$ of 1 mg/L, 0.125 mg/L and 0.0625 mg/L, while, about 90% isolates were susceptible to these azoles.

However, C. albicans can become resistant to azoles, especially to fluconazole, as this is frequently used to treat candidiases, mainly systemic infections [11]. The main mechanism of azole resistance in Candida spp. is related with increases in the number of efflux pumps in the cell due to gene overexpression [2]. We found that the resistance rate of clinical C. albicans isolates from hematooncological patients to fluconazole, itraconazole, voriconazole and posaconazole ranged from 8-12%. According to literature data, C. albicans isolates from candidemic patients have the lowest incidence of azole resistance, including fluconazole (0-5%) [11-14]. The incidence of fluconazole resistance in C. albicans isolates from oropharyngeal candidiasis was found to be higher, being above 10% [15]. However, studies performed by Yenisehirli et al. [16] showed that the overall resistance rates of C. albicans isolates to fluconazole, itraconazole, voriconazole and posaconazole were higher – 34%, 21%, 14% and 14%, respectively.

CONCLUSIONS

The present study shows that susceptibility of C. albicans isolates from hematooncological patients to posaconazole, voriconazole, itraconazole and fluconazole was high (86-92%). However, emergence of azole-resistant strains creates a necessity to determine and monitor sensitivity to the isolated Candida spp., especially in patients with life-threatening invasive disease.

ORCID iDs

Bartłomiej Pawlicki https://orcid.org/0000-0003-4278-4168
Anna Biernasiuk https://orcid.org/0000-0002-2844-9876
Monika Jonczyk https://orcid.org/0000-0001-7788-6266
Anna Malm https://orcid.org/0000-0003-1503-7634

REFERENCES