Introduction

Gamma (γ) radiation is emitted from an excited nucleus when it de-excites from high energy levels to lower energy levels and loses energy in the form of γ rays. The energy of γ rays is equal to the difference between the energies of the quantum states between which the nucleus is de-exciting. Gamma rays are found in various industries for different applications. For instance, they are used in particle accelerator facilities for γ spectroscopy research and in the sterilization industry for irradiation of surgical instruments and art objects to eliminate microbes such as viruses and bacteria. On the other hand, γ rays have high energies, in the MeV range, and hence they are highly penetrative and damaging to living cells. Thus, they are hazardous to humans who are working with them. However, these radiation hazards can be prevented through effective radiation shielding techniques.

The traditional method of shielding γ rays is by the usage of lead (Pb)-based shielding materials, which have been investigated in many studies [1–4] and proven effective. However, due to the toxicity of Pb, recent studies are investigating alternative solutions. In particular, the possible usage of Pb-free heavy metal oxide (HMO)-based glasses is being studied. This area of research is currently an
area of interest to many researchers around the globe [5–15]. For instance, the study of Ahmad et al. [12] investigated the γ ray shielding capacity of \(\text{xBi}_2\text{O}_3 – (1 – x)\text{ZnO} – 0.2\text{B}_2\text{O}_3 – 0.3\text{(SiO}_2\text{)}\) glass, where \(x = 0.1, 0.2, 0.3, 0.4, \) and 0.5, and showed that it is enhanced by the increase in the concentration of Bi\(_2\)O\(_3\). In the same vein, Kurtulus et al. [13] investigated the impact of Bi\(_2\)O\(_3\) on the γ radiation shielding properties of 10Na\(_2\)O–6MgO–9CaO–5Al\(_2\)O\(_3\)–12B\(_2\)O\(_3\)–(100 – x)SiO\(_2\) glasses (where \(x = 0, 2.5, 5, 7.5, \) and 10 mol\%\) glass system and found that the increase in Bi\(_2\)O\(_3\) concentration improves the radiation shielding ability of this glass system. Al-Harbi et al. also showed that Bi\(_2\)O\(_3\) yields better γ radiation shielding capacity than SrO, TeO\(_2\), and PbO in the Li\(_2\)O–K\(_2\)O–B\(_2\)O\(_3\)–HMO (HMO = SrO/TeO\(_2\)/PbO/Bi\(_2\)O\(_3\)) glass system [14].

Recently, the study of Mustafa et al. [15] manufactured \((x)\text{Bi}_2\text{O}_3 – (50 – x)\text{ZnO} – 20\text{B}_2\text{O}_3 – 30\text{SiO}_2\) (where \(x = 10, 20, 30, 40, \) and 45 mol\%) glass samples and reported on their optical properties. The γ radiation shielding properties of this Bi\(_2\)O\(_3\)-based glass system have not been investigated in the literature. Even though the study of Mustafa et al. [16] reported on the very similar samples such as \((x)\text{Bi}_2\text{O}_3 – (1 – x)\text{ZnO} – 0.2\text{B}_2\text{O}_3 – 0.3\text{(SiO}_2\text{)}\) RHA glass where \(x = 0.1, 0.2, 0.3, 0.4, \) and 0.5 and RHA = rice husk ash, it only looked at one γ ray energy which is 0.05459 MeV. Thus, in this work, the γ ray shielding properties of the \((x)\text{Bi}_2\text{O}_3 – (50 – x)\text{ZnO} – 20\text{B}_2\text{O}_3 – 30\text{SiO}_2\) glasses were studied in detail, and the values of the MAC, HVL, TVL, MFP, and Z\(_{\text{eff}}\) are very critical quantities. In radiation shielding applications, the LAC, MAC, HVL, TVL, MFP, and Z\(_{\text{eff}}\) are very critical quantities. The LAC and MAC describe the probability that photons will interact with a medium. The greater the values of these parameters, the better the material is in shielding γ rays. On the other hand, the HVL and TVL are absorber thicknesses that are required to attenuate photons by 50% and 90%, respectively. Hence, small values of the HVL and TVL represent better radiation shielding ability of a material. Furthermore, the MFP is the average distance between two consecutive interactions of a photon, while Z\(_{\text{eff}}\) is the effective atomic number of an absorber. Thus, low values of the MFP and high values of Z\(_{\text{eff}}\) represent better radiation shielding ability of a material.

In this work, the γ rays shielding properties of the \((x)\text{Bi}_2\text{O}_3 – (50 – x)\text{ZnO} – 20\text{B}_2\text{O}_3 – 30\text{SiO}_2\) glass system were simulated for the samples S1, S2, S3, S4, and S5, of which the chemical contents are shown in Table 1. This was achieved using Phy-X/PSD simulation software [18, 19]. Phy-X/PSD is a recently developed user-friendly software that runs remotely on the Ubuntu operating system. It can calculate radiation shielding parameters for photon energies between 0.001 MeV and 100 GeV. The primary input data required by the software in these calculations are the chemical contents and densities of the samples, which are shown in Table 1 for this work. Using these, it can calculate the MAC, HVL, TVL, MFP, and Z\(_{\text{eff}}\) of different glass samples, from the corresponding LAC, using the theoretical equations which are discussed in detail below. The XCOM program [20] also requires the chemical contents of glass which are available from the database. These MACs can be directly converted to LAC, HVL, TVL, MFP, and Z\(_{\text{eff}}\) using the equations below.

According to the well-known Beer–Lambert law, the LAC, \(\mu \), of a sample is related to the beam intensity and thickness of the absorber as follows:

\[
I_j = I_i \exp(-\mu x)
\]

where \(I_i \) and \(I_j \) are, respectively, the unattenuated and attenuated photon intensities, and \(x \) is the thickness of the absorber. The LAC can also be computed from the MAC, \(\mu_m \), according to Sakar et al. [18]:

\[
\mu = \rho \mu_m
\]

where \(\rho \) is the sample density. The MAC of a composite sample is given by Sakar et al. [18]:

\[
\mu_m = \sum w_i \left(\frac{\mu}{\rho} \right)_i
\]

where \(\frac{\mu}{\rho} \) and \(w_i \) are the MAC and weight fraction of the \(i \)th element in the sample. Using the LAC, the HVL, TVL, and MFP of the sample can be determined as follows [18]:

\[
\text{HVL} = \frac{\ln 2}{\mu}
\]

\[
\text{TVL} = \frac{\ln 10}{\mu}
\]

Table 1. The chemical contents (mol%) of glass samples used in this study [15]

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Bi(_2)O(_3)</th>
<th>ZnO</th>
<th>B(_2)O(_3)</th>
<th>SiO(_2)</th>
<th>Density (g/cm(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>10</td>
<td>40</td>
<td>20</td>
<td>30</td>
<td>4.59</td>
</tr>
<tr>
<td>S2</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>4.97</td>
</tr>
<tr>
<td>S3</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>5.87</td>
</tr>
<tr>
<td>S4</td>
<td>40</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>6.20</td>
</tr>
<tr>
<td>S5</td>
<td>45</td>
<td>5</td>
<td>20</td>
<td>30</td>
<td>6.31</td>
</tr>
</tbody>
</table>
Furthermore, the effective atomic number is computed from the MACs of the constituents using the expression below [18]:

\[Z_{\text{eff}} = \frac{\sum_{j} f_{j} A_{j} (\mu / \rho)_{j}}{\sum_{j} f_{j} A_{j} Z_{j} (\mu / \rho)_{j}} \]

where \(f_{j}, A_{j}, \) and \(Z_{j} \) are, respectively, the mole fraction of each element, atomic weight, and atomic number in the sample.

Results and discussions

This section contains the discussion of the results on the LAC, MAC, HVL, TVL, MFP, and effective atomic number \((Z_{\text{eff}})\), which were obtained using Phy-X/PSD software. The LAC and MAC as a function of \(\gamma \) energy are depicted in Figs. 1 and 2, in the photon energy range of 0.015 MeV to 15 MeV, respectively. Figure 1 shows that the LAC decreases fast with the increase in photon energy at energies <0.1 MeV and suddenly increases at 0.1 MeV and decreases sharply again up to 1 MeV, above which it decreases slowly and remains relatively constant >3 MeV. This fast decrease of the LAC is due to the photoelectric effect of which the contribution to the LAC decreases significantly with an increase in photon energy. The enhancement at 0.1 MeV is due to the K shell electrons which start contributing to the photoelectric effect at 0.1 MeV. This behavior of the LAC as a function of gamma energy is similar to what has been observed in the literature [11, 21]. It is also observed in Fig. 1 that S1 has the lowest LAC, and S5 has the highest LAC. In particular, the LAC ranges from 293.938 cm to 0.169 cm, 380.051 cm to 0.210 cm, 491.990 cm to 0.267 cm, 549.723 cm to 0.295 cm, and 571.187 cm to 0.306 cm for S1, S2, S3, S4, and S5, respectively. Clearly, it has increased significantly with an increase in the Bi_2O_3 concentration. This trend is also consistent with the literature [17]. Furthermore, Fig. 2 shows that the behavior of the MAC as a function of \(\gamma \) ray energy is similar to the one of the LAC, except for energies between 1 MeV and 3 MeV where the MAC of all samples are comparable.

Furthermore, the Phy-X/PSD software calculations were validated using XCOM software. In particular, we compared the LAC obtained using Phy-X/PSD with the LAC from XCOM calculations, in the similar fashion that was recently used in the literature [22]. The comparison of the LAC from the two software systems is shown in Fig. 3. There is

![Fig. 1. Linear attenuation coefficient of glass samples S1, S2, S3, S4, and S5.](image1)

![Fig. 2. Mass attenuation coefficient of glass samples S1, S2, S3, S4, and S5.](image2)

![Fig. 3. Comparison of LAC from Phy-X/PSD and XCOM for S1, S2, S3, S4, and S5.](image3)
an excellent agreement between the two simulation software systems for our five glass samples, hence providing confidence on the results that were calculated using Phy-X/PSD software. There was no need to further compare the rest of the radiation shielding quantities because they are derived from the LAC, on which we already had confidence.

The HVL and TVL are, respectively, depicted in Figs. 4 and 5, as a function of γ ray energy, for all samples that were studied in this work. It is clear that glass S1 has the highest HVL and TVL, while glass S5 has the lowest HVL and TVL. In particular, the HVL is in the range of 0.002–4.433 cm, 0.002–3.779 cm, 0.001–3.078 cm, 0.001–2.846 cm, and 0.001–2.772 cm for S1, S2, S3, S4, and S5, respectively. On the other hand, the TVL for S1, S2, S3, S4, and S5 ranges from 0.008 cm to 14.726 cm, 0.006 cm to 12.554 cm, 0.005 cm to 10.225 cm, 0.004 cm to 9.454 cm, and 0.004 cm to 9.207 cm, respectively. Clearly, the HVL and TVL of the Bi₂O₃–ZnO–B₂O₃–SiO₂ glass system decrease with the increase in the content of Bi₂O₃. It is also seen that the HVL and TVL increase sharply with the increase in γ ray energy, up to 5 MeV after which they remain approximately constant. The trends observed in the HVL and TVL of the present work have been reported in other studies [23, 24].

Figure 6 shows MFPs of the samples S1, S2, S3, S4, and S5 in the 0.015 MeV to 15 MeV photon energy range. It is observed that glass S1 has the highest MFP, while glass S5 has the lowest MFP. In fact, the MFP of S1, S2, S3, S4, and S5 is in the range of 0.003–6.395 cm, 0.003–5.452 cm, 0.002–4.440 cm, 0.002–4.106 cm, and 0.002–3.999 cm, respectively. It is also clear that the MFP increases fast with the increase in the photon energy for energies <5 MeV and remains relatively constant at energies >5 MeV. This relationship of the MFP with energy is consistent with the distribution of the LAC shown in Fig. 1. It is also consistent with the literature [25, 26].

In Fig. 7, the effective atomic number (Zₑₑ) of the Bi₂O₃–ZnO–B₂O₃–SiO₂ glass system is shown, as a function of photon energy in the range of 0.015–15 MeV. This quantity decreases with the increase in photon energies <0.1 MeV, which is enhanced and after which it continues decreasing sharply up to the photon energy of 1 MeV. It remains relatively constant between 1 MeV and 3 MeV and increases slowly with the increase in energies >3 MeV. The distribution of Zₑₑ that is similar to the one observed in this study has been recently reported in the literature [27]. It is also clear that S1, which has the lowest Bi₂O₃ content, and S5, which has the high-
Gamma radiation shielding properties of \((x)\text{Bi}_2\text{O}_3-(50-x)\text{ZnO}-20\text{B}_2\text{O}_3-30\text{SiO}_2\) glass system

The radiation shielding properties of \((x)\text{Bi}_2\text{O}_3-(50-x)\text{ZnO}-20\text{B}_2\text{O}_3-30\text{SiO}_2\) (where \(x = 10, 20, 30, 40,\) and 45 mol\%) glass system were investigated. The LAC, MAC, HVL, TVL, MFP, and \(Z_{\text{eff}}\) of this glass network were computed using Phy-X/PSD simulation software, which was validated using XCOM software. The \(45\text{Bi}_2\text{O}_3-5\text{ZnO}-20\text{B}_2\text{O}_3-30\text{SiO}_2\) sample has the highest LAC, MAC, and \(Z_{\text{eff}}\) and the lowest HVL, TVL, and MFP. Furthermore, the radiation shielding abilities of the glass samples S1, S2, S3, S4, and S5 were compared with those of other \Bi_2O_3\)-based glasses that have been investigated in the literature. Figure 10 shows the comparison of HVL of the glass materials of this study and Bi1, Bi2, Bi3, Bi4, Bi5, and Bi6 at 0.662 MeV.

The results of this work were also compared with those of the literature. This comparison revealed that the \(45\text{Bi}_2\text{O}_3-5\text{ZnO}-20\text{B}_2\text{O}_3-30\text{SiO}_2\) glass sample, which was studied in this work, has lower HVL than \(10\text{Na}_2\text{O}-6\text{MgO}-9\text{CaO}-5\text{Al}_2\text{O}_3-12\text{B}_2\text{O}_3-(58-x)\text{SiO}_2-(x)\text{Bi}_2\text{O}_3\) (where \(x = 0, 2.5, 5, 7.5,\) and 10 mol\%) and \((x)\text{Bi}_2\text{O}_3 + (50-x)\text{ZnO} + 20\text{B}_2\text{O}_3 + 30\text{SLS}\) (where \(x = 0, 5, 10, 20, 30, 40\) and 45 mol\%) glass systems, by at least a factor of 2. Therefore, the \(45\text{Bi}_2\text{O}_3-5\text{ZnO}-20\text{B}_2\text{O}_3-30\text{SiO}_2\) glass is more effective than some of the \Bi_2O_3\)-based glasses by at least a factor of 2 that have been recently studied in the literature.

Acknowledgments. The author would like to thank the National Research Foundation of South Africa for funding under research grant no. CSRP2204214088.

ORCID
B. V. Kheswa http://orcid.org/0000-0003-3044-094X
References

Gamma radiation shielding properties of (x)Bi₂O₃–(0.5 – x)ZnO–0.2B₂O₃–0.3SiO₂ glass system co-doped of Sm₂O₃. *Appl. Phys. A.* 126, 71. https://doi.org/10.1007/s00339-019-3262-9.