Logistics Security in the Era of Big Data, Cloud Computing and IoT

Gabriela Ioana ENACHE
Bucharest University of Economic Studies, Bucharest, Romania
enachegabriela15@stud.ase.ro

Abstract. In the backdrop of the Fourth Industrial Revolution and the use of new technologies like the Internet of Things (IoT), 5G, big data and cloud computing, this research paper intends to analyze the many cybersecurity concerns encountered by the logistics industry. This paper will offer insights into the main cybersecurity concerns affecting the logistics industry and explain viable ways for reducing these risks through a thorough study of recent research.

The Internet of Things (IoT) has made it possible to use smart devices that can gather and analyze massive volumes of data in real-time, giving logistical operations valuable information. But as IoT devices develop, the attack surface also grows, leaving logistical systems open to digital attacks. With the introduction of 5G networks, the connection is now quicker and more dependable, enabling real-time communication between IoT devices and making it easier to implement cutting-edge logistical systems.

Real-time data analysis is made possible through the scalable and secure infrastructure provided by cloud computing, which also improves the security of logistics systems. Security measures for logistics systems will grow more and more dependent on cybersecurity, IoT, 5G, big data, and cloud computing as logistics organizations continue to adopt digital technologies.

Keywords: logistics, security, supply chain, Internet of Things (IoT), 5G, big data, cloud computing

Introduction
With a market value of around €8.43 trillion in 2021, the logistics sector affected by the COVID-19 pandemic has recovered rapidly, reaching a market value of around €10.41 trillion in 2022. The size of the logistics sector is expected to exceed €13.7 billion by 2027. (Statista, 2023)

The Fourth Industrial Revolution has brought about a number of technical developments that have fundamentally changed how organizations work, and as a result, the logistics industry has seen a substantial upheaval in recent years. While edge intelligence and machine learning (ML) have made it possible to automate many crucial procedures, the Internet of Things (IoT) integration has allowed logistics businesses to track and monitor their assets in real-time. But as the sector has become more dependent on technology, new cybersecurity issues have emerged that put the integrity and security of critical data in jeopardy. Furthermore, worries about the possibility for new attack methods and vulnerabilities have been sparked by the rollout of 5G networks. (Deloitte Insights, 2019)

Millions of packages and other items are shipped over the globe every day, which places a significant burden on the logistics sector in terms of trade and commerce on a worldwide scale. But since the logistics industry relies more and more on technology, the threat of cyberattacks has grown to be a major worry for companies that operate in this market. Attacks on the internet can have disastrous effects, such as operations being disrupted, vital data being lost, and reputation being ruined. Due to the extensive amounts of sensitive information that are exchanged between many stakeholders, including clients, suppliers, and logistics providers, the logistics sector is particularly susceptible to cyber assaults. (Siegfried & Al-Sobaihi, 2022)

For example, the NotPetya malware assault that damaged the IT systems of the multinational shipping giant Maersk in 2017 resulted in the company being forced to temporarily
halt some of its operations. Maersk was forced to deal with severe financial losses, shipping delays, and supply chain disruptions for some clients as a result. The hack also damaged the business's reputation and made customers worry about the security of their personal information and purchases. This example highlights the need for proactive efforts to reduce the dangers of such assaults by showing how cyber-attacks can have major and far-reaching effects for organizations working in the logistics sector. (Maersk, 2020)

Literature review

The term "Logistics 4.0" refers to a particular implementation of Industry 4.0 in the logistics sector. New technologies and their use in logistics are what led to logistics 4.0. Each information and communication technology generates a new logistics-related solution (Glistau & Machado, 2018). The term "logistics 4.0" refers to logistics systems made up of independent subsystems whose behavior is influenced by subsystems around them. The Logistics 4.0 concept incorporates two elements: technical tools and technology that assist internal supply chain activities and processual aspects (Szymaska et al. 2017).

According to Bamberger, selecting the technology developments for logistics 4.0 is a difficult decision for management. Data, new physical transit methods, digital platforms and marketplaces, and new production techniques are some of these areas. Physical transportation includes state-of-the-art tools including driverless automobiles and trucks, handling robots, and drones. (Bamberger, 2017)

Identification, mobile communication, location, electronic data interchange, terminals, data analysis methods, and data analytics processing are some of the key logistics 4.0 technologies presented by Glistau and Machado. Other typical logistics 4.0 solutions include smart logistical objects, autonomous vehicles, big data and automatic video control of logistics objects, traffic management, and new business processes like e-procurement platforms. (Glistau & Machado, 2018)

The security of the logistics system is essential for ensuring a secure and dependable flow of goods. It is a crucial part of risk management for companies, guarding them against any security lapses and guaranteeing the continuity of their operations.

In general, the literature indicates that the use of cutting-edge technologies like IoT, 5G, big data, and cloud computing can improve the security of logistics systems. These technologies can enhance communication and data interchange, offer real-time monitoring and tracking, detect potential security risks, and offer secure data storage and access control systems. The possible drawbacks and restrictions of using these technologies, as well as their effect on the general efficacy and efficiency of logistics systems, still require further study.

According to "Regulation (EU) No 526/2013 (Cybersecurity Act)", cybersecurity, network, and information systems are being used by more and more people, organizations, and businesses across the Union. Also, over the course of the next ten years, it is anticipated that a very large number of connected digital devices will be deployed throughout the Union as a result of the internet of things' (IoT) rise. A growing variety of products and services are also incorporating connectivity and digitization as essential components. Despite the fact that there are an increasing number of internet-connected devices, insufficient cybersecurity is a result of poor design resilience and protection. Because certification is only occasionally used in this context, users at the individual, organizational, and business levels are less knowledgeable about the cybersecurity features of ICT goods, services, and processes, which lowers trust in digital solutions. (Official Journal of the European Union, 2019).
According to Infosys, while automation and digital transformation in the transportation and logistics industry are beneficial, it also means that this industry is a prime target for cybercriminals. When different parts of the supply chain connect to the cloud more quickly, cybersecurity risks go up.

The logistics industry has started to produce enormous amounts of structured and unstructured data, which cutting-edge technology like the Internet of Things and artificial intelligence can only handle strategically. By tying the data generated by linked equipment and logistics software to machine learning models implemented in the cloud, businesses may increase supply chain transparency and significantly reduce operational costs.

With the help of IoT solutions, businesses in manufacturing, retail, and transportation can track their products in real time to make sure they get to their destinations on time and in good condition. IoT solutions also let companies use data from the past to figure out when to restock and how much to order. (Infosys, 2020)

The study entitled "Cybersecurity and the Threat to Logistics" shows us that logistics businesses confront a challenge in modifying their cybersecurity procedures to match their new hyper-connected reality as they benefit from growing digitalization and connectivity.

Malware assaults and other security lapses are becoming more frequent and severe every day, and this trend is expected to continue as long as attackers have access to new technologies like artificial intelligence. Due to their connections with several third-party providers and their use of both new, inadequately secured IoT devices and old, inadequately maintained control systems, logistics organizations are particularly vulnerable.

Companies can reduce the risk of cyberattacks by doing extensive reviews of their procedures and working toward a model of visibility and active monitoring across all of their systems. No defense can provide total safety from a prospective assailant. But, businesses may remain ahead of the competition and secure their long-term resilience to cyberthreat by hiring security specialists to routinely monitor and test their security systems. (Sharrock, 2018)

The logistics industry has been slower to adopt digital changes than other sectors that are experiencing change as a result of technology. Early vulnerability detection and the ability to keep an eye on systems will help in this situation so that intrusions can be stopped quickly and effectively. Firms should make cybersecurity a strategic decision they have to take if they want to keep up high safety standards.

Methodology
In this research work, qualitative research methods were applied to identify ways in which new technologies such as the IoT, 5G, big data, and cloud computing can be used to support a well-functioning logistics system. Thus, a literature review was conducted using online databases such as Scopus, Elsevier, Science Direct, and Springer publications. I also used scientific research papers, official EU reports, and studies by major companies in the field. The topic of implementing new technologies in logistics systems has become more common in academic studies, with increasing emphasis on their importance.

Results and discussions
Modern delivery systems adjust to the demands of Logistics 4.0, which is described as a network of interconnections of independent logistics systems using a large amount of data to determine the automation, organization, and course of processes, as well as support for Industry 4.0. (Winkelhaus & Grosse, 2020) It encompasses digitalization, cloud computing, and the sharing of data. In terms of
individual subsystems, digitization and automation of the supply chain constitute logistics 4.0, which increases manufacturing quality and efficiency. (Tubis & Grzybowska, 2022) In connection with:

- Improving manufacturing efficiency while also further automating and optimizing data flow (information is shared between businesses and between all parties at the top and bottom of the supply chain);
- Proposing changes to how warehouses are run, where intelligent sensors are increasingly being utilized to enable virtual planning of loading and unloading based on specialized network modules and where data on the space's occupancy is relayed;
- "Tracking" (monitoring) of shipments and transit (automated message generation to the client notifying them of the load's weight and anticipated arrival time);
- Real-time collaborative logistics planning in the areas of manufacturing, distribution, and procurement;
- Process automation and digitisation;
- Quick, customized deliveries;
- Digitalization of supplies made by land, sea, and air;
- Significant usage of cloud computing to access online databases in the web environment without the need to purchase (install) extra apps;
- Logistics activities are a digital replica of reality.

Logistics cybersecurity

Logistics cybersecurity concerns must be understood in the context of the megatrends and technologies that are reshaping the sector. The Fourth Industrial Revolution is characterized by the fusion of cutting-edge technologies including the Internet of Things (IoT), big data analytics, edge computing, and artificial intelligence (AI). These technologies have made it possible to automate and optimize a number of crucial logistics procedures, helping firms increase productivity and lower costs. The logistics sector faces new cybersecurity challenges as a result of the increased reliance on technology. (Boyens et al., 2022)

For instance, the IoT has made it possible for logistics organizations to track and monitor their assets in real-time, but using IoT devices also introduces new security flaws that hackers can take advantage of. Similar to how edge computing and AI have facilitated the deployment of increasingly intelligent and autonomous logistics systems, these systems also produce and share copious amounts of sensitive data that must be safeguarded from cyber threats.

The logistics sector is also being transformed by 5G technology. The rollout of 5G networks is expected to bring faster and more dependable connectivity, allowing logistics companies to optimize their processes and raise customer satisfaction.

Logistics firms must have a thorough awareness of the megatrends and technology reshaping the industry to properly address these cybersecurity challenges. Businesses may create successful plans for defending their operations and assets from cyber threats by keeping up with the most recent innovations in cybersecurity and logistics technology.

To provide solutions that are adapted to the particular requirements of the logistics business, collaboration and partnership between logistics organizations, technology suppliers, and cybersecurity experts are required. Ultimately, building a secure and robust logistics ecosystem that can flourish in the digital age requires a shared understanding of the logistics megatrends and technologies. (Cheung et al., 2021)
Internet of Things (IoT)

The use of the Internet of Things (IoT) in supply chains can be defined as a network that connects wired or wireless devices and is characterized by autonomous (without requiring human involvement) operation in the area of data collection, data sharing, data processing, or environment interaction. It is a strategy for creating communications networks and information systems with a high degree of dispersion that may be applied, among other things, to develop intelligent control and measurement systems, analytical systems, or control systems in almost every industry.

The idea of an IT architecture that supports multiple field applications by enabling the cooperation of various ICT systems is based on the following aspects:

- **Equipment** - devices (or things equipped with such devices), particularly sensors, actuators, but also controllers, smartphones, tablets, laptops, or computers that can communicate and process data without the help of people or with only minimal human intervention;
- **Communication** - a network of (wired or wireless) telecommunications working on any range and any data transmission standards; in this case, the Internet;
- **Software**, including IT systems for Internet of Things (IoT) devices and software for data processing, system administration, and security;
- **Integration of defined IT service sets** that guarantee software interoperability at all architectural levels. (Ivankova et al., 2020)

Combining Internet of Things products and services enables a better understanding of the consumer, the environment, products, and processes, including logistics processes. It also enables the identification of significant events and the immediate optimization or more precise personalization of responses in response. The Internet of Things' (IoT) most widely used logistical solutions include:

- **Inventory management tools** that support distribution and replenishment planning for logistics managers. Business owners will be able to eliminate human error, ensure the secure storage of goods, and save time by quickly finding the needed item with the help of connected sensors. The assurance that every step of the supply chain is successful is boosted by the capability of tracking the product from the warehouse to the customer's door.
- **Predictive analytics tools** that support managers in making well-informed choices concerning supply chain and warehouse management. They are used to find the quickest delivery routes, spot equipment problems before they become serious, and warn workers when it's time to repair equipment. Systems for predictive analysis boost warehouse output while cutting down on delivery expenses.
- **Location management technologies** that provide real-time tracking of the whereabouts of each vehicle, the status of deliveries, and the anticipated length of the process. It is also a tool that enables locating warehouse tools for maintenance and repairs, which enhances the efficiency of warehouse management. These tools include racks, trolleys, cranes, ventilation and air conditioning devices, fire prevention devices, etc.
- **Automated vehicles** will be the primary supply chain and logistics innovation. Among the pioneers in the use of autonomous vehicles and those who stand to gain the most from this innovation are likely to be logistics organizations. Vehicles will choose the most practical route, modify the interior's temperature and other features to store the goods in a favorable atmosphere, and use a variety of additional applications to best suit each delivery.
- **Automated order processing and status updates** that assist businesses in hiring fewer shipping staff members, hence lowering total logistics costs throughout the supply chain. For final-stage delivery, using networked bots can drastically cut costs while significantly improving customer happiness. (Macaulay & Kückelhaus, 2015)
Enhancing the security of logistics by using the Internet of Things

The capacity to connect numerous things, from small objects to shipping containers and vehicles, to the internet has made the Internet of Things (IoT) more and more significant to the logistics sector. Greater visibility and control over the supply chain are now possible thanks to the new opportunities this connection has created for tracking and monitoring logistical activities in real-time.

Having the capacity to track individual things and shipments from beginning to end is one of the IoT’s major advantages for logistics. By identification and removing supply chain bottlenecks and inefficiencies, this enables logistics organizations to optimize their operations, lower costs, and increase efficiency. By providing precise and timely information on cargo status and delivery schedules, logistics companies may use IoT technology to enhance their customer service.

Monitoring the state of goods while they are in route is another advantage of IoT in logistics. Logistics businesses can monitor the temperature, humidity, and other environmental conditions that may affect the quality and safety of goods by fitting pallets, containers, and vehicles with sensors. By using this information, one may ensure that items are carried in the right circumstances, lowering the chance of damage.

By monitoring the movement and location of cargo and trucks in real-time, the IoT also makes it possible for logistics organizations to increase security and safety. By identifying potential risks and taking proactive steps to mitigate them, this can assist to increase safety.

Internet of Things is applicable to the logistics sector since it may link logistical organizations to the internet. IoT technology may help logistics businesses run more efficiently, save money, provide better customer service, and increase supply chain security and safety. The IoT is set to play an increasingly significant role in determining the future of the logistics business as it continues to develop and adopt new technologies.

Edge intelligence refers to computing solutions using unique computational engines outside the cloud or datacenter and builds on IoT. Traditional computing solutions are centralized, processing data from many sources (including IoT-enabled objects) in line of business (LOB) or analytical systems that are housed in the cloud or datacenter. Intelligent edge solutions add complementing compute at the edge rather than "moving" computation there. Edge intelligence accomplishes this by making objects and environments "smart," intelligent enough to take part actively in business process automation. (Sergi et al., 2021)

The ability to supply derivative knowledge or the ability to allow "smart" things to make decisions are only two examples of how "smart" things can be. In the following I will present the usefulness of IoT in terms of equipping truck tyres with smart sensors that can transmit real-time data:

A. You can periodically get a readout of the tire pressure by giving the tire pressure gauge an Internet address. Such readings increase safety, fuel economy, and provide information on tire life, driving patterns, etc. to centralized analytical engines.

B. Tire pressure can be sampled periodically (e.g., every few seconds) in order to produce an average and a standard deviation by giving the tire pressure gauge an Internet address and performing some local processing. The average provides a higher-quality result than periodic snapshots, and as the tire wears down and becomes thinner, the standard deviation of the pressure readings will rise. This opens up new analytical possibilities, such as predicting tire life to enhance safety and plan tire replacements more effectively.

C. A tire's ability to continuously regulate its own pressure to further improve safety, fuel efficiency, and tire life could be granted by adding intelligence to the tire pressure gauge.
The application of RFID (radio frequency identification) technology for tracking and monitoring commodities as they move through the supply chain is one specific example of how IoT has contributed to enhancing supply chain security.

RFID tags can be applied to specific products or packaging, and RFID readers can read these tags at different locations throughout the supply chain, including warehouses, distribution centers, and retail establishments. Real-time visibility into the movement of goods is made possible by this, and it can aid in preventing theft, loss, or damage as well as in locating any potential bottlenecks or delays in the supply chain.

An organization that manufactures and sells high-end gadgets, for instance, might follow the movement of its goods from the production to the merchant using RFID technology. The business can utilize the information from the RFID tags to identify a potential problem and take the necessary action if a shipment of goods is lost or delayed. By enabling better planning and forecasting, this can lower the risk of theft or counterfeiting and increase the efficiency of the supply chain. (Chunling, 2012)

Walmart, one of the biggest retailers in the world, is an illustration of a business that makes use of RFID technology. They can trace product movement in real time using RFID technology, making inventory tracking and replenishment more effective. RFID tags can be used to track when things are moved out of specified areas or when they are taken out of the store without being purchased, which can assist decrease shrinkage and theft. Walmart has urged its suppliers to embrace RFID technology in addition to deploying it in its own stores to increase the effectiveness of the supply chain. (Shin & Tucci, 2015)

Fifth-generation wireless (5G)

The fifth generation of mobile technology, or 5G, is a driving factor behind how supply chains function. 5G is a standard for data transmission in cellular networks with improved performance criteria. The following are the major advantages of 5G technology for supply chain management:

- The potential for widespread adoption of technologies like the Internet of Things, cloud computing, remote-controlled vehicles, asset tracking and location solutions, electrification of tools and tools, blockchain, artificial intelligence, process automation, autonomous vehicles and smart transport, robots and drones, 3D printing, and augmented reality in the monitoring and improvement of logistics processes.

- A greater awareness of fluxes. The concept of supply chain visibility goes far beyond simple shipment tracking. The most significant benefit of 5G technology is the ability to quickly and accurately understand supply chain activities, including the visibility of purchases, inventories, production, and shipments throughout the operational environment, supported by active real-time event management. In order to respond to supply chain disruptions, logistics organizations will be able to monitor and manage the flow of operations and services while making decisions in real time.

- New opportunities for managing vehicle fleets. Sensors that track each commercial vehicle's performance help to maintain fleet availability and prevent failures. Commercial vehicle fleets will be a part of a transport network that is always available since 5G networks will be able to function outside of urban regions. The whole supply chain will benefit from real-time control of vehicle utilization made possible by Transport Management Systems (TMS). (Khatib & Barco, 2021)
Using the fifth-generation wireless (5G) to enhance logistics security

The logistics sector is essential to the global economy because it makes it easier for items to flow from producers to consumers. However, because of its heavy reliance on technology, this sector is particularly susceptible to cyberattacks. Cyberattacks may have a negative impact on a company's finances and reputation, as well as on customers. By delivering quicker and more dependable connectivity, the fifth generation of wireless technology, or 5G, is anticipated to change the logistics sector.

Better encryption for data carried across the network is one of the main advantages of 5G. Data can be encrypted more thoroughly with 5G than with earlier wireless technology generations, making it more challenging for hackers to intercept and decipher. This can aid in defending sensitive data against cyberattacks, including client information, financial information, and product specs.

Additionally, 5G improves network visibility into the logistics sector, making it simpler to spot security risks. With 5G, companies can track the flow of goods throughout their supply chains in real time, with the help of sensors and other connected equipment. This can assist companies in spotting possible issues before they arise and swiftly implementing solutions. (Lagorio et al., 2023)

Big data

Big data, a crucial component of Logistics 4.0, is an evolving way of gathering data from lawful sources, analyzing it (using business intelligence), and applying the results to carry out the objectives established for the demands of the supply chain. Big data gives firms the chance to obtain a competitive edge in today's digitized market through the combination of volume, diversity, speed, and dependability. (Mohan, 2017)

Using big data involves carefully combining many sorts of data, including internal and external, archival, current, and future data, in order to learn more about the conditions of the supply chain's top and bottom segments. The concept of big data is defined as:

- Accumulating, processing, and analyzing a lot of data to learn new things;
- High-volume, high-velocity, and/or high-variety information assets that necessitate creative, cost-effective methods of information processing to improve insight, decision-making, and process automation;
- Data sets that must be processed using cutting-edge technologies, tools, and informational techniques that are simultaneously characterized by a high volume, diversity, real-time streaming inflow, variability, and complexity;

In the following I will present a number of evaluations of big data from the perspective of value added to supply chain activities:

- First, big data is a collection of data with a high volume and variety (diversity) that makes it possible to gather, process, infer, and visualize data from diverse sources in order to achieve particular goals.
- Second, big data is a term that is frequently used to characterize the quick accumulation and accessibility of both organized and unstructured data.
- Third: data integration, data selection, data transformation, pattern evaluation, and knowledge representation are examples of non-standard tools needed for today's changes in the approach to data mining in the process of knowledge discovery.
Fourth, in order to assist decision-making and the creation of novel logistics processes, the organization must adapt to the revolutionary changes in big data technology and management techniques.

Big data enhances the efficiency of the supply chain, among other things, by:

- Increasing the level of supply chain integration and coordination of its individual links' activities at three levels: adoption of supply chain management's underlying presumptions, cooperation and coordination of activities, goals and measures for their implementation, and use of IT systems to improve the quality and speed of information exchange;
- Using instruments for monitoring electronically recorded manifestations of consumers' decisions and activities, the supply chain is matched (configured) to their requirements in accordance with their needs (personalization);
- Prompt detection and removal of inefficiencies (wastes) in the movement of materials and related information along the supply chain;
- A drop in value for target customers or an increase in logistics expenses as a result of the efficient removal of unneeded stockpiles or poorer logistics processes;
- An efficient and quick search for new environments, technologies, or methods for the realization of particular logistical operations connected to flows, processes, participants, and links. (Moldagulova & Satybaldiyeva, 2020)

Increasing security of logistics systems using big data analytics

By evaluating data from various sources, such as IoT devices, GPS trackers and security cameras, big data analytics can offer insightful information on the security of logistics systems. For instance, it is possible to discover deviations from predetermined routes in cargo truck GPS data, which may point to product theft or diversion.

By examining past data to find patterns and trends that could point to possible security threats, big data analytics can also be used to detect and prevent security events. Analytics technologies, for instance, can be used to spot patterns of fraudulent activity in logistics networks.

Big data analytics can also help logistics organizations react to security incidents more effectively when they do arise. When a security problem happens, real-time data analysis can send immediate notifications to security staff, enabling them to react swiftly. For instance, security officers can be alerted to a suspicious activity using real-time analysis of surveillance cameras to spot it. (Albqowr et al, 2022)

Cloud computing

Cloud computing relates to computing services (support) given by other companies, available on request at any time and regulated as needed. A data processing model known as "cloud computing" relies on the usage of computing services offered by the service provider in the form of scaled servers, databases, networks with the best bandwidth and security, software, analytics, etc. Cloud providers are the businesses that supply these services. According to the previously agreed-upon contract, the client only pays for the right to use a certain service, such as the ability to utilize the IT infrastructure, and as a result, incurs no investment expenditures. Several criteria can be used to categorize cloud computing. The first classification relates to the methods used to plan, produce, and then manage clouds. The following cloud types can be distinguished based on these criteria:

- Public clouds, which are designed for large recipients and have the benefit of being accessible to anyone with Internet access; free email services are an example of a common public cloud;
- Private clouds, or specialized IT resources (defined as the newest IT technologies), are ready-made solutions designed for a single economic unit.
- A hybrid cloud that incorporates components from both models;
- Community cloud, in which resources are made available to a group of organizations with shared objectives carrying out particular tasks (the cloud may be owned by all the organizations involved, just one of them, or even a third party);
- Dedicated cloud, where the service provider gives the client exclusive access to a certain area of the cloud;
- Virtual private cloud, where a collection of resources is made ad hoc available for the user's needs as part of a "public cloud" service while taking into account a certain level of isolation for these resources.

Cloud computing today supports advanced growth capabilities like real-time computing, forecasting, artificial intelligence, continuous learning, and machine learning in addition to storage and scalability. Cloud technology is a critical component that enables businesses across all sectors to innovate new technologies, including artificial intelligence. (Temjanovski, 2021)

Increasing security of logistics systems using cloud computing
Users can access computing resources including servers, storage, and apps online thanks to cloud computing systems. For the security of logistics systems, cloud computing has various advantages, including:

- Scalability: The processing power and scalable infrastructure offered by cloud computing can manage high volumes of data and traffic. For logistics systems, where demand might change significantly, this scalability is crucial.
- Flexibility: Cloud computing provides adaptable services and infrastructure that may be tailored to fit the unique requirements of logistics systems. Because of their adaptability, logistics companies can respond swiftly to shifting security standards and new threats.
- Security: Cloud computing provides cutting-edge security capabilities including encryption, firewalls, and intrusion detection systems that can shield logistics systems from various security risks.
- Cost-effectiveness: Because businesses simply pay for the resources and services they use, without having to make a substantial upfront investment, cloud computing offers a cost-effective solution for logistics system security. (Gomez & Grand, 2015)

Conclusion
Since the advent of technologies like the Internet of Things (IoT), 5G, big data, and cloud computing, the logistics sector has seen a tremendous digital change. These innovations might boost productivity, cut expenses, and improve the overall customer experience. To protect logistics systems, however, they also pose fresh security issues that must be resolved. Improved visibility and control over logistics operations are made possible by the IoT and 5G, which provide new capabilities for real-time monitoring and communication between equipment. Logistics firms can improve operations by using data from IoT devices on the location, status, and condition of items. Big data analytics can offer insightful information about logistics processes, but they need secure infrastructure for storage and processing. Cloud computing offers a safe and flexible platform for handling large data, allowing for real-time data analysis and boosting the security of logistics systems. By the usage of the cloud, logistics businesses may access data from numerous sources, evaluate it in real-time, and use the knowledge gained to decide.
However, using these technologies also creates new security issues that need to be resolved. Supply chains can be disrupted, money can be lost, and sensitive data can be compromised by cyberthreats such as hacking, data breaches, and ransomware attacks. As a result, it’s crucial to make sure that effective cybersecurity safeguards are in place to defend logistics systems from potential online dangers.

There is an increased potential for improving logistics system security and increasing the effectiveness and reliability of logistics operations by integrating technologies like IoT, 5G, big data, and cloud computing. To protect against potential cyber threats, it is imperative to take into account the security implications of these technologies and put in place practical safeguards.

Improved visibility and control over logistics operations are made possible by the IoT and 5G, which provide previously unheard-of capabilities for real-time monitoring and communication between equipment. Logistics firms can make educated decisions and improve operations by using data from IoT devices on the location, status, and condition of items. The usage of 5G networks can also make it easier to implement sophisticated logistical systems that need a lot of bandwidth and low latency.

Big data analytics can offer insightful information about logistics processes, but they need scalable, secure infrastructure for storage and processing. Cloud computing offers a safe and flexible platform for handling large data, allowing for real-time data analysis and boosting the security of logistics systems. By the usage of the cloud, logistics businesses may access data from numerous sources, evaluate it in real-time, and use the knowledge gained to decide.

However, using these technologies also creates new security issues that need to be resolved. Supply chains can be disrupted, money can be lost, and sensitive data can be compromised by cyberthreats such as hacking, data breaches, and ransomware attacks. As a result, it’s crucial to make sure that effective cybersecurity safeguards are in place to defend logistics systems from potential online dangers.

In conclusion, much potential exists for improving logistics system security and increasing the effectiveness and reliability of logistics operations by integrating technologies like IoT, 5G, big data, and cloud computing. To protect against potential cyber threats, it is imperative to take into account the security implications of these technologies and put in place practical safeguards. The advantages of these technologies can be reaped by logistics organizations while also protecting the security and safety of their operations.

References

DOI: 10.2478/picbe-2023-0021, pp. 188-199, ISSN 2558-9652 | Proceedings of the 17th International Conference on Business Excellence 2023

Khatib, E. & Barco, R. (2021). Optimization of 5G Networks for Smart Logistics. MDPI

